
Complex
Components in
Mobile
Environment

1

Ing. Daniel Kĺč

1

Mobile
Environment
and Limitations

• High memory complexity
• High computational complexity
• Scale of the problem
• Potential of growth

2

CPUs in mobile devices have lower clocking frequencies and simplified architecture
which means that it consumes less power and does well for "simple" problems, it also
does poorly in case of complicated problems with high pressure on memory or
processing power.
Some problems are acceptable for small data-sets but get fairly prohibitive quite
quickly with size of data.
Acceptable solution is no good if it ceases to be acceptable a short while later.

2

How does
this Compare
to Server?
• CISC vs. RISC architectures
• Power efficient vs. power intensive
• Scalability

3

Servers have robust architecture completely dedicated to difficult problems with high
pressure on both memory and CPU processing subsystems. This is paid for by power
usage.
It is always worth to consider if scaling is needed later on. Adding server to online
solution is usually relatively easy while switching from mobile to server in later stages
of development is usually quite expensive.

3

Understanding
Performance

Difference
• Per-core performance
• Core specialization
• Clocking frequencies
• Cache sizes
• Robust vs. simple infrastructure

RAM

CPU

L3

Core 1

Core 2

L2

L2

L1

L1

For simplicity L1 memory access is roughly 100x faster than
RAM, L2 is 25x faster and L3 about 10x faster. This varies
between RAM and CPU models.

• Prime core, performance cores and efficiency cores vs. all high performance
cores

• Cache, RAMs on server >> mobile device
• # of cores on server >> mobile device
• Prime core performance vs. server core ~ equal performance
• x86, x64 CISC architecture vs. ARM, ARM64 architecture

4

How to
Identify
Problematic
Component?
• Product specification
• Feasibility study
• Growth prediction
• Prototyping & Measurements

5

Identify pieces of software that amount to NP complete of similar complexity
problems.
Identify pieces of software which have acceptable complexity but will run on big data
sets.
Identify pieces of software which will put enormous amount of stress on data sub-
system
Identify pieces of software which have high response time requirements – from these
pick those which might have problems with meeting these requirements – these are
dangerous in long term
Identify pieces of software which have ambiguous definition or implementation and
add definitions/prototypes for them – then see if they fit in any category above

5

Product
Specification:
Selected Topics
• Target devices
• Performance requirements
• Offline requirement
• Detailed use case description

6

Idea is to define what is expected from software – use cases, constraints, working
environment,….

6

Feasibility
Study: Selected
Topics
• Primary and alternative approaches

• Complexity of approaches
• Pros & Cons

• Scale of problem
• Growth prediction

7

Idea is to take product specification and produce technological evaluation:
• Can product be produced given product specification?
• What needs to be done?
• Where it can be realized?
• What different options are on the table?
• What are known constraints?
• What are known technological risks?

7

When to
Choose
Server?
• Performance requirements
• Power requirements
• Problem scale
• Growth management
• Prototype results

8

If in doubt that requirements can be fulfilled on device, they usually can't.
Always consider existing server solutions which can be reused (don't re-invent the
wheel).

8

When to
Choose
Device?
• Connectivity issues
• Offline requirement
• Manageable scale
• Manageable complexity

9

Usually this is direct consequence of requirements. Some requirements can't be
fulfilled by remote service.
There are situations when requirements and reality are mutually exclusive, when in
doubt consult stakeholders – bad, unrealizable requirements do exists.

9

Example: Routing on Road
Network

Not necessarily. Choose server if:
• Performance requirement
• Precision requirement
• Optimalization problem
• Huge data set

Possibly:
• Offline requirement
• Lower precision
• Basic use case
• Reduced data set

Must be server, right? Maybe device?

10

Given properly reduced road network, offline routing is possible. Questions to
consider are:
• If some precision issues due to mathematical optimizations are tolerable given

requirements
• If highly varying and relatively high algorithm response time is acceptable
• If high power consumption is acceptable for short amount of time
On the other hand server is all powerful routing engine but it also means additional
maintenance costs and development costs.

10

1

3

Performance
ABC

2

Make sure that selected algorithm
is appropriate for mobile devices

Consider performance in context of
Roofline model (or another
benchmark)

Measure, adjust, reduce

11

Try to pick most appropriate algorithm long and short term for actual realization.
Consider if theoretical performance of algorithm can be achieved on target devices
given performance constraints of target devices.
Cross reference this with actual requirements.
Once first version of picked algorithm is developed, profiler and other measurement
tools become your best friend.
Properly diagnosing algorithm on device is topic of its own.
Keep in mind that some optimizations for desktop system can have exactly opposite
effects on mobile devices (why that is could receive course of its own).

11

Roofline
Model

• Is program running at peak
performance?

• Pressure on data subsystem
• Pressure on computational

subsystem
• Effectivity vs. amount of work
• Specific for each device
• Differs for memory types

At
ta

in
ab

le
 p

er
fo

rm
an

ce
 (G

FL
O

PS
)

Arithmetic Intensity (FLOP/Byte)

Computation roofline

Program A

Program B

Keep in mind that while simplified chart above is generally correct, it differs for each
device and memory bandwidth for each memory type (RAM, L1-3 Cache).
One of pitfalls of this model is to pick more efficient algorithm which however does
more work so decision will have negative impact.

12

Pressure on
Memory
Subsystem?
• RAM & processor caches
• Cache miss

• Extremely expensive
• "Waiting processor"

13

This is again very complicated CPU topic (and could fil entire course by itself). CPU
does in a sense have to wait when it finds out that data are not present in its L1 cache
– but not really. Waiting is wasteful, typically more robust CPUs will have instructions
further down the line ready for out of order execution. It can also apply wide variety
of other "trick" such as speculative execution. On memory level it also uses scope of
tricks to assure that data are present early. For example CPU can predict what
memory segments will be needed in foreseeable future and load them in advance.
Desktop versions typically have more robust algorithms to handle this. However, if
CPU is really clogged and its memory subsystem is on its limits, executing code will
delay significantly. There are techniques how to help your code to be more light-
weight on CPU/memory; however, this is again topic of its own.

13

Can we Design
Algorithms for
Memory Efficiency?
• Controlling memory access

• Random access vs. sequential access
• Buffers and lazy operations
• Reducing data scope
• Splitting data and localization

• Why sometimes making extra copy is a good thing

14

If you can choose sequential access/strides, it is always better than random memory
access (however, keep in mind hash table as negative example, superior algorithm
usually wins over better memory ordering).
If you measure that your algorithm is slow due to memory subsystem, consider if hot
code segments can be reformed and only apply changes to data if absolutely
necessary.
If heavy operation is performed on set of objects and only some objects are used,
consider copying affected objects together. This will reduce stress on memory.
Always consider if problem can be split into several smaller ones, this can help in a
major way.

14

Example: Buffered Tree

• Get lowest element
• Optimize for insertion
• Memory is slow

Setting

• Average one memory operation per insertion
• Instant access to lowest member
• Expensive Removal

Properties

8

125

62

Buffer:
Ins 4
Ins 15
Ins 7

Buffer:
Ins 3

15

15

Pressure on
Computational
Subsystem?
• Algorithmic choice
• Mathematical optimization

• Heuristic
• Linear Programming
• Iterative Methods

• Low Level Optimizations

16

Sometime software can be slowed down by improper choice of algorithm. This can
happen due to poor initial analysis or simply data-set have outgrow initial
implementation.
If algorithm cannot be changed or best algorithm is already in place, always consider
removing parts of solution artificially. For example if we can remove part of data set
at any point because we can prove that final solution is not present there, then
remove it.
When both methods above are spent, then try to optimize your code. To mention few
techniques – reserving data sets in advance with appropriate size (reduces work with
heap), utilizing auto-vectorization, considering branching of algorithm....

16

Example: Routing on Road Network

• 80M interconnected roads in Europe
• Calculate route from A to B with air distance 500km

Setting

Heuristic: Disregard unpaved roads
Linear programming: Consider only roads located
within ellipse defined by A and B as its focal points
Algorithm: A*

Techniques

17

17

Do we Face
same Challenges
on Server?
• Moving from "How to fit problem" to "How to make

conventional algorithms faster"
• Problems that don't fit on mobile devices
• Wider CISC toolset
• Performance superiority

18

Many problems which are appropriate for server simply need more parallelism or
more memory – this server can delivery (however there are exceptions – for example
cryptographic problems). Some algorithms are same but in bigger and more powerful
environment, some modify data sets, some have same data sets but algorithm is
completely different.

18

Example: A* vs Contraction
Hierarchies

Slovakia
• Road network size – 10MB
• Query average time - 200ms

Slovakia
• Road network size - 1GB
• Average query time – 0.5ms

A* Contraction Hierarchies

19

19

So, how do we
Approach this?

• Systematic approach to a meaningful software
decision

• Documents, documents and more documents
• Product specification
• Requirement analysis
• Feasibility study
• Architectural documents
• Measurements, prototypes
• Documented educated guesses

20

So, at the end of the story, each case is different, there is no one size fits all approach
to development of complicated subsystems. All we can do is follow systematic
approach and solution will eventually firmly fit on server or device.
Keep in mind that methodology is only as good as people who follow it.
Documents mentioned above try to make sure that all stakeholders are involved in
process and have their say. Project usually fail due to failed communication or
information channels.

20

Biggest Hazzard is
Ambiguous
Requirement

Definition: Requirement
1) A condition or a capability by a user to solve a problem or achieve an objective.
2) A condition or capability that must be met or possessed by a system or a

system component to satisfy o contract, standard, specification, or other
formally imposed documents.

3) A documented representation of a condition or capability as in 1) or 2).
[IEEE 610.12-1990]

21

21

How do I Identify
well formed
Requirement?
Requirement:
• No wishful thinking
• Places resolute unambiguous constraint on product
• Can be realized by algorithm or strategy
• Unambiguous acceptance criteria/tests are part of

requirement
Note:
• There are multiple strategies for requirement elicitation

22

To a degree this a engineering art and experiences play major role. We try to evaluate
requirement in terms of its content and guess if it can serve as meaningful source of
information for software development. Good questions to ask are:
• Can I create architecture based on this?
• Can I create software based on this?
• Can I create acceptation criteria based on this to verify that requirement has been

fulfilled?
If answer for any question above is "no", then requirement is incomplete or outright
bad.

22

Example: Good vs. Bad
Requirement

• How do I measure "good"?
• How fast is "fast"?
• How do I validate this?
• Make where?
• ….

• Much better.
• Still can be improved upon.
• Maybe sub-requirements?
• Proper glossary?
• ….

Bad: Make good and fast routing.

Good: Make routing for CAT 40s mobile device
which will route standard car BA-KE through D1
under 100ms without internet connection using
Sygic maps.

23

Requirement engineering have formalized methods to verify integrity of
requirements. Requirements in so called "natural language" are especially tricky.

23

Why Bother with
Architecture?

• Details matter
• Danger of developing unusable software
• Danger of imposing artificial constraints

• Different teams can review software before is has been
developed

• Saves time in later stages of development in all but most
simplistic systems

24

Small changes in architectural model can amount to huge changes in code base
therefore it stands to reason that prior modeling and model verification is beneficial
for project and saves resources.
It is common and quite natural to consider oneself immune to major architectural
error; however, this is always illusion. Major changes do occur in software all the time
no matter how excellent the architect is. Modeling is simply cheaper way to both
detect segments which needs to be redone and validate software as whole.

24

Example: With & Without Architecture

A: We developed context search. [600h]
B: Can we inject online data?
A: Oops. [300h]
Grand total of 900h.

Without architecture

A: We modelled context search. [30h]
B: Can we inject online data?
A: Oops. [3h]
…
A: All done and committed. [600h]
B: Well done.
Grand total of 633h.

With architecture

25

25

Closing Remarks

• Creating proper initial documentation, tests and specifications can be boring;
however, spending two months fixing software after deadline is even more
bothersome.

• Plan, code, measure and repeat.
• Be open to new ideas, technologies and opinions; open minds tend to open

locked doors.

26

26

Questions?

27

27

