
© 2024 Nokia1

Introduction to
Containers

October 2024

© 2024 Nokia2

Agenda
1. From bare metal to serverless

2. Container ecosystem glossary

3. Tools

4. Technology behind

5. Use-cases and demo

© 2024 Nokia3

From bare metal to serverless

© 2024 Nokia4

From bare metal to serverless

Bare metal

• Physical server

• Single tenant

• Maximal control

• Physical isolation

• Expensive

• Hard to manage

• Hard to scale

• Optionally bare metal as a service

© 2024 Nokia5

From bare metal to serverless
Virtualized

• Emulation of physical computer

• Abstraction layer over the hardware

• We can select VM size (CPU, RAM, Storage,...)

• Cheaper to run

• Share the same hardware

• Better resource utilization

• Vertical/horizontal scaling

• Migrate without VM shutdown

• Vulnerable to noisy neighbour problem

• Side-channel attacks like spectre and meltdown

© 2024 Nokia6

From bare metal to serverless

Containerized

• Lightweight and standalone package of
application with all its dependencies

• Quick resource provisioning

• Scalable and portable

• Potentially less secure

• Shared underlying OS

• Isolation relies on the OS-level primitives

© 2024 Nokia7

From bare metal to serverless

Summary

© 2024 Nokia8

Container ecosystem glossary

© 2024 Nokia9

Container ecosystem glossary

Basics

• Containerization - a process of encapsulating an application and its dependencies into a container image for deployment

• Container - isolate software from its environment and ensure that it works uniformly despite differences for instance between
development and staging. It’s a standard unit of software that packages up code and all its dependencies, so the application runs quickly
and reliably from one computing environment to another

• Image - a lightweight, standalone, executable software package that includes everything needed to run a piece of software, including the code,
runtime, libraries, environment variables, and configuration files

• Volume - a directory or file in a container that bypasses the Union File System to provide access to persistent storage.

• Namespace – a Linux kernel feature which can isolate processes from each other

• CGroups - a Linux kernel feature that limits, accounts for, and isolates the resource usage (CPU, memory, disk I/O, etc.) of a collection of
processes

• Microservices - an architectural style that structures an application as a collection of loosely coupled services, which are independently
deployable and scalable

• Docker - a platform for developing, shipping, and running applications using containerization

• Container Registry - a repository for storing and managing container images, allowing for version control and sharing of images

© 2024 Nokia10

Container ecosystem glossary

Orchestration

• Container Orchestration - refers to the automated management of containerized applications, including deployment, scaling, and scheduling

• Kubernetes - an open-source platform designed to automate deploying, scaling, and operating application containers

• Deployment - a resource that represents a set of multiple, identical Pods with no unique identities, all running the same application

• Pod - a group of one or more containers that are deployed and managed together on the same host

• Node - a worker machine, part of a cluster, that may be a VM or physical machine, depending on the cluster

• Replica Set - ensures that a specified number of pod replicas are running at any given time, and allows for scaling up or down

• Ingress - provides HTTP and HTTPS routing to services in a cluster, typically providing load balancing, SSL termination, and name-based virtual
hosting

• Egress - refers to the traffic that flows out of a cluster, from a pod to an external endpoint

• Secret - an object that is used to store sensitive information, such as passwords, OAuth tokens, and ssh keys, in a cluster

© 2024 Nokia11

Technology behind

© 2024 Nokia12

Technology behind

Overview

• Docker is not a container

• Container is a technology

• Built from a few new features of the Linux kernel

• Two main kernel features are “namespaces” and “cgroups”

© 2024 Nokia13

Technology behind

Namespaces

• The PID namespace allows us to create separate processes.

• The networking namespace allows us to run the program on any port
without conflict with other processes running on the same computer.

• Mount namespace allows you to mount and unmount the filesystem
without affecting the host filesystem.

• Linux kernel feature

© 2024 Nokia14

Technology behind

Control Groups (CGroups)

• CGroups are used to limit the usage of CPU and Memory that a process or collection of processes can use

• Linux kernel feature

© 2024 Nokia15

Technology behind

Docker

• Docker helps us easily create containers instead of having to do many things

• It’s one of many tools helping us to control the underlying container technology

© 2024 Nokia16

Tools

© 2024 Nokia17

Tools
Lifecycle management

LXC + LXD

+

• Build image

• Push image

• Pull image

• Create container

© 2024 Nokia18

Tools
Orchestration

• Targeted at handling deployments at scale

• Exposing or hiding services

• Handling redundancy and high availability

• Rolling upgrades

• Build/Pull image

• Create container

Docker Swarm

© 2024 Nokia19

Tools
Dockerfile

• A Dockerfile is a text document in which you define the build steps for your application

Credit: https://docs.docker.com/build/guide/layers/

© 2024 Nokia20

Use-cases and demo

© 2024 Nokia21

Use-cases and demo
Hello world!
• Our application (hello-world.py):
echo 'print("Hello world")' > hello-world.py

• Our Dockerfile:
FROM python:3.10.12-alpine

WORKDIR /app

COPY . .

CMD ["python", "hello-world.py"]

• Build container image
docker build -t my-hello-world .

• Run
docker run my-hello-world

docker run my-hello-world

 Hello world

 #

© 2024 Nokia22

Use-cases and demo
Docker

Dockerfile Reference

https://docs.docker.com/engine/reference/builder/

Docker Compose File Reference

https://docs.docker.com/compose/compose-file/compose-file-v3/

How to spawn Apache web server with Maria DB and phpMyAdmin

https://enlear.academy/stop-using-xampp-a-step-by-step-guide-to-

docker-for-php-and-mysql-b424f0a7ba41

© 2024 Nokia23

The good, the bad and the ugly of containers
The good, the bad and the ugly of containers

- Very easy to spawn container from existing images

- Google, AI Chat saves the day!

- Get & share reproducible build setup, keep host OS clean
and lean

- Not so easy to understand how it works behind the
scene when problem occurs

- Might get ugly when dealing with specifics

- Find the right image (with right tools) or build own

- Mount project into container

- Setup inner user to match host user if you want modify
host files, i.e. build output, git interaction, …

- Sometimes image doesn't expect to be run as non-root
(XDG_CACHE_HOME example)

- Alias it once it works as expected

$alias dgo='docker run -it -v $(pwd):/go/ws -w /go/ws -u $(id -u):$(id -g) -e XDG_CACHE_HOME=/tmp/.cache golang go'

© 2024 Nokia24

Questions?

More resources

https://docs.docker.com/get-started/overview

https://podman.io/get-started

https://linuxcontainers.org/lxc/introduction

https://kubernetes.io

© 2024 Nokia26

At Nokia, we create technology that helps the world act together.
We put the world’s people, machines and devices in sync to create
a more sustainable, productive and accessible future.

Nokia Slovakia in Bratislava (R&D) works on IP networks products (see the pictures)

https://www.nokia.com/networks/ip-networks/

We are part of global Nokia

https://www.nokia.com/we-are-nokia/

Open positions in Nokia Slovakia

https://www.profesia.sk/praca/nokia-slovakia/C813?page_num=2001

Soon these positions will be available also at

https://www.nokia.com/about-us/careers/our-locations/

https://www.nokia.com/networks/ip-networks/
https://www.nokia.com/we-are-nokia/
https://www.profesia.sk/praca/nokia-slovakia/C813?page_num=2001

	Slide 1: Introduction to Containers​
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

