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From bare metal to serverless
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From bare metal to serverless

Bare metal

• Physical server

• Single tenant

• Maximal control

• Physical isolation

• Expensive

• Hard to manage

• Hard to scale

• Optionally bare metal as a service
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From bare metal to serverless
Virtualized

• Emulation of physical computer

• Abstraction layer over the hardware

• We can select VM size (CPU, RAM, Storage,...)

• Cheaper to run

• Share the same hardware

• Better resource utilization

• Vertical/horizontal scaling

• Migrate without VM shutdown

• Vulnerable to noisy neighbour problem

• Side-channel attacks like spectre and meltdown
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From bare metal to serverless

Containerized

• Lightweight and standalone package of 
application with all its dependencies

• Quick resource provisioning

• Scalable and portable

• Potentially less secure

• Shared underlying OS

• Isolation relies on the OS-level primitives
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From bare metal to serverless

Summary
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Container ecosystem glossary
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Container ecosystem glossary

Basics

• Containerization - a process of encapsulating an application and its dependencies into a container image for deployment

• Container - isolate software from its environment and ensure that it works uniformly despite differences for instance between 
development and staging. It’s a standard unit of software that packages up code and all its dependencies, so the application runs quickly
and reliably from one computing environment to another

• Image - a lightweight, standalone, executable software package that includes everything needed to run a piece of software, including the code, 
runtime, libraries, environment variables, and configuration files

• Volume - a directory or file in a container that bypasses the Union File System to provide access to persistent storage.

• Namespace – a Linux kernel feature which can isolate processes from each other

• CGroups - a Linux kernel feature that limits, accounts for, and isolates the resource usage (CPU, memory, disk I/O, etc.) of a collection of 
processes

• Microservices - an architectural style that structures an application as a collection of loosely coupled services, which are independently 
deployable and scalable

• Docker - a platform for developing, shipping, and running applications using containerization

• Container Registry - a repository for storing and managing container images, allowing for version control and sharing of images
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Container ecosystem glossary

Orchestration

• Container Orchestration - refers to the automated management of containerized applications, including deployment, scaling, and scheduling

• Kubernetes - an open-source platform designed to automate deploying, scaling, and operating application containers

• Deployment - a resource that represents a set of multiple, identical Pods with no unique identities, all running the same application

• Pod - a group of one or more containers that are deployed and managed together on the same host

• Node - a worker machine, part of a cluster, that may be a VM or physical machine, depending on the cluster

• Replica Set - ensures that a specified number of pod replicas are running at any given time, and allows for scaling up or down

• Ingress - provides HTTP and HTTPS routing to services in a cluster, typically providing load balancing, SSL termination, and name-based virtual 
hosting

• Egress - refers to the traffic that flows out of a cluster, from a pod to an external endpoint

• Secret - an object that is used to store sensitive information, such as passwords, OAuth tokens, and ssh keys, in a cluster
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Technology behind
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Technology behind

Overview

• Docker is not a container

• Container is a technology

• Built from a few new features of the Linux kernel

• Two main kernel features are “namespaces” and “cgroups”
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Technology behind

Namespaces

• The PID namespace allows us to create separate processes.

• The networking namespace allows us to run the program on any port
without conflict with other processes running on the same computer.

• Mount namespace allows you to mount and unmount the filesystem
without affecting the host filesystem.

• Linux kernel feature
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Technology behind

Control Groups (CGroups)

• CGroups are used to limit the usage of CPU and Memory that a process or collection of processes can use

• Linux kernel feature
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Technology behind

Docker

• Docker helps us easily create containers instead of having to do many things

• It’s one of many tools helping us to control the underlying container technology
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Tools
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Tools
Lifecycle management

LXC + LXD

+

• Build image

• Push image

• Pull image

• Create container



© 2024 Nokia18

Tools
Orchestration

• Targeted at handling deployments at scale

• Exposing or hiding services

• Handling redundancy and high availability

• Rolling upgrades

• Build/Pull image

• Create container

Docker Swarm
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Tools
Dockerfile

• A Dockerfile is a text document in which you define the build steps for your application

Credit: https://docs.docker.com/build/guide/layers/
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Use-cases and demo
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Use-cases and demo
Hello world!
• Our application (hello-world.py):
# echo 'print("Hello world")' > hello-world.py

• Our Dockerfile:
FROM python:3.10.12-alpine

WORKDIR /app

COPY . .

CMD [ "python", "hello-world.py" ]

• Build container image
# docker build -t my-hello-world .

• Run
# docker run my-hello-world

# docker run my-hello-world

 Hello world

 #
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Use-cases and demo
Docker

Dockerfile Reference

https://docs.docker.com/engine/reference/builder/

Docker Compose File Reference

https://docs.docker.com/compose/compose-file/compose-file-v3/

How to spawn Apache web server with Maria DB and phpMyAdmin

https://enlear.academy/stop-using-xampp-a-step-by-step-guide-to-

docker-for-php-and-mysql-b424f0a7ba41
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The good, the bad and the ugly of containers
The good, the bad and the ugly of containers

- Very easy to spawn container from existing images

- Google, AI Chat saves the day!

- Get & share reproducible build setup, keep host OS clean 
and lean

- Not so easy to understand how it works behind the 
scene when problem occurs

- Might get ugly when dealing with specifics

- Find the right image (with right tools) or build own

- Mount project into container

- Setup inner user to match host user if you want modify 
host files, i.e. build output, git interaction, …

- Sometimes image doesn't expect to be run as non-root 
(XDG_CACHE_HOME example)

- Alias it once it works as expected

$alias dgo='docker run -it -v $(pwd):/go/ws -w /go/ws -u $(id -u):$(id -g) -e XDG_CACHE_HOME=/tmp/.cache golang go'
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Questions?

More resources

https://docs.docker.com/get-started/overview

https://podman.io/get-started

https://linuxcontainers.org/lxc/introduction

https://kubernetes.io
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At Nokia, we create technology that helps the world act together.
We put the world’s people, machines and devices in sync to create
a more sustainable, productive and accessible future.

Nokia Slovakia in Bratislava (R&D) works on IP networks products (see the pictures)

https://www.nokia.com/networks/ip-networks/

We are part of global Nokia

https://www.nokia.com/we-are-nokia/

Open positions in Nokia Slovakia

https://www.profesia.sk/praca/nokia-slovakia/C813?page_num=2001

Soon these positions will be available also at

https://www.nokia.com/about-us/careers/our-locations/

https://www.nokia.com/networks/ip-networks/
https://www.nokia.com/we-are-nokia/
https://www.profesia.sk/praca/nokia-slovakia/C813?page_num=2001
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