
FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Object Oriented Programming in Java

2023 H2 semester

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Summary

• These slides contain material about objects, classes, and object-oriented programming (OOP)
in Java.

• Contains:

• Key syntax of Java

• Key principles of OOP in Java like interfaces, their implementation and inheritance

• OOP patterns with examples in Java

• Part of the lecture are demonstrated source codes

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Why Java?

• TIOBE index
https://www.tiobe.com/tiobe-
index/

Apr 2023 Apr 2022 Programming Language Ratings Change

1 1 Python 14.51% +0.59%

2 2 C 14.41% +1.71%

3 3 Java 13.23% +2.41%
4 4 C++ 12.96% +4.68%

5 5 C# 8.21% +1.39%

6 6 Visual Basic 4.40% -1.00%

7 7 JavaScript 2.10% -0.31%

8 9 SQL 1.68% -0.61%

9 10 PHP 1.36% -0.28%

10 13 Go 1.28% +0.20%

11 12 Delphi/Object Pascal 1.23% +0.05%

12 8 Assembly language 1.03% -1.31%

13 16 Classic Visual Basic 0.92% +0.09%

14 20 MATLAB 0.86% +0.12%

15 24 Scratch 0.79% +0.13%

16 11 R 0.76% -0.79%

17 14 Swift 0.72% -0.28%

18 15 Ruby 0.66% -0.22%

19 28 Rust 0.63% +0.18%

20 31 Fortran 0.59% +0.24%

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Intro

• Jeff Goodell: Would you explain, in simple terms, exactly what object-oriented software is?

• Steve Jobs: Objects are like people. They’re living, breathing things that have knowledge
inside them about how to do things and have memory inside them so they can remember
things. And rather than interacting with them at a very low level, you interact with them at a very
high level of abstraction, like we’re doing right here.

• Here’s an example: If I’m your laundry object, you can give me your dirty clothes and send me a
message that says, “Can you get my clothes laundered, please.” I happen to know where the
best laundry place in San Francisco is. And I speak English, and I have dollars in my pockets.
So I go out and hail a taxicab and tell the driver to take me to this place in San Francisco. I go
get your clothes laundered, I jump back in the cab, I get back here. I give you your clean clothes
and say, “Here are your clean clothes.”

• You have no idea how I did that. You have no knowledge of the laundry place. Maybe you speak
French, and you can’t even hail a taxi. You can’t pay for one, you don’t have dollars in your
pocket. Yet I knew how to do all of that. And you didn’t have to know any of it. All that complexity
was hidden inside of me, and we were able to interact at a very high level of abstraction. That’s
what objects are. They encapsulate complexity, and the interfaces to that complexity are high
level.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Primitives vs. objects; value and reference
semantics

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

A swap method?

• Does the following swap method work? Why or why not?

public static void main(String[] args) {

int a = 7;

int b = 35;

// swap a with b?

swap(a, b);

System.out.println(a + " " + b);

}

public static void swap(int a, int b) {

int temp = a;

a = b;

b = temp;

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Value semantics

• value semantics: Behavior where values are copied when assigned, passed as parameters, or
returned.

• All primitive types in Java use value semantics.

• When one variable is assigned to another, its value is copied.

• Modifying the value of one variable does not affect others.

int x = 5;

int y = x; // x = 5, y = 5

y = 17; // x = 5, y = 17

x = 8; // x = 8, y = 17

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Reference semantics (objects)

• reference semantics: Behavior where variables actually store the address of an object in
memory.

• When one variable is assigned to another, the object is
not copied; both variables refer to the same object.

• Modifying the value of one variable will affect others.

int[] a1 = {4, 15, 8};

int[] a2 = a1; // refer to same array as a1

a2[0] = 7;

System.out.println(Arrays.toString(a1)); // [7, 15, 8]

index 0 1 2

value 4 15 8

index 0 1 2

value 7 15 8a1 a2

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

References and objects

• Arrays and objects use reference semantics. Why?

• efficiency. Copying large objects slows down a program.

• sharing. It's useful to share an object's data among methods.

DrawingPanel panel1 = new DrawingPanel(80, 50);

DrawingPanel panel2 = panel1; // same window

panel2.setBackground(Color.CYAN);

panel1

panel2

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Objects as parameters

• When an object is passed as a parameter, the object is not copied. The parameter refers to the
same object.

• If the parameter is modified, it will affect the original object.

public static void main(String[] args) {

DrawingPanel window = new DrawingPanel(80, 50);

window.setBackground(Color.YELLOW);

example(window);

}

public static void example(DrawingPanel panel) {

panel.setBackground(Color.CYAN);

...

}

panel

window

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Arrays as parameters

• Arrays are also passed as parameters by reference.

• Changes made in the method are also seen by the caller.

public static void main(String[] args) {
int[] iq = {126, 167, 95};
increase(iq);
System.out.println(Arrays.toString(iq));

}

public static void increase(int[] a) {
for (int i = 0; i < a.length; i++) {

a[i] = a[i] * 2;
}

}

• Output:

[252, 334, 190] index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Arrays pass by reference

index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

• Arrays are also passed as parameters by reference.

• Changes made in the method are also seen by the caller.

public static void main(String[] args) {
int[] iq = {126, 167, 95};
increase(iq);
System.out.println(Arrays.toString(iq));

}

public static void increase(int[] a) {
for (int i = 0; i < a.length; i++) {

a[i] = a[i] * 2;
}

}

• Output:

[252, 334, 190]

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Classes and Objects

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Objects

• object: An entity that encapsulates data and behavior.

• data: variables inside the object

• behavior: methods inside the object

• You interact with the methods;
the data is hidden in the object.

• Constructing (creating) an object:

Type objectName = new Type(parameters);

• Calling an object's method:

objectName.methodName(parameters);

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Classes

• class: A program entity that represents either:

1. A program / module, or

2. A template for a new type of objects.

– object-oriented programming (OOP): Programs that perform their behavior as interactions
between objects.

– abstraction: Separation between concepts and details.
Objects and classes provide abstraction in programming.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Blueprint analogy

iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Point objects

import java.awt.*;

...

Point p1 = new Point(5, -2);

Point p2 = new Point(); // origin (0, 0)

• Data:

• Methods:

Name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx, dy) adjusts the point's x and y by the given amounts

distance(p) how far away the point is from point p

Name Description

x the point's x-coordinate

y the point's y-coordinate

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Point class as blueprint

• The class (blueprint) describes how to create objects.

• Each object contains its own data and methods.

• The methods operate on that object's data.

Point class

state each object should receive:
int x, y

behavior each object should receive:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

Point object #1

state:
x = 51 y = -2

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

Point object #2

state:
x = -24 y = 137

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

Point object #3

state:
x = 18 y = 42

behavior:
setLocation(int x, int y)

translate(int dx, int dy)

distance(Point p)

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Clients of objects

• client program: A program that uses objects.

• Example: Bomb is a client of DrawingPanel and Graphics.

Bomb.java (client program)

public class Bomb {

main(String[] args) {

new DrawingPanel(...)

new DrawingPanel(...)

...

}

}

DrawingPanel.java (class)

public class DrawingPanel {

...

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Fields

• field: A variable inside an object that is part of its state.

– Each object has its own copy of each field.

• Declaration syntax:

private type name;

– Example:

public class Point {

private int x;

private int y;

...

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Encapsulation

• encapsulation: Hiding implementation details from clients.

• Encapsulation enforces abstraction.

• separates external view (behavior) from internal view (state)

• protects the integrity of an object's data

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Benefits of encapsulation

• Abstraction between object and clients

• Protects object from unwanted access

• Example: Can't fraudulently increase an Account's balance.

• Can change the class implementation later

• Example: Point could be rewritten in polar
coordinates (r, θ) with the same methods.

• Can constrain objects' state (invariants)

• Example: Only allow Accounts with non-negative balance.

• Example: Only allow Dates with a month from 1-12.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Instance methods

• instance method (or object method): Exists inside each object of a class and gives behavior
to each object.

public type name(parameters) {

statements;

}

• same syntax as static methods, but without static keyword

Example:

public void tranlate(int dx, int dy) {

x += dx;

y += dy;

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

The implicit parameter

• implicit parameter:
The object on which an instance method is being called.

– If we have a Point object p1 and call p1.translate(5, 3);

the object referred to by p1 is the implicit parameter.

– If we have a Point object p2 and call p2.translate(4, 1);

the object referred to by p2 is the implicit parameter.

– The instance method can refer to that object's fields.

• We say that it executes in the context of a particular object.

• translate can refer to the x and y of the object it was called on.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Categories of methods

• accessor: A method that lets clients examine object state.

• Examples: distance, distanceFromOrigin

• often has a non-void return type

• mutator: A method that modifies an object's state.

• Examples: setLocation, translate

• helper: Assists some other method in performing its task.

• often declared as private so outside clients cannot call it

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

The toString method

tells Java how to convert an object into a String for printing

public String toString() {

code that returns a String representing this object;

}

• Method name, return, and parameters must match exactly.

• Example:

// Returns a String representing this Point.

public String toString() {

return "(" + x + ", " + y + ")";

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Constructors

• constructor: Initializes the state of new objects.

public type(parameters) {

statements;
}

– runs when the client uses the new keyword

– no return type is specified; implicitly "returns" the new object

public class Point {

private int x;

private int y;

public Point(int initialX, int initialY) {

x = initialX;

y = initialY;

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Multiple constructors

• A class can have multiple constructors.

• Each one must accept a unique set of parameters.

• Example: A Point constructor with no parameters that initializes the point to (0, 0).

// Constructs a new point at (0, 0).

public Point() {

x = 0;

y = 0;

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

The keyword this

• this : Refers to the implicit parameter inside your class.

(a variable that stores the object on which a method is called)

• Refer to a field: this.field

• Call a method: this.method(parameters);

• One constructor this(parameters);
can call another:

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Calling another constructor

public class Point {

private int x;

private int y;

public Point() {

this(0, 0);

}

public Point(int x, int y) {

this.x = x;

this.y = y;

}

...

}

• Avoids redundancy between constructors

• Only a constructor (not a method) can call another constructor

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Comparing objects for equality and ordering

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Comparing objects

• The == operator does not work well with objects.

== compares references to objects, not their state.

It only produces true when you compare an object to itself.

Point p1 = new Point(5, 3);

Point p2 = new Point(5, 3);

Point p3 = p2;

// p1 == p2 is false;

// p1 == p3 is false;

// p2 == p3 is true

...

x 5 y 3
p1

p2

...

x 5 y 3

p3

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

The equals method

• The equals method compares the state of objects.

if (str1.equals(str2)) {

System.out.println("the strings are equal");

}

• But if you write a class, its equals method behaves like ==

if (p1.equals(p2)) { // false :-(

System.out.println("equal");

}

• This is the default behavior we receive from class Object.

• Java doesn't understand how to compare new classes by default.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

The compareTo method (10.2)

• The standard way for a Java class to define a comparison function for its objects is to define a
compareTo method.

• Example: in the String class, there is a method:

public int compareTo(String other)

• A call of A.compareTo(B) will return:

a value < 0 if A comes "before" B in the ordering,

a value > 0 if A comes "after" B in the ordering,

or 0 if A and B are considered "equal" in the ordering.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Using compareTo

• compareTo can be used as a test in an if statement.

String a = "alice";

String b = "bob";

if (a.compareTo(b) < 0) { // true

...

}

Primitives Objects

if (a < b) { ... if (a.compareTo(b) < 0) { ...

if (a <= b) { ... if (a.compareTo(b) <= 0) { ...

if (a == b) { ... if (a.compareTo(b) == 0) { ...

if (a != b) { ... if (a.compareTo(b) != 0) { ...

if (a >= b) { ... if (a.compareTo(b) >= 0) { ...

if (a > b) { ... if (a.compareTo(b) > 0) { ...

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

compareTo and collections

• You can use an array or list of strings with Java's included binary search method because it
calls compareTo internally.

String[] a = {"al", "bob", "cari", "dan", "mike"};

int index = Arrays.binarySearch(a, "dan"); // 3

• Java's TreeSet/Map use compareTo internally for ordering.

Set<String> set = new TreeSet<String>();

for (String s : a) {

set.add(s);

}

System.out.println(s);

// [al, bob, cari, dan, mike]

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Comparable (10.2)

public interface Comparable<E> {

public int compareTo(E other);

}

• A class can implement the Comparable interface to define a natural ordering function for its
objects.

• A call to your compareTo method should return:

a value < 0 if this object comes "before" the other object,

a value > 0 if this object comes "after" the other object,

or 0 if this object is considered "equal" to the other.

• If you want multiple orderings, use a Comparator instead (see Ch. 13.1)

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Comparable template

public class name implements Comparable<name> {

...

public int compareTo(name other) {

...

}

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Comparable example

public class Point implements Comparable<Point> {

private int x;

private int y;
...

// sort by x and break ties by y
public int compareTo(Point other) {

if (x < other.x) {

return -1;

} else if (x > other.x) {

return 1;

} else if (y < other.y) {

return -1; // same x, smaller y
} else if (y > other.y) {

return 1; // same x, larger y
} else {

return 0; // same x and same y
}

}
}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

compareTo tricks

• subtraction trick - Subtracting related numeric values produces the right result for what you
want compareTo to return:

// sort by x and break ties by y

public int compareTo(Point other) {

if (x != other.x) {

return x - other.x; // different x

} else {

return y - other.y; // same x; compare y

}

}

• The idea:

• if x > other.x, then x - other.x > 0

• if x < other.x, then x - other.x < 0

• if x == other.x, then x - other.x == 0

• NOTE: This trick doesn't work for doubles (but see Math.signum)

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

compareTo tricks 2

• delegation trick - If your object's fields are comparable (such as strings), use their compareTo
results to help you:

// sort by employee name, e.g. "Jim" < "Susan"

public int compareTo(Employee other) {

return name.compareTo(other.getName());

}

• toString trick - If your object's toString representation is related to the ordering, use that to
help you:

// sort by date, e.g. "09/19" > "04/01"

public int compareTo(Date other) {

return toString().compareTo(other.toString());

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Inheritance

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Inheritance

• inheritance: Forming new classes based on existing ones.

• a way to share/reuse code between two or more classes

• superclass: Parent class being extended.

• subclass: Child class that inherits behavior from superclass.

• gets a copy of every field and method from superclass

• is-a relationship: Each object of the subclass also "is a(n)" object of the superclass and can
be treated as one.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Inheritance syntax

public class name extends superclass {

• Example:

public class Lawyer extends Employee {

...

}

• By extending Employee, each Lawyer object now:

• receives a copy of each method from Employee automatically

• can be treated as an Employee by client code

• Lawyer can also replace ("override") behavior from Employee.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Overriding Methods

• override: To write a new version of a method in a subclass that replaces the superclass's
version.

• No special syntax required to override a superclass method.
Just write a new version of it in the subclass.

public class Lawyer extends Employee {

// overrides getVacationForm in Employee class

public String getVacationForm() {

return "pink";

}

...

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

The super keyword

• A subclass can call its parent's method/constructor:

super.method(parameters) // method

super(parameters); // constructor

public class Lawyer extends Employee {

public Lawyer(String name) {

super(name);

}

// give Lawyers a $5K raise (better)

public double getSalary() {

double baseSalary = super.getSalary();

return baseSalary + 5000.00;

}

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Subclasses and fields

public class Employee {

private double salary;

...

}

public class Lawyer extends Employee {

...

public void giveRaise(double amount) {

salary += amount; // error; salary is private

}

}

• Inherited private fields/methods cannot be directly accessed by subclasses. (The subclass
has the field, but it can't touch it.)

• How can we allow a subclass to access/modify these fields?

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Protected fields/methods

protected type name; // field

protected type name(type name, ..., type name) {

statement(s); // method

}

• a protected field or method can be seen/called only by:

• the class itself, and its subclasses

• also by other classes in the same "package" (discussed later)

• useful for allowing selective access to inner class implementation

public class Employee {

protected double salary;

...

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Inheritance and constructors

• If we add a constructor to the Employee class, our subclasses do not compile. The error:

Lawyer.java:2: cannot find symbol

symbol : constructor Employee()

location: class Employee

public class Lawyer extends Employee {

^

• The short explanation: Once we write a constructor (that requires parameters) in the
superclass, we must now write constructors for our employee subclasses as well.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Inheritance and constructors

• Constructors are not inherited.

• Subclasses don't inherit the Employee(int) constructor.

• Subclasses receive a default constructor that contains:

public Lawyer() {

super(); // calls Employee() constructor

}

• But our Employee(int) replaces the default Employee().

• The subclasses' default constructors are now trying to call a non-existent default Employee
constructor.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Calling superclass constructor

super(parameters);

• Example:

public class Lawyer extends Employee {

public Lawyer(int years) {

super(years); // calls Employee c'tor

}

...

}

• The super call must be the first statement in the constructor.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Polymorphism

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Polymorphism

• polymorphism: Ability for the same code to be used with different types of objects and behave

differently with each.

• System.out.println can print any type of object.

• Each one displays in its own way on the console.

• CritterMain can interact with any type of critter.

• Each one moves, fights, etc. in its own way.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Coding with polymorphism

• A variable of type T can hold an object of any subclass of T.

Employee ed = new Lawyer();

• You can call any methods from the Employee class on ed.

• When a method is called on ed, it behaves as a Lawyer.

System.out.println(ed.getSalary()); // 50000.0

System.out.println(ed.getVacationForm()); // pink

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Polymorphic parameters

• You can pass any subtype of a parameter's type.

public static void main(String[] args) {

Lawyer lisa = new Lawyer();

Secretary steve = new Secretary();

printInfo(lisa);

printInfo(steve);

}

public static void printInfo(Employee e) {

System.out.println("pay : " + e.getSalary());

System.out.println("vdays: " + e.getVacationDays());

System.out.println("vform: " + e.getVacationForm());

System.out.println();

}

OUTPUT:

pay : 50000.0 pay : 50000.0
vdays: 15 vdays: 10

vform: pink vform: yellow

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Polymorphism and arrays

• Arrays of superclass types can store any subtype as
elements.

public static void main(String[] args) {

Employee[] e = {new Lawyer(), new Secretary(),

new Marketer(), new LegalSecretary()};

for (int i = 0; i < e.length; i++) {

System.out.println("pay : " + e[i].getSalary());

System.out.println("vdays: " + i].getVacationDays());

System.out.println();

}

}

Output:

pay : 50000.0 pay : 60000.0
vdays: 15 vdays: 10

pay : 50000.0 pay : 55000.0
vdays: 10 vdays: 10

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Casting references

• A variable can only call that type's methods, not a subtype's.

Employee ed = new Lawyer();

int hours = ed.getHours(); // ok; in Employee

ed.sue(); // compiler error

• The compiler's reasoning is, variable ed could store any kind of employee, and not all kinds
know how to sue .

• To use Lawyer methods on ed, we can type-cast it.

Lawyer theRealEd = (Lawyer) ed;

theRealEd.sue(); // ok

((Lawyer) ed).sue(); // shorter version

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

More about casting

• The code crashes if you cast an object too far down the tree.

Employee eric = new Secretary();

((Secretary) eric).takeDictation("hi"); // ok

((LegalSecretary) eric).fileLegalBriefs(); // error

// (Secretary doesn't know how to file briefs)

• You can cast only up and down the tree, not sideways.

Lawyer linda = new Lawyer();

((Secretary) linda).takeDictation("hi"); // error

• Casting doesn't actually change the object's behavior.
It just gets the code to compile/run.

((Employee) linda).getVacationForm() // pink

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Interfaces

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Shapes example

• Consider the task of writing classes to represent 2D shapes such as Circle, Rectangle, and
Triangle.

• Certain operations are common to all shapes:

• perimeter: distance around the outside of the shape

• area: amount of 2D space occupied by the shape

• Every shape has these, but each computes them differently.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Shape area and perimeter

• Circle (as defined by radius r):

area =  r 2

perimeter = 2  r

• Rectangle (as defined by width w and height h):

area = w h

perimeter = 2w + 2h

• Triangle (as defined by side lengths a, b, and c)

area = √(s (s - a) (s - b) (s - c))

where s = ½ (a + b + c)

perimeter = a + b + c

r

w

h

a

b

c

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Common behavior

• Suppose we have 3 classes Circle, Rectangle, Triangle.

• Each has the methods perimeter and area.

• We'd like our client code to be able to treat different kinds of shapes in the same way:

• Write a method that prints any shape's area and perimeter.

• Create an array to hold a mixture of the various shape objects.

• Write a method that could return a rectangle, a circle, a triangle, or any other kind of shape.

• Make a DrawingPanel display many shapes on screen.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Interfaces

• interface: A list of methods that a class can promise to implement.

• Inheritance gives you an is-a relationship and code sharing.

• A Lawyer can be treated as an Employee and inherits its code.

• Interfaces give you an is-a relationship without code sharing.

• A Rectangle object can be treated as a Shape but inherits no code.

• Analogous to non-programming idea of roles or certifications:

• "I'm certified as a CPA accountant.
This assures you I know how to do taxes, audits, and consulting."

• "I'm 'certified' as a Shape, because I implement the Shape interface.
This assures you I know how to compute my area and perimeter."

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Interface syntax

public interface name {

public type name(type name, ..., type name);

public type name(type name, ..., type name);

...

public type name(type name, ..., type name);

}

Example:

public interface Vehicle {

public int getSpeed();

public void setDirection(int direction);

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

// Describes features common to all shapes.

public interface Shape {

public double area();

public double perimeter();

}

• Saved as Shape.java

• abstract method: A header without an implementation.

• The actual bodies are not specified, because we want to allow each class to implement the
behavior in its own way.

Shape interface

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Implementing an interface

public class name implements interface {

...

}

• A class can declare that it "implements" an interface.

• The class promises to contain each method in that interface.

(Otherwise it will fail to compile.)

• Example:

public class Bicycle implements Vehicle {

...

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Interface requirements

public class Banana implements Shape {

// haha, no methods! pwned

}

• If we write a class that claims to be a Shape but doesn't implement area and perimeter
methods, it will not compile.

Banana.java:1: Banana is not abstract and does not override abstract

method area() in Shape

public class Banana implements Shape {

^

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Interfaces + polymorphism

• Interfaces benefit the client code author the most.

• they allow polymorphism
(the same code can work with different types of objects)

public static void printInfo(Shape s) {

System.out.println("The shape: " + s);

System.out.println("area : " + s.area());

System.out.println("perim: " + s.perimeter());

System.out.println();

}

...

Circle circ = new Circle(12.0);

Triangle tri = new Triangle(5, 12, 13);

printInfo(circ);

printInfo(tri);

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Abstract Classes

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

List classes example

• Suppose we have implemented the following two list classes:

• ArrayList

• LinkedList

• We have a List interface to indicate that both implement a List ADT.

• Problem:

• Some of their methods are implemented the same way (redundancy).

index 0 1 2

value 42 -3 17

front

data next

42

data next

-3

data next

17

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Common code

• Notice that some of the methods are implemented the same way in both the array and linked list
classes.

• add(value)

• contains

• isEmpty

• Should we change our interface to a class? Why / why not?

• How can we capture this common behavior?

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Abstract classes (9.6)

• abstract class: A hybrid between an interface and a class.

• defines a superclass type that can contain method declarations (like an interface) and/or
method bodies (like a class)

• like interfaces, abstract classes that cannot be instantiated
(cannot use new to create any objects of their type)

• What goes in an abstract class?

• implementation of common state and behavior that will be inherited by subclasses (parent
class role)

• declare generic behaviors that subclasses implement (interface role)

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Abstract class syntax

// declaring an abstract class

public abstract class name {

...

// declaring an abstract method

// (any subclass must implement it)

public abstract type name(parameters);

}

• A class can be abstract even if it has no abstract methods

• You can create variables (but not objects) of the abstract type

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Abstract and interfaces

• Normal classes that claim to implement an interface must implement all methods of that
interface:

public class Empty implements List {} // error

• Abstract classes can claim to implement an interface without writing its methods; subclasses
must implement the methods.

public abstract class Empty implements List {} // ok

public class Child extends Empty {} // error

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

An abstract list class

// Superclass with common code for a list of integers.

public abstract class AbstractList implements List {

public void add(int value) {

add(size(), value);

}

public boolean contains(int value) {

return indexOf(value) >= 0;

}

public boolean isEmpty() {

return size() == 0;

}

}

public class ArrayList extends AbstractList { ...

public class LinkedList extends AbstractList { ...

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Abstract class vs. interface

• Why do both interfaces and abstract classes exist in Java?

• An abstract class can do everything an interface can do and more.

• So why would someone ever use an interface?

• Answer: Java has single inheritance.

• can extend only one superclass

• can implement many interfaces

• Having interfaces allows a class to be part of a hierarchy (polymorphism) without using up its
inheritance relationship.

public class Pokus extends Shape implements interface 1, interface 2, … {

{

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Inner Classes

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Inner classes

• inner class: A class defined inside of another class.

• can be created as static or non-static

• we will focus on standard non-static ("nested") inner classes

• usefulness:

• inner classes are hidden from other classes (encapsulated)

• inner objects can access/modify the fields of the outer object

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Inner class syntax

// outer (enclosing) class

public class name {

...

// inner (nested) class

private class name {

...

}

}

• Only this file can see the inner class or make objects of it.

• Each inner object is associated with the outer object that created it, so it can access/modify
that outer object's methods/fields.

• If necessary, can refer to outer object as OuterClassName.this

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Example: Array list iterator

public class ArrayList extends AbstractList {

...

// not perfect; doesn't forbid multiple removes in a row
private class ArrayIterator implements Iterator<Integer> {

private int index; // current position in list

public ArrayIterator() {

index = 0;

}

public boolean hasNext() {

return index < size();

}

public Integer next() {

index++;

return get(index - 1);

}

public void remove() {

ArrayList.this.remove(index - 1);

index--;

}

}

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Collections

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Collections

• collection: an object that stores data; a.k.a. "data structure"

• the objects stored are called elements

• some collections maintain an ordering; some allow duplicates

• typical operations: add, remove, clear, contains (search), size

• examples found in the Java class libraries:

• ArrayList, LinkedList, HashMap, TreeSet, PriorityQueue

• all collections are in the java.util package

import java.util.*;

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Java collection framework

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Lists

• list: a collection storing an ordered sequence of elements

• each element is accessible by a 0-based index

• a list has a size (number of elements that have been added)

• elements can be added to the front, back, or elsewhere

• in Java, a list can be represented as an ArrayList object

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Idea of a list

• Rather than creating an array of boxes, create an object that represents a "list" of items.
(initially an empty list.)

[]

• You can add items to the list.

• The default behavior is to add to the end of the list.

[hello, ABC, goodbye, okay]

• The list object keeps track of the element values that have been added to it, their order,
indexes, and its total size.

• Think of an "array list" as an automatically resizing array object.

• Internally, the list is implemented using an array and a size field.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

ArrayList methods (10.1)

add(value) appends value at end of list

add(index, value) inserts given value just before the given index,
shifting subsequent values to the right

clear() removes all elements of the list

indexOf(value) returns first index where given value is found in list
(-1 if not found)

get(index) returns the value at given index

remove(index) removes/returns value at given index, shifting
subsequent values to the left

set(index, value) replaces value at given index with given value

size() returns the number of elements in list

toString() returns a string representation of the list
such as "[3, 42, -7, 15]"

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

ArrayList methods 2

addAll(list)
addAll(index,
list)

adds all elements from the given list to this list
(at the end of the list, or inserts them at the given index)

contains(value) returns true if given value is found somewhere in this list

containsAll(list) returns true if this list contains every element from given list

equals(list) returns true if given other list contains the same elements

iterator()

listIterator()

returns an object used to examine the contents of the list

lastIndexOf(value
)

returns last index value is found in list (-1 if not found)

remove(value) finds and removes the given value from this list

removeAll(list) removes any elements found in the given list from this list

retainAll(list) removes any elements not found in given list from this list

subList(from, to) returns the sub-portion of the list between
indexes from (inclusive) and to (exclusive)

toArray() returns the elements in this list as an array

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Type Parameters (Generics)

List<Type> name = new ArrayList<Type>();

• When constructing an ArrayList, you must specify the
type of elements it will contain between < and >.

• This is called a type parameter or a generic class.

• Allows the same ArrayList class to store lists of different types.

List<String> names = new ArrayList<String>();

names.add("Marty Stepp");

names.add("Stuart Reges");

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Stacks and queues

• Sometimes it is good to have a collection that is less powerful, but is optimized to perform
certain operations very quickly.

• Two specialty collections:

• stack: Retrieves elements in the reverse of the order they were added.

• queue: Retrieves elements in the same order they were added.

stack

queue

top 3

2

bottom 1

pop, peekpush

front back

1 2 3
addremove, peek

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Stacks

• stack: A collection based on the principle of adding elements and retrieving them in the
opposite order.

• Last-In, First-Out ("LIFO")

• The elements are stored in order of insertion,
but we do not think of them as having indexes.

• The client can only add/remove/examine
the last element added (the "top").

• basic stack operations:

• push: Add an element to the top.

• pop: Remove the top element.

• peek: Examine the top element.

stack

top 3

2

bottom 1

pop, peekpush

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Class Stack

Stack<Integer> s = new Stack<Integer>();

s.push(42);

s.push(-3);

s.push(17); // bottom [42, -3, 17] top

System.out.println(s.pop()); // 17

• Stack has other methods, but you should not use them.

Stack<E>() constructs a new stack with elements of type E

push(value) places given value on top of stack

pop() removes top value from stack and returns it;
throws EmptyStackException if stack is empty

peek() returns top value from stack without removing it;
throws EmptyStackException if stack is empty

size() returns number of elements in stack

isEmpty() returns true if stack has no elements

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Queues

• queue: Retrieves elements in the order they were added.

• First-In, First-Out ("FIFO")

• Elements are stored in order of
insertion but don't have indexes.

• Client can only add to the end of the
queue, and can only examine/remove
the front of the queue.

• basic queue operations:

• add (enqueue): Add an element to the back.

• remove (dequeue): Remove the front element.

• peek: Examine the front element.

queue

front back

1 2 3
addremove, peek

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Programming with Queues

Queue<Integer> q = new LinkedList<Integer>();

q.add(42);

q.add(-3);

q.add(17); // front [42, -3, 17] back

System.out.println(q.remove()); // 42

• IMPORTANT: When constructing a queue you must use a new LinkedList object instead of
a new Queue object.

add(value) places given value at back of queue

remove() removes value from front of queue and returns it;
throws a NoSuchElementException if queue is empty

peek() returns front value from queue without removing it;
returns null if queue is empty

size() returns number of elements in queue

isEmpty() returns true if queue has no elements

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Queue idioms

• As with stacks, must pull contents out of queue to view them.

// process (and destroy) an entire queue

while (!q.isEmpty()) {

do something with q.remove();

}

• another idiom: Examining each element exactly once.

int size = q.size();

for (int i = 0; i < size; i++) {

do something with q.remove();

(including possibly re-adding it to the queue)

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Abstract data types (ADTs)

• abstract data type (ADT): A specification of a collection of data and the operations that can be
performed on it.

• Describes what a collection does, not how it does it

• We don't know exactly how a stack or queue is implemented, and we don't need to.

• We just need to understand the idea of the collection and what operations it can perform.

(Stacks are usually implemented with arrays; queues are often implemented using another
structure called a linked list.)

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

ADTs as interfaces (11.1)

• abstract data type (ADT): A specification of a collection of data and the operations that can be
performed on it.

• Describes what a collection does, not how it does it.

• Java's collection framework uses interfaces to describe ADTs:

• Collection, Deque, List, Map, Queue, Set

• An ADT can be implemented in multiple ways by classes:

• ArrayList and LinkedList implement List

• HashSet and TreeSet implement Set

• LinkedList , ArrayDeque, etc. implement Queue

• They messed up on Stack; there's no Stack interface, just a class.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Using ADT interfaces

When using Java's built-in collection classes:

• It is considered good practice to always declare collection variables using the corresponding
ADT interface type:

List<String> list = new ArrayList<String>();

• Methods that accept a collection as a parameter should also declare the parameter using the
ADT interface type:

public void stutter(List<String> list) {

...

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Why use ADTs?

• Why would we want more than one kind of list, queue, etc.?

• Answer: Each implementation is more efficient at certain tasks.

• ArrayList is faster for adding/removing at the end;
LinkedList is faster for adding/removing at the front/middle.
Etc.

• You choose the optimal implementation for your task, and if the rest of your code is written to
use the ADT interfaces, it will work.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Sets

• set: A collection of unique values (no duplicates allowed)
that can perform the following operations efficiently:

• add, remove, search (contains)

• We don't think of a set as having indexes; we just
add things to the set in general and don't worry about order

set.contains("to") true

set

"the"
"of"

"from"

"to"

"she"
"you"

"him""why"

"in"

"down"

"by"

"if"

set.contains("be") false

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Set implementation

• in Java, sets are represented by Set interface in java.util

• Set is implemented by HashSet and TreeSet classes

• HashSet: implemented using a "hash table" array;
very fast: O(1) for all operations
elements are stored in unpredictable order

• TreeSet: implemented using a "binary search tree";
pretty fast: O(log N) for all operations
elements are stored in sorted order

• LinkedHashSet: O(1) but stores in order of insertion

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Set methods

List<String> list = new ArrayList<String>();
...
Set<Integer> set = new TreeSet<Integer>(); // empty

Set<String> set2 = new HashSet<String>(list);

• can construct an empty set, or one based on a given collection

add(value) adds the given value to the set

contains(value) returns true if the given value is found in this set

remove(value) removes the given value from the set

clear() removes all elements of the set

size() returns the number of elements in list

isEmpty() returns true if the set's size is 0

toString() returns a string such as "[3, 42, -7, 15]"

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Set operations

addAll(collection) adds all elements from the given collection to this set

containsAll(coll) returns true if this set contains every element from given set

equals(set) returns true if given other set contains the same elements

iterator() returns an object used to examine set's contents (seen later)

removeAll(coll) removes all elements in the given collection from this set

retainAll(coll) removes elements not found in given collection from this set

toArray() returns an array of the elements in this set

addAll retainAll removeAll

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Sets and ordering

• HashSet : elements are stored in an unpredictable order

Set<String> names = new HashSet<String>();

names.add("Jake");

names.add("Robert");

names.add("Marisa");

names.add("Kasey");

System.out.println(names);

// [Kasey, Robert, Jake, Marisa]

• TreeSet : elements are stored in their "natural" sorted order

Set<String> names = new TreeSet<String>();
...

// [Jake, Kasey, Marisa, Robert]

• LinkedHashSet : elements stored in order of insertion

Set<String> names = new LinkedHashSet<String>();
...

// [Jake, Robert, Marisa, Kasey]

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

The "for each" loop (7.1)

for (type name : collection) {

statements;

}

• Provides a clean syntax for looping over the elements of a Set, List, array, or other collection

Set<Double> grades = new HashSet<Double>();
...

for (double grade : grades) {

System.out.println("Student's grade: " + grade);

}

• needed because sets have no indexes; can't get element i

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

The Map ADT

• map: Holds a set of unique keys and a collection of values, where each key is associated with
one value.

• a.k.a. "dictionary", "associative array", "hash"

• basic map operations:

• put(key, value): Adds a
mapping from a key to
a value.

• get(key): Retrieves the
value mapped to the key.

• remove(key): Removes
the given key and its
mapped value.

myMap.get("Juliet") returns "Capulet"

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Map concepts

• a map can be thought of as generalization of a tallying array

• the "index" (key) doesn't have to be an int

• recall previous tallying examples from CSE 142

• count digits: 22092310907

// (M)cCain, (O)bama, (I)ndependent

• count votes: "MOOOOOOMMMMMOOOOOOMOMMIMOMMIMOMMIO"

index 0 1 2 3 4 5 6 7 8 9

value 3 1 3 0 0 0 0 1 0 2

key "M" "O" "I"

value 16 14 3

"M"

"O"

"I" 16

3

14

keys values

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Map implementation

• in Java, maps are represented by Map interface in java.util

• Map is implemented by the HashMap and TreeMap classes

• HashMap: implemented using an array called a "hash table";
extremely fast: O(1) ; keys are stored in unpredictable order

• TreeMap: implemented as a linked "binary tree" structure;
very fast: O(log N) ; keys are stored in sorted order

• A map requires 2 type parameters: one for keys, one for values.

// maps from String keys to Integer values

Map<String, Integer> votes = new HashMap<String, Integer>();

votes.put(“Obama”, Integer(0));

votes.put(“McCain”, Integer(0));

a = votes.get(“Obama”);

votes.put(“Obama”, a+1);

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Map methods

put(key, value) adds a mapping from the given key to the given value;
if the key already exists, replaces its value with the given one

get(key) returns the value mapped to the given key (null if not found)

containsKey(key) returns true if the map contains a mapping for the given key

remove(key) removes any existing mapping for the given key

clear() removes all key/value pairs from the map

size() returns the number of key/value pairs in the map

isEmpty() returns true if the map's size is 0

toString() returns a string such as "{a=90, d=60, c=70}"

keySet() returns a set of all keys in the map

values() returns a collection of all values in the map

putAll(map) adds all key/value pairs from the given map to this map

equals(map) returns true if given map has the same mappings as this one

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Using maps

• A map allows you to get from one half of a pair to the other.

• Remembers one piece of information about every index (key).

• Later, we can supply only the key and get back the related value:

Allows us to ask: What is Joe's phone number?

Map

get("Joe")

"206-685-2181"

Map

// key value

put("Joe", "206-685-2181")

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Maps vs. sets

• A set is like a map from elements to boolean values.

• Set: Is Joe found in the set? (true/false)

• Map: What is Joe's phone number?

Set

"Joe" true

false

Map

"Joe" "206-685-2181"

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

keySet and values

• keySet method returns a Set of all keys in the map

• can loop over the keys in a foreach loop

• can get each key's associated value by calling get on the map

Map<String, Integer> ages = new TreeMap<String, Integer>();

ages.put("Joe", 19);

ages.put("Geneva", 2); // ages.keySet() returns Set<String>

ages.put("Vicki", 57);

for (String name : ages.keySet()) { // Geneva -> 2

int age = ages.get(name); // Joe -> 19

System.out.println(name + " -> " + age); // Vicki -> 57

}

• values method returns a collection of all values in the map

• can loop over the values in a foreach loop

• no easy way to get from a value to its associated key(s)

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Priority queue ADT

• priority queue: a collection of ordered elements that provides fast access to the minimum (or
maximum) element

• usually implemented using a tree structure called a heap

• priority queue operations:

• add adds in order; O(log N) worst

• peek returns minimum value; O(1) always

• remove removes/returns minimum value; O(log N) worst

• isEmpty,
clear,
size,
iterator O(1) always

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Java's PriorityQueue class

public class PriorityQueue<E> implements Queue<E>

Queue<String> pq = new PriorityQueue<String>();

pq.add("Stuart");

pq.add("Marty");

...

Method/Constructor Description Runtime

PriorityQueue<E>() constructs new empty queue O(1)

add(E value) adds value in sorted order O(log N)

clear() removes all elements O(1)

iterator() returns iterator over elements O(1)

peek() returns minimum element O(1)

remove() removes/returns min element O(log N)

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Priority queue ordering

• For a priority queue to work, elements must have an ordering

• in Java, this means implementing the Comparable interface

• Reminder:

public class Foo implements Comparable<Foo> {

…

public int compareTo(Foo other) {

// Return positive, zero, or negative number

}

}

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Design patterns

• Creational Patterns

• Structural Patterns

• Behavioral Patterns

5/13/2023 115

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Patterns

5/13/2023 116

Creational patterns

• Factory method

• Abstract factory

• Builder

• Prototype

• Singleton (8)

Structural patterns

• Adapter

• Bridge (12)

• Composite

• Decorator

• Facade

• Flyweight (12)

• Proxy

Creational patterns:

• Chain of responsibility (12)

• Command

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template method

• Visitor

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Abstract factory

5/13/2023 117

Problem

• Several variants of object of the same type

• Need a way to create individual furniture objects so that they match other objects of the same
family.

• Do not change code when new type is added

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Abstract factory (continued)

5/13/2023 118

Solution

• Abstract Factory pattern suggests is to explicitly declare interfaces for each distinct product of
the product family (e.g., chair, sofa or coffee table)

• Declare the Abstract Factory—an interface with a list of creation methods for all products that

are part of the product family (for example, createChair, createSofa and createCoffeeTable).

These methods must return abstract product types represented by the interfaces we extracted
previously: Chair, Sofa, CoffeeTable and so on

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Abstract factory (continued)

5/13/2023 119

Usually, the application creates a concrete factory object at the initialization stage. Just before
that, the app must select the factory type depending on the configuration or the environment
settings.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Singleton

5/13/2023 120

Problem

• Ensure that a class has just a single instance. Why would anyone want to control how many
instances a class has? The most common reason for this is to control access to some shared
resource—for example, a database or a file.

• Provide a global access point to that instance. Remember those global variables that you
(all right, me) used to store some essential objects? While they’re very handy, they’re also very
unsafe since any code can potentially overwrite the contents of those variables and crash the
app.

Note: This behaviour is impossible to implement with a regular constructor since a constructor call
must always return a new object by design.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Singleton (continued)

5/13/2023 121

Solution

All implementations of the Singleton have these two steps in common:

• Make the default constructor private, to prevent other objects from using the new operator with

the Singleton class.

• Create a static creation method that acts as a constructor. Under the hood, this method calls the

private constructor to create an object and saves it in a static field. All following calls to this

method return the cached object.

If your code has access to the Singleton class, then it’s able to call the Singleton’s static method.

So whenever that method is called, the same object is always returned.

Structure

The Singleton class declares the static method

getInstance that returns the same instance of its

own class.

The Singleton’s constructor should be hidden from

the client code. Calling the getInstance method

should be the only way of getting the Singleton

object.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Singleton (continued)

5/13/2023 122

Java language notes:

Volatile keyword is used to modify the value of
a variable by different threads. It is also used
to make classes thread safe. It means that
multiple threads can use a method and instance
of the classes at the same time without any
problem. The volatile keyword can be used
either with primitive type or objects.

A Java synchronized block marks a method or a
block of code as synchronized. A synchronized
block in Java can only be executed a single
thread at a time (depending on how you use it).
Java synchronized blocks can thus be used to
avoid race conditions.

https://jenkov.com/tutorials/java-concurrency/race-conditions-and-critical-sections.html

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Facade

5/13/2023 123

Problem

• You must make your code work with a broad set of objects that belong to a sophisticated library
or framework. Ordinarily, you’d need to initialize all of those objects, keep track of
dependencies, execute methods in the correct order, and so on.

• As a result, the business logic of your classes would become tightly coupled to the
implementation details of 3rd-party classes, making it hard to comprehend and maintain.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Facade (continued)

5/13/2023 124

Solution

A facade is a class that provides a simple interface to a complex subsystem which contains lots of

moving parts. A facade might provide limited functionality in comparison to working with the

subsystem directly. However, it includes only those features that clients really care about.

Having a facade is handy when you need to integrate your app with a sophisticated library that

has dozens of features, but you just need a tiny bit of its functionality.

For instance, an app that uploads short funny

videos with cats to social media could potentially

use a professional video conversion library.

However, all that it really needs is a class with

the single method encode(filename, format).

After creating such a class and connecting it with

the video conversion library, you’ll have your first

facade.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Facade (continued)

5/13/2023 125

Example

Complex video processing

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Behavioral patterns: State

5/13/2023 126

Problem

At any given moment, there’s a finite number of

states which a program can be in. Within any

unique state, the program behaves differently, and

the program can be switched from one state to

another instantaneously. However, depending on a

current state, the program may or may not switch to

certain other states. These switching rules, called

transitions, are also finite and predetermined.

You can also apply this approach to objects.

Imagine that we have a Document class. A

document can be in one of three states: Draft,

Moderation and Published. The publish method of

the document works a little bit differently in each

state:

• In Draft, it moves the document to moderation.

• In Moderation, it makes the document public, but

only if the current user is an administrator.

• In Published, it doesn’t do anything at all.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

The biggest weakness of a state machine based on

conditionals reveals itself once we start adding more and

more states and state-dependent behaviors to the

Document class. Most methods will contain monstrous

conditionals that pick the proper behavior of a method

according to the current state. Code maintenance

becomes complex because any change to the transition

logic may require changing state conditionals in every

method.

The problem tends to get bigger as a project evolves. It’s

quite difficult to predict all possible states and transitions

at the design stage. Hence, a lean state machine built

with a limited set of conditionals can grow into a bloated

mess over time.

Behavioral patterns: State (continued)

5/13/2023 127

Solution

• The State pattern suggests that you create new classes for all possible states of an object and
extract all state-specific behaviors into these classes.

• Instead of implementing all behaviors on its own, the original object, called context, stores a
reference to one of the state objects that represents its current state, and delegates all the
state-related work to that object.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Behavioral patterns: State (continued)

5/13/2023 128

• The buttons and switches in your
smartphone behave differently
depending on the current state of the
device:

• When the phone is unlocked, pressing
buttons leads to executing various
functions.

• When the phone is locked, pressing
any button leads to the unlock screen.

• When the phone’s charge is low,
pressing any button shows the
charging screen.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Behavioral patterns: Iterator

5/13/2023 129

Problem

• Collections are one of the most used data types in programming. Nonetheless, a collection is
just a container for a group of objects.

• Most collections store their elements in simple lists. However, some of them are based on
stacks, trees, graphs and other complex data structures.

• But no matter how a collection is structured, it must provide some way of accessing its elements
so that other code can use these elements. There should be a way to go through each element
of the collection without accessing the same elements over and over.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Behavioral patterns: Iterator (continued)

5/13/2023 130

Solution

The main idea of the Iterator pattern is to extract the traversal behavior of a collection into a

separate object called an iterator.

• In addition to implementing the algorithm itself, an
iterator object encapsulates all of the traversal
details, such as the current position and how
many elements are left till the end. Because of
this, several iterators can go through the same
collection at the same time, independently of each
other.

• Usually, iterators provide one primary method for
fetching elements of the collection. The client can
keep running this method until it doesn’t return
anything, which means that the iterator has
traversed all of the elements.

• All iterators must implement the same interface.
This makes the client code compatible with any
collection type or any traversal algorithm as long
as there’s a proper iterator. If you need a special
way to traverse a collection, you just create a new
iterator class, without having to change the
collection or the client.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Behavioral patterns: Iterator (continued)

5/13/2023 131

1.The Iterator interface declares the operations required for traversing a collection:
fetching the next element, retrieving the current position, restarting iteration, etc.

2.Concrete Iterators implement specific algorithms for traversing a collection. The
iterator object should track the traversal progress on its own - traverse the same
collection independently of each other.

3.The Collection interface declares one or multiple methods for getting iterators
compatible with the collection.

4.Concrete Collections return new instances of a particular concrete iterator class
each time the client requests one. It’s just that these details aren’t crucial to the
actual pattern.

5.The Client works with both collections and iterators via their interfaces. This way
the client isn’t coupled to concrete classes, allowing you to use various
collections and iterators with the same client code.

6.Typically, clients don’t create iterators on their own, but instead get them from
collections. Yet, in certain cases, the client can create one directly; for example,
when the client defines its own special iterator.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Proxy

5/13/2023 132

Proxy is a structural design pattern that lets you provide a substitute or placeholder for another
object. A proxy controls access to the original object, allowing you to perform something either
before or after the request gets through to the original object.

Problem

• You have a massive object that consumes a vast amount of system resources. You need it from
time to time, but not always.

• You could implement lazy initialization: create this object only when it’s actually needed. All of
the object’s clients would need to execute some deferred initialization code. Unfortunately, this
would probably cause a lot of code duplication.

• You could put this code directly into our object’s class, but that isn’t possible. For
instance, the class may be part of a closed 3rd-party library.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Proxy (continued)

5/13/2023 133

Solution

The Proxy pattern suggests that you create a new proxy class with the same interface as an

original service object. Then you update your app so that it passes the proxy object to all of the

original object’s clients. Upon receiving a request from a client, the proxy creates a real service

object and delegates all the work to it.

Benefit: If you need to execute something either before or after the primary logic of the class, the

proxy lets you do this without changing that class. Since the proxy implements the same interface

as the original class, it can be passed to any client that expects a real service object.

Example

A credit card is a proxy for a bank account,
which is a proxy for a bundle of cash. Both
implement the same interface: they can be
used for making a payment. A consumer feels
great because there’s no need to carry loads
of cash around. A shop owner is also happy
since the income from a transaction gets
added electronically to the shop’s bank
account without the risk of losing the deposit
or getting robbed on the way to the bank.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Proxy (continued)

5/13/2023 134

Structure

1.The Service Interface declares the interface of
the Service. The proxy must follow this interface
to be able to disguise itself as a service object.

2.The Service is a class that provides some useful
business logic.

3.The Proxy class has a reference field that points
to a service object. After the proxy finishes its
processing (e.g., lazy initialization, logging,
access control, caching, etc.), it passes the
request to the service object.

4.Usually, proxies manage the full lifecycle of their
service objects.

5.The Client should work with both services and
proxies via the same interface. This way you can
pass a proxy into any code that expects a service
object.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Decorator

5/13/2023 135

Decorator is a structural design pattern that lets you
attach new behaviors to objects by placing these objects
inside special wrapper objects that contain the behaviors.

Problem

• Imagine that you’re working on a notification library
which lets other programs notify their users about
important events.

• The initial version of the library was based on the
Notifier class that had only a few fields, a constructor
and a single send method. The method could accept a
message argument from a client and send the
message to a list of emails that were passed to the
notifier via its constructor.

• Then need more types of notifiers

• Need a combination – not only statically via
inheritance,but also dynamically during run time

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Decorator (continued)

5/13/2023 136

Solution

To overcome these caveats is by using Aggregation or Composition instead of Inheritance. One

object has a reference to another and delegates it some work, whereas with inheritance, the

object itself is able to do that work, inheriting the behavior from its superclass.

We substitute the linked “helper” object with another, changing the behavior of the container at

runtime. An object can use the behavior of various classes, having references to multiple objects

and delegating them all kinds of work. Aggregation/composition is the key principle behind many

design patterns, including Decorator.

A wrapper is an object that can be linked with
some target object. The wrapper contains the
same set of methods as the target and
delegates to it all requests it receives.
However, the wrapper may alter the result by
doing something either before or after it
passes the request to the target.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Decorator (continued)

5/13/2023 137

Structure

• The last decorator in the stack would be the object
that the client works with. Since all decorators
implement the same interface as the base notifier,
the rest of the client code won’t care whether it
works with the “pure” notifier object or the
decorated one.

• We could apply the same approach to other
behaviours such as formatting messages or
composing the recipient list. The client can
decorate the object with any custom decorators,
as long as they follow the same interface as the
others.

Real-life

Wearing clothes is an example of using decorators.

When you’re cold, you wrap yourself in a sweater. If

you’re still cold with a sweater, you can wear a

jacket on top. If it’s raining, you can put on a

raincoat. All of these garments “extend” your basic

behavior but aren’t part of you, and you can easily

take off any piece of clothing whenever you don’t

need it.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Composite

5/13/2023 138

Composite is a structural design pattern that lets you
compose objects into tree structures and then work with
these structures as if they were individual objects.

Problem

• Using the Composite pattern makes sense only when the core model of your app can be

represented as a tree.

• For example, imagine that you have two types of objects: Products and Boxes. A Box can

contain several Products as well as a number of smaller Boxes. These little Boxes can also hold

some Products or even smaller Boxes, and so on.

• Say you decide to create an ordering system that uses these classes. Orders could contain

simple products without any wrapping, as well as boxes stuffed with products...and other boxes.

How would you determine the total price of such an order?

Complication

• Direct approach: unwrap all the boxes, go over all the products and then calculate the total. That

would be doable in the real world; but in a program, it’s not as simple as running a loop. You

have to know the classes of Products and Boxes you’re going through, the nesting level of the

boxes and other nasty details beforehand.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Composite (continued)

5/13/2023 139

Solution

The Composite pattern suggests that you work with Products and Boxes through a common

interface which declares a method for calculating the total price.

Approach:

• For a product, it’d simply return the product’s price.

• For a box, it’d go over each item the box contains, ask its price and then return a total for this

box. If one of these items were a smaller box, that box would also start going over its contents

and so on, until the prices of all inner components were calculated.

• A box could even add some extra cost to the final price, such as packaging cost.

The greatest benefit of this approach is that you don’t
need to care about the concrete classes of objects
that compose the tree. You don’t need to know
whether an object is a simple product or a
sophisticated box. You can treat them all the same
via the common interface. When you call a method,
the objects themselves pass the request down the
tree.

Real world alternative – army units:

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Composite (continued)

5/13/2023 140

Structure

• The Component interface describes operations that are
common to both simple and complex elements of the
tree.

• The Leaf is a basic element of a tree that doesn’t have

sub-elements. Usually, leaf components end up doing most

of the real work, since they don’t have anyone to delegate

the work to.

• The Client works with all elements through the

component interface. As a result, the client can work in

the same way with both simple or complex elements of

the tree.

•The Container (aka composite) is an element that has

sub-elements: leaves or other containers. A container

doesn’t know the concrete classes of its children. It works

with all sub-elements only via the component interface.

Upon receiving a request, a container delegates the work

to its sub-elements, processes intermediate results and

then returns the final result to the client.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Adapter

5/13/2023 141

Adapter is a structural design pattern that allows objects
with incompatible interfaces to collaborate.

Problem

• Creating a stock market monitoring app. The app downloads the stock data from multiple
sources in XML format and then displays nice-looking charts and diagrams for the user.

• At some point, you decide to improve the app by integrating a smart 3rd-party analytics
library. But there’s a catch: the analytics library only works with data in JSON format.

Typical complications:

• You could change the library to work with XML. However, this might break some existing
code that relies on the library. And worse, you might not have access to the library’s
source code in the first place, making this approach impossible.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Adapter (continued)

5/13/2023 142

Solution

• You can create an adapter. This is a special object that converts the interface of one object so
that another object can understand it.

• An adapter wraps one of the objects to hide the complexity of conversion happening behind the
scenes. The wrapped object isn’t even aware of the adapter. For example, you can wrap an
object that operates in meters and kilometers with an adapter that converts all of the data to
imperial units such as feet and miles.

• Adapters can not only convert data into various formats but can also help objects with different
interfaces collaborate. Here’s how it works:

1.The adapter gets an interface, compatible with one
of the existing objects.

2.Using this interface, the existing object can safely
call the adapter’s methods.

3.Upon receiving a call, the adapter passes the
request to the second object, but in a format and
order that the second object expects.

• Sometimes it’s even possible to create a two-way
adapter that can convert the calls in both directions.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Adapter (continued)

5/13/2023 143

Structure

• This implementation uses the object composition
principle: the adapter implements the interface of
one object and wraps the other one. It can be
implemented in all popular programming
languages.

• Note: Another implementation can use
inheritance: the adapter inherits interfaces from
both objects at the same time. Note that this
approach can only be implemented in
programming languages that support multiple
inheritance, such as C++.

A wrapper is an object that can be linked with
some target object. The wrapper contains the
same set of methods as the target and
delegates to it all requests it receives.
However, the wrapper may alter the result by
doing something either before or after it
passes the request to the target.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Builder

5/13/2023 144

Builder is a creational design pattern that lets you
construct complex objects step by step. The pattern
allows to produce different types and
representations of an object using the same
construction code.

Problem

• A complex object that requires laborious, step-
by-step initialization of many fields and nested
objects.

• Such initialization code is usually buried inside a
monstrous constructor with lots of parameters.

• The simplest solution is to extend the base
House class and create a set of subclasses to
cover all combinations of the parameters. But
eventually you’ll end up with a considerable
number of subclasses. Any new parameter, such
as a roof style, will require growing this hierarchy
even more.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Builder (continued)

5/13/2023 145

Solution

• The Builder pattern suggests that you extract the object construction code out of its own class
and move it to separate objects called builders.

• You don’t need to call all of the steps. You can call only those steps that are necessary for
producing a particular configuration of an object.

• Some of the construction steps might require
different implementation when you need to build
various representations of the product. For
example, walls of a cabin may be built of wood, but
the castle walls must be built with stone.

• In this case, you can create several different builder
classes that implement the same set of building
steps, but in a different manner. Then you can use
these builders in the construction process (i.e., an
ordered set of calls to the building steps) to produce
different kinds of objects.

• You can go further and extract a series of calls to
the builder steps you use to construct a product into
a separate class called director. The director class
defines the order in which to execute the building
steps, while the builder provides the implementation
for those steps.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Builder (continued)

5/13/2023 146

1. The Builder interface declares product

construction steps that are common to

all types of builders.

2. Concrete Builders provide different

implementations of the construction

steps. Concrete builders may produce

products that don’t follow the common

interface.

3. Products are resulting objects.

Products constructed by different

builders don’t have to belong to the

same class hierarchy or interface.

4. The Director class defines the order in

which to call construction steps, so you

can create and reuse specific

configurations of products.

5. The Client must associate

one of the builder objects

with the director. Usually, it’s

done just once, via

parameters of the director’s

constructor. Then the director

uses that builder object for

all further construction.

However, there’s an

alternative approach for

when the client passes the

builder object to the

production method of the

director. In this case, you can

use a different builder each

time you produce something

with the director.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Prototype

5/13/2023 147

Prototype is a creational design pattern that lets you copy
existing objects without making your code dependent on
their classes.

Problem

• You have an object, and you want to create an exact copy of it. How would you do it? First, you have to create
a new object of the same class. Then you have to go through all the fields of the original object and copy their
values over to the new object.

• BUT - not all objects can be copied that way because some of the object’s fields may be private and not visible
from outside of the object itself.

• There’s one more problem with the direct approach. Since you have to know the object’s class to create a
duplicate, your code becomes dependent on that class. If the extra dependency doesn’t scare you, there’s
another catch. Sometimes you only know the interface that the object follows, but not its concrete class, when,
for example, a parameter in a method accepts any objects that follow some interface.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Prototype (continued)

5/13/2023 148

• The Prototype pattern delegates the cloning process to the
actual objects that are being cloned. The pattern declares a
common interface for all objects that support cloning. This
interface lets you clone an object without coupling your code to
the class of that object. Usually, such an interface contains just a
single clone method.

• The implementation of the clone method is very similar in all
classes. The method creates an object of the current class and
carries over all of the field values of the old object into the new
one. You can even copy private fields because most
programming languages let objects access private fields of other
objects that belong to the same class.

• An object that supports cloning is called a prototype. When your
objects have dozens of fields and hundreds of possible
configurations, cloning them might serve as an alternative to
subclassing.

Real world analogy to the pattern is the process of mitotic
cell division (biology, remember?). After mitotic division, a
pair of identical cells is formed. The original cell acts as a
prototype and takes an active role in creating the copy.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Creational patterns: Prototype (continued)

5/13/2023 149

1. The Prototype interface declares the

cloning methods. In most cases, it’s a

single clone method.

2. The Client can produce a copy of

any object that follows the prototype

interface.

2. he Concrete Prototype

class implements the

cloning method. In addition

to copying the original

object’s data to the clone,

this method may also

handle some edge cases of

the cloning process related

to cloning linked objects,

untangling recursive

dependencies, etc.

Use the Prototype pattern when your code shouldn’t

depend on the concrete classes of objects that you need

to copy.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Bridge

5/13/2023 150

Bridge is a structural design pattern that lets you split a
large class or a set of closely related classes into two
separate hierarchies—abstraction and implementation—
which can be developed independently of each other.

Problem

• Say you have a geometric Shape class with a pair of
subclasses: Circle and Square. You want to extend this class
hierarchy to incorporate colors, so you plan to create Red and
Blue shape subclasses. However, since you already have two
subclasses, you’ll need to create four class combinations
such as BlueCircle and RedSquare.

• Adding new shape types and colors to the hierarchy will
grow it exponentially. For example, to add a triangle shape
you’d need to introduce two subclasses, one for each color.
And after that, adding a new color would require creating
three subclasses, one for each shape type. The further we go,
the worse it becomes.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Bridge (continued)

5/13/2023 151

Solution

• This problem occurs because we’re trying to extend the shape
classes in two independent dimensions: by form and by color.
That’s a very common issue with class inheritance.

• The Bridge pattern attempts to solve this problem by switching
from inheritance to the object composition. What this means is
that you extract one of the dimensions into a separate class
hierarchy, so that the original classes will reference an object of
the new hierarchy, instead of having all of its state and behaviors
within one class.

• Following this approach, we can extract the color-related code
into its own class with two subclasses: Red and Blue. The Shape
class then gets a reference field pointing to one of the color
objects. Now the shape can delegate any color-related work to
the linked color object. That reference will act as a bridge
between the Shape and Color classes. From now on, adding
new colors won’t require changing the shape hierarchy, and vice
versa.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Bridge (continued)

5/13/2023 152

Abstraction and Implementation are alternative names of the Bridge definition.

In real applications, the abstraction can be represented by a graphical user interface (GUI), and the
implementation could be the underlying operating system code (API) which the GUI layer calls in response to
user interactions.

• Generally speaking, you can extend such an app in two independent directions:

• Have several different GUIs (for instance, tailored for regular customers or admins).

• Support several different APIs (for example, to be able to launch the app under Windows, Linux, and
macOS).

• In a worst-case scenario, this app might look like a giant spaghetti bowl, where hundreds of conditionals
connect different types of GUI with various APIs all over the code.

• Bridge pattern suggests that we divide the classes into two
hierarchies:

• Abstraction: the GUI layer of the app.

• Implementation: the operating systems’ APIs.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Bridge (continued)

5/13/2023 153

1. The Abstraction provides high-level control logic. It relies on the implementation object to do the actual low-level work.

2. The Implementation declares the interface that’s common for all concrete implementations. An abstraction can only
communicate with an implementation object via methods that are declared here.

3. The abstraction may list the same methods as the implementation, but usually the abstraction declares some complex
behaviors that rely on a wide variety of primitive operations declared by the implementation.

4. Concrete Implementations contain platform-specific code.

5. Refined Abstractions provide variants of control logic. Like their parent, they work with different implementations via the
general implementation interface.

6. Usually, the Client is only interested in working with the abstraction. However, it’s the client’s job to link the abstraction object
with one of the implementation objects.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Flyweight

5/13/2023 154

Flyweight is a structural design pattern that lets you fit
more objects into the available amount of RAM by sharing
common parts of state between multiple objects instead of
keeping all of the data in each object.

Problem

• You decided to create a simple video game: players would be moving around a map
and shooting each other. You chose to implement a realistic particle system and
make it a distinctive feature of the game. Vast quantities of bullets, missiles, and
shrapnel from explosions should fly all over the map and deliver a thrilling
experience to the player.

• Upon its completion, you built the game and sent it to your friend for a test drive.
Although the game was running flawlessly on your machine, your friend wasn’t able
to play for long. On his computer, the game kept crashing after a few minutes of
gameplay. After spending several hours digging through debug logs, you discovered
that the game crashed because of an insufficient amount of RAM. It turned out that
your friend’s rig was much less powerful than your own computer, and that’s why the
problem emerged so quickly on his machine.

• The actual problem was related to your particle system. Each particle, such as a
bullet, a missile or a piece of shrapnel was represented by a separate object
containing plenty of data. At some point, when the carnage on a player’s screen
reached its climax, newly created particles no longer fit into the remaining RAM, so
the program crashed.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Flyweight (continued)

5/13/2023 155

Solution

• On closer inspection of the Particle class, you may notice that
the color and sprite fields consume a lot more memory than
other fields. What’s worse is that these two fields store almost
identical data across all particles. For example, all bullets have
the same color and sprite.

• Other parts of a particle’s state, such as coordinates, movement
vector and speed, are unique to each particle. After all, the
values of these fields change over time. This data represents the
always changing context in which the particle exists, while the
color and sprite remain constant for each particle.

• This constant data of an object is usually called the intrinsic
state. It lives within the object; other objects can only read it, not
change it. The rest of the object’s state, often altered “from the
outside” by other objects, is called the extrinsic state.

• The Flyweight pattern suggests that you stop storing the extrinsic
state inside the object. Instead, you should pass this state to
specific methods which rely on it. Only the intrinsic state stays
within the object, letting you reuse it in different contexts. As a
result, you’d need fewer of these objects since they only differ in
the intrinsic state, which has much fewer variations than the
extrinsic.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Flyweight (continued)

5/13/2023 156

Where does the extrinsic state move to? Some class should still store it, right? In most cases, it
gets moved to the container object, which aggregates objects before we apply the pattern.

In our case, that’s the main Game object that stores all particles in the particles field. To move the
extrinsic state into this class, you need to create several array fields for storing coordinates,
vectors, and speed of each individual particle. But that’s not all. You need another array for
storing references to a specific flyweight that represents a particle. These arrays must be in sync
so that you can access all data of a particle using the same index.

• A more elegant solution is to
create a separate context class
that would store the extrinsic
state along with reference to the
flyweight object. This approach
would require having just a
single array in the container
class.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Structural patterns: Flyweight (continued)

5/13/2023 157

1. The Flyweight pattern is merely an optimization.

2. The Flyweight class contains the portion of the original object’s state that can be shared between multiple objects. The same
flyweight object can be used in many different contexts. The state stored inside a flyweight is called intrinsic. The state passed
to the flyweight’s methods is called extrinsic.

3. The Context class contains the extrinsic state, unique across all original objects. When a context is paired with one of the
flyweight objects, it represents the full state of the original object.

4. Usually, the behavior of the original object remains in the flyweight class. In this case, whoever calls a flyweight’s method must
also pass appropriate bits of the extrinsic state into the method’s parameters. On the other hand, the behavior can be moved
to the context class, which would use the linked flyweight merely as a data object.

5. The Client calculates or stores the extrinsic state of flyweights. From the client’s perspective, a flyweight is a template object
which can be configured at runtime by passing some contextual data into parameters of its methods.

6. The Flyweight Factory manages a pool of existing flyweights. With the factory, clients don’t create flyweights directly. Instead,
they call the factory, passing it bits of the intrinsic state of the desired flyweight. The factory looks over previously created
flyweights and either returns an existing one that matches search criteria or creates a new one if nothing is found.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Behavioral patterns: Chain on command / responsibility

5/13/2023 158

Chain of Responsibility is a behavioral design pattern
that lets you pass requests along a chain of handlers. Upon
receiving a request, each handler decides either to process
the request or to pass it to the next handler in the chain.

Problem

• Example of an online ordering system. You want to restrict access to
the system so only authenticated users can create orders. Also,
users who have administrative permissions must have full access to
all orders.

• These checks must be performed sequentially. The application can
attempt to authenticate a user to the system whenever it receives a
request that contains the user’s credentials. However, if those
credentials aren’t correct and authentication fails, there’s no reason
to proceed with any other checks.

• The code of the checks, which had already looked like a mess,
became more and more bloated as you added each new feature.
Changing one check sometimes affected the others. When you tried
to reuse the checks to protect other components of the system, you
had to duplicate some of the code since those components required
some of the checks, but not all of them.

• The system became very hard to comprehend and expensive to
maintain. You struggled with the code for a while, until one day you
decided to refactor the whole thing.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Behavioral patterns: Chain on command (continued)

5/13/2023 159

Solution

• Like many other behavioral design patterns, the Chain of
Responsibility relies on transforming particular behaviors into
stand-alone objects called handlers. In our case, each check
should be extracted to its own class with a single method that
performs the check. The request, along with its data, is passed
to this method as an argument.

• The pattern suggests that you link these handlers into a chain.
Each linked handler has a field for storing a reference to the next
handler in the chain. In addition to processing a request,
handlers pass the request further along the chain. The request
travels along the chain until all handlers have had a chance to
process it.

• Here’s the best part: a handler can decide not to pass the
request further down the chain and effectively stop any further
processing.

• In our example with ordering systems, a handler performs the
processing and then decides whether to pass the request further
down the chain. Assuming the request contains the right data, all
the handlers can execute their primary behavior, whether it’s
authentication checks or caching.

Real world analogy

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Behavioral patterns: Chain on command (continued)

5/13/2023 160

1. The Handler declares the interface, common for all concrete handlers. It
usually contains just a single method for handling requests, but sometimes it
may also have another method for setting the next handler on the chain.

2. The Base Handler is an optional class where you can put the boilerplate
code that’s common to all handler classes.

3. Usually, this class defines a field for storing a reference to the next handler.
The clients can build a chain by passing a handler to the constructor or setter
of the previous handler. The class may also implement the default handling
behavior: it can pass execution to the next handler after checking for its
existence.

4. Concrete Handlers contain the actual code for processing requests. Upon
receiving a request, each handler must decide whether to process it and,
additionally, whether to pass it along the chain.

5. Handlers are usually self-contained and immutable, accepting all necessary
data just once via the constructor.

6. The Client may compose chains just once or compose them dynamically,
depending on the application’s logic. Note that a request can be sent to any
handler in the chain—it doesn’t have to be the first one.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Behavioral patterns: Chain on command (continued)

5/13/2023 161

In this example, the Chain of

Responsibility pattern is responsible

for displaying contextual help

information for active GUI elements.

FEI STU © 2016-2023 ESGA, s.r.o. a Slovak Limited Liability Company.

All rights reserved. Printed in Slovakia.

Sources & other reading

5/13/2023 162

• Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma (Author), Richard
Helm (Author), Ralph Johnson (Author), John Vlissides (Author)

• Design Patterns Design Patterns in Java (refactoring.guru)

• CSE 331 23wi (washington.edu)

Contact:

RNDr. Július Šiška, PhD.

E: julius.siska at gmail.com

https://www.amazon.com/Erich-Gamma/e/B000AQ3QWI/ref=dp_byline_cont_book_1
https://www.amazon.com/Richard-Helm/e/B000AQ1ZP8/ref=dp_byline_cont_book_2
https://www.amazon.com/Richard-Helm/e/B000AQ1ZP8/ref=dp_byline_cont_book_2
https://www.amazon.com/Ralph-Johnson/e/B000AQ6RMY/ref=dp_byline_cont_book_3
https://www.amazon.com/John-Vlissides/e/B000AQ4MV2/ref=dp_byline_cont_book_4
https://refactoring.guru/design-patterns/java
https://courses.cs.washington.edu/courses/cse331/23wi/

	Slide 1: Object Oriented Programming in Java
	Slide 2: Summary
	Slide 3: Why Java?
	Slide 4: Intro
	Slide 5: Primitives vs. objects; value and reference semantics
	Slide 6: A swap method?
	Slide 7: Value semantics
	Slide 8: Reference semantics (objects)
	Slide 9: References and objects
	Slide 10: Objects as parameters
	Slide 11: Arrays as parameters
	Slide 12: Arrays pass by reference
	Slide 13: Classes and Objects
	Slide 14: Objects
	Slide 15: Classes
	Slide 16: Blueprint analogy
	Slide 17: Point objects
	Slide 18: Point class as blueprint
	Slide 19: Clients of objects
	Slide 20: Fields
	Slide 21: Encapsulation
	Slide 22: Benefits of encapsulation
	Slide 23: Instance methods
	Slide 24: The implicit parameter
	Slide 25: Categories of methods
	Slide 26: The toString method
	Slide 27: Constructors
	Slide 28: Multiple constructors
	Slide 29: The keyword this
	Slide 30: Calling another constructor
	Slide 31: Comparing objects for equality and ordering
	Slide 32: Comparing objects
	Slide 33: The equals method
	Slide 34: The compareTo method (10.2)
	Slide 35: Using compareTo
	Slide 36: compareTo and collections
	Slide 37: Comparable (10.2)
	Slide 38: Comparable template
	Slide 39: Comparable example
	Slide 40: compareTo tricks
	Slide 41: compareTo tricks 2
	Slide 42: Inheritance
	Slide 43: Inheritance
	Slide 44: Inheritance syntax
	Slide 45: Overriding Methods
	Slide 46: The super keyword
	Slide 47: Subclasses and fields
	Slide 48: Protected fields/methods
	Slide 49: Inheritance and constructors
	Slide 50: Inheritance and constructors
	Slide 51: Calling superclass constructor
	Slide 52: Polymorphism
	Slide 53: Polymorphism
	Slide 54: Coding with polymorphism
	Slide 55: Polymorphic parameters
	Slide 56: Polymorphism and arrays
	Slide 57: Casting references
	Slide 58: More about casting
	Slide 59: Interfaces
	Slide 60: Shapes example
	Slide 61: Shape area and perimeter
	Slide 62: Common behavior
	Slide 63: Interfaces
	Slide 64: Interface syntax
	Slide 65: Shape interface
	Slide 66: Implementing an interface
	Slide 67: Interface requirements
	Slide 68: Interfaces + polymorphism
	Slide 69: Abstract Classes
	Slide 70: List classes example
	Slide 71: Common code
	Slide 72: Abstract classes (9.6)
	Slide 73: Abstract class syntax
	Slide 74: Abstract and interfaces
	Slide 75: An abstract list class
	Slide 76: Abstract class vs. interface
	Slide 77: Inner Classes
	Slide 78: Inner classes
	Slide 79: Inner class syntax
	Slide 80: Example: Array list iterator
	Slide 81: Collections
	Slide 82: Collections
	Slide 83: Java collection framework
	Slide 84: Lists
	Slide 85: Idea of a list
	Slide 86: ArrayList methods (10.1)
	Slide 87: ArrayList methods 2
	Slide 88: Type Parameters (Generics)
	Slide 89: Stacks and queues
	Slide 90: Stacks
	Slide 91: Class Stack
	Slide 92: Queues
	Slide 93: Programming with Queues
	Slide 94: Queue idioms
	Slide 95: Abstract data types (ADTs)
	Slide 96: ADTs as interfaces (11.1)
	Slide 97: Using ADT interfaces
	Slide 98: Why use ADTs?
	Slide 99: Sets
	Slide 100: Set implementation
	Slide 101: Set methods
	Slide 102: Set operations
	Slide 103: Sets and ordering
	Slide 104: The "for each" loop (7.1)
	Slide 105: The Map ADT
	Slide 106: Map concepts
	Slide 107: Map implementation
	Slide 108: Map methods
	Slide 109: Using maps
	Slide 110: Maps vs. sets
	Slide 111: keySet and values
	Slide 112: Priority queue ADT
	Slide 113: Java's PriorityQueue class
	Slide 114: Priority queue ordering
	Slide 115: Design patterns
	Slide 116: Patterns
	Slide 117: Creational patterns: Abstract factory
	Slide 118: Creational patterns: Abstract factory (continued)
	Slide 119: Creational patterns: Abstract factory (continued)
	Slide 120: Creational patterns: Singleton
	Slide 121: Creational patterns: Singleton (continued)
	Slide 122: Creational patterns: Singleton (continued)
	Slide 123: Structural patterns: Facade
	Slide 124: Structural patterns: Facade (continued)
	Slide 125: Structural patterns: Facade (continued)
	Slide 126: Behavioral patterns: State
	Slide 127: Behavioral patterns: State (continued)
	Slide 128: Behavioral patterns: State (continued)
	Slide 129: Behavioral patterns: Iterator
	Slide 130: Behavioral patterns: Iterator (continued)
	Slide 131: Behavioral patterns: Iterator (continued)
	Slide 132: Structural patterns: Proxy
	Slide 133: Structural patterns: Proxy (continued)
	Slide 134: Structural patterns: Proxy (continued)
	Slide 135: Structural patterns: Decorator
	Slide 136: Structural patterns: Decorator (continued)
	Slide 137: Structural patterns: Decorator (continued)
	Slide 138: Structural patterns: Composite
	Slide 139: Structural patterns: Composite (continued)
	Slide 140: Structural patterns: Composite (continued)
	Slide 141: Structural patterns: Adapter
	Slide 142: Structural patterns: Adapter (continued)
	Slide 143: Structural patterns: Adapter (continued)
	Slide 144: Creational patterns: Builder
	Slide 145: Creational patterns: Builder (continued)
	Slide 146: Creational patterns: Builder (continued)
	Slide 147: Creational patterns: Prototype
	Slide 148: Creational patterns: Prototype (continued)
	Slide 149: Creational patterns: Prototype (continued)
	Slide 150: Structural patterns: Bridge
	Slide 151: Structural patterns: Bridge (continued)
	Slide 152: Structural patterns: Bridge (continued)
	Slide 153: Structural patterns: Bridge (continued)
	Slide 154: Structural patterns: Flyweight
	Slide 155: Structural patterns: Flyweight (continued)
	Slide 156: Structural patterns: Flyweight (continued)
	Slide 157: Structural patterns: Flyweight (continued)
	Slide 158: Behavioral patterns: Chain on command / responsibility
	Slide 159: Behavioral patterns: Chain on command (continued)
	Slide 160: Behavioral patterns: Chain on command (continued)
	Slide 161: Behavioral patterns: Chain on command (continued)
	Slide 162: Sources & other reading

