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Homework till 2.12.2024

" Read Section 13.1
" Read Section 12.1.

" Read Section 12.2. until p. 399 where the subsection about Ring-
LWE starts

= Solve the problem from the exercise set no. 10 and submit it to AIS
by 2.12.2024 23:509.
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Homework till 8.12.2024

" Read the remainder of Section 12.2
" Read Section 12.3 until p.414 (including p.414)

= Solve problems from the EXTRA exercise set no. 11 and submit
them to AIS by 8.12.2024 23:59. Please, note that the deadline is
on Sunday (not on Monday, as usual).
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Homework for week 13

" Read Section 12.3 until p.417 (including the top half of p.417).
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B Some legal stuff (sorry): Terms of Use

* The slides can used free of charge. All copyrights for the slides remain with
Christof Paar and Jan Pelzl.

* The title of the accompanying book “Understanding Cryptography” by
Springer and the author’s names must remain on each slide.

* If the slides are modified, appropriate credits to the book authors and the
book title must remain within the slides.

* Itis not permitted to reproduce parts or all of the slides in printed form
whatsoever without written consent by the authors.
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B Content of this Chapter

* Introduction
* Lattice-Based Cryptography
* Code-Based Cryptography
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B Content of this Chapter

° Introduction
* Lattice-Based Cryptography
* Code-Based Cryptography
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B Quantum computing

A quantum computer is a machine that operates on qubits instead of classical
bits.

Roughly speaking, a single qubit |[g> is a state of memory that is not as discrete
as we know it from conventional bits, which can take the two values O or 1.

Rather, a qubit is a fuzzy memory element that can also represent values “in
between” the two corresponding bounds [0> and |1>.

The overlap between these bounds is characterized by coefficients or so-called
amplitudes a and 3.

This allows a qubit to be represented as a scaled combination of the two
bounds like |g> = a|0> + B|1>.

We say that the qubit g is in a superposition of the basis states |0> and |1>.
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B Advantage of quantum computing

= With two conventional bits, we can store one out of the four possible states 00,
01, 10 and 11.

= However, two qubits contain a representation of all four possible states at the
same time, to be determined by the corresponding amplitudes.

" In general, an n-bit register on a classical computer can hold exactly one state,
while an n-qubit register represents 2”n states at the same time.

= Hence, computing with such an n-qubit quantum computer can be significantly
more powerful than any n-bit classical computer.
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B Limitations of quantum computing

"= |t is a popular misunderstanding that quantum computers will lead to significant
gains in performance for all applications.

= |n fact, they can accelerate only certain classes of computations and
algorithms for which the native superposition of inputs can be efficiently
exploited.
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B Grovers algorithm

= One problem a quantum computer can solve efficiently is searching in an
unsorted database with N entries.

= A classical computer needs to iterate through the entries and compare them
with the desired value, which needs N steps in the worst case.

= In contrast, Grovers algorithm can be used on a quantum computer to solve
the problem in approximately VN steps.
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B Grovers algorithm and symmetric cryptosystems

= As we have seen in previous chapters, the best known attack against sound
symmetric ciphers is an exhaustive key search, cf. Section 3.5.1.

= We recall that at least one known plaintext-ciphertext pair is required.

= This attack is basically the same as searching in an unsorted database:
* encrypt the known plaintext with all possible keys,
° retrieve a large database of unsorted values,
* and then search for the known ciphertext.
= For example, AES with a 128-bit key can be broken with a classical computer
in roughly 27128 steps, assuming we have a plaintext/ciphertext pair.

= With a quantum computer running Grovers algorithm, the same attack is more
efficient: It would take only 264 steps.
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B Grovers algorithm and symmetric cryptosystems

" Fortunately, the problem can be solved by increasing the key length of
symmetric algorithms.

= In fact, Grover’s algorithm was the main reason why AES was designed with
the two key lengths of 192 and 256 bits, in addition to the 128-bit key.
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B Quantum computer attacks on asymmetric cryptosystems

= Unfortunately, quantum computers pose a much more serious threat to all
asymmetric cryptosystems that are currently in use.

= In 1994, Peter Shor published two algorithms for quantum computers that can
efficiently solve:
* Prime factorization
* Discrete logarithm problem

= Fortunately, large-scale quantum computers that are required to break
cryptosystems like RSA and ECC cannot be built currently.

= It is commonly believed that practical attacks running on quantum computers
are most likely at least 10-20 years away, possibly much longer.
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B Why quantum-secure asymmetric cryptosystems are needed
NOW

= First reason: “store now, decrypt later” attack

= Second reason: the development and the adoption of new asymmetric
algorithms take a long time

Chapter 12 of Understanding Cryptography by Christof Paar, Jan Pelzl and Tim Glneysu
15/10



B PQC vs Quantum Cryptography

= Quantum cryptography denotes concepts such as quantum key distribution
(QKD) for securely exchanging keys over quantum channels, which are built on
actual quantum effects.

= Post-quantum cryptography (PQC), denotes the class of cryptographic

algorithms that are designed to run on conventional computers but that are
capable of withstanding attacks that use powerful quantum computers.
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B NIST PQC Standardization Process

= In 2017, NIST issued an open standardization call for quantum-secure
asymmetric cryptosystems.

= This process is similar to the AES competition.
= The process is still ongoing, but has already led to the publication of 3 PQC
standards:
* ML-KEM (aka Kyber)
* ML-DSA (aka Dilithium)
* SLH-DSA (aka SPHINCS+)
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B Promising PQC families

PQC Family Supported Services Cryptosystems

Lattice-based cryptography .k?}r transport LWE, KYBER, Fropo,
= digital signatures DILITHIUM, FALCON

Code-based cryptography key transport McEliece, Niederreiter

Hash-based cryptography digital signatures  MSS, XMSS, LMS, SPHINCS+
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B Content of this Chapter

* Introduction
* Lattice-Based Cryptography
* Code-Based Cryptography
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* What is a lattice?
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Learning With Errors Problem (LWE)

Definition 12.2.2 Learning With Errors Problem (LWE)

Given a set of n basis vectors a; € Z; represented by matrix A and
: m
a point t € Zy'.

The LWE is the problem of determining a set of secret coefficients
S = (81.52,...,8,), with s; € Z, such that:

A-s+e=tmod g

where e is an unknown error vector consisting of small integers
modulo q.
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* Encoding and Decoding in LWE cryptosystems

encode 46

45
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Simple-LWE Key Generation‘
Output: public key: k,,, = (t,A) with t € Zf;[' and A € Zf;l'x”
private key: k. =s € Z;

l.

SNk N
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Choose n random vectors a; € Z§ and combine them in a matrix

Generate a random secret key s from “small” integers.

Build a random error vector e from ““small” integers.
Computet=A-s+e.

Return the public key k,,, = (t,A) and the private key k,, =s.
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Simple-LWE Encryption
Input: public key k,,, = (t,A), message m € {0, 1}
Output: ciphertext ¢ = (Cyyx, Cmsg) With €uux € Ly and Cisg € Zyg

Sample small random integers into vectors r,e,,, and a value e,,,.
Encode the message m: i = enc(m) € Zj,.
Compute Cue = Al -1+ ey

Compute s = t! -1+ €50 + 110,

Return the ciphertext ¢ = (Cuux, Cnsg)-

Al

Simple-LWE Decryption
Input: private key k,, = s € Zj, ciphertext ¢ = (Caxs Cmsg)
Output: message m € {0,1}

T

1. RetUI‘Il message m —= dGC (C;nlgg —S - CCILM‘) .
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Definition 12.2.3 The ring R, = Z,[x|/(x" + 1)

The polynomial ring Zg|x]/(x" + 1) consists of all polynomials
with a maximum degree of n — 1 with coefficients from Z, and n
being a power of two, i.e., n = 2"

The ring operations addition, subtraction and multiplication are
performed as regular polynomial arithmetic, with the results be-
ing reduced modulo the cyclotomic polynomical x" + 1. All integer
coefficients are reduced modulo q.
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Definition 12.2.4 Ring-LWE Problem

Let R, denote the ring Zx],/(x" + 1), where q is a prime and the
positive integer n is a power of two. Given are polynomials a and
t E Rq.

Ring-LWE is the problem of determining a secret polynomial s € R
such that:

a(x) - s(x) +e(x) = t(x)

where the error vector e is a polynomial in the ring R, with small
integer coefficients obtained from a discrete distribution D.

Note:

We use boldface for polynomials with large coefficient values such as a(x),t(x) €
R, while we use plain font for polynomials such as e(x), s(x) which have only small
values.
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Ring-LWE Key Generation

Output: public key: k,,, = (t.a) and private key: k,, =

1. Choose a(x) € R, from the ring R, = Z[x|,/(x" + 1).

2. Choose e(x),s(x) € R, with coefficients from a set of small integers ac-
cording to some discrete error distribution D.

. Compute t(x) = a(x)-s(x) +e(x) € R,

4. Return the public key k,,;, = (t,a) and the private key &, = s.

']
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Ring-LWE Encryption

Input: public key k,,, = (t.a), message m € {0, 1}"

Output: ciphertext ¢ = (Cqyx, Csgo)

1. Choose error polynomials r(x), €., (x), €5 (x) With coefficients from a

set of small integers according to the discrete error distribution D.

2. Write the n message bits m as a message polynomial m(x) and generate
the encoded polynomial: m(x) = enc(m(x)).

. Compute ¢y (x) = a(x) - r(x) + equr(X).

. Compute €50 (x) = t(x) - r(x) + €50 (x) +m(x).

. Return the ciphertext € = (Cqyy, €y )-

nh = W

Ring-LWE Decryption

Input: private key &, = s, ciphertext ¢ = (Cqyx. Cnsg)
Output: message m

1. Compute m/’(x) = €50(X) — Cax () - 5(x).

2. Return the decoded message m = dec(m’(x)).
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Standard- LWE

over Z,

Ring -LWE
over Z,[x])/x"+1

Module - LWE

over Z [ xx"+1
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Scheme Type Equivalent Security n k ¢ )

KYBER-512 Module-LWE AES-128 256 2 3329 271
KYBER-768 Module-LWE AES-192 256 3 3329 27164
KYBER-1024 Module-LWE AES-256 256 4 3329 2174
NEWHOPE-512 Ring-LWE AES-128 512 112289 2720
NEWHOPE-1024 Ring-LWE AES-256 1024 1 12289 27210
FRODOKEM-640  Standard-LWE AES-128 640 1 2 271387
FRODOKEM-1340 Standard-LWE AES-256 1340 1 216 27225
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B Content of this Chapter

* Introduction
* Lattice-Based Cryptography
* Code-Based Cryptography
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B Coding Theory

Alice Bob
error e
encoding: l decoding:
c=m|r c'=c+e

Fig. 12.6 Transfer of a message m over a noisy channel with error-coding
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B Linear Codes

Alice Bob
noisy channel
encoding: c'= c+e decoding:
c=m-G » syndrome s= H- (c ’)T

= () —= no crror detected

+ () — crror detected

Fig. 12.7 Principle of linear error correction coding
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B Minimum distance and error correction

" =min{HW(c; +c3): ¢1,c5 € Cand ¢y # ¢y}

For linear codes:
d = min{HW(c) :c € Cand c # 6]

A code can correct

t=1(d—1)/2] errors.

Note: The figure is copied from:

Hill, Raymond. A first course in coding theory. Oxford University Press, 1986.
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B Example 12.7.

[

\1011001}

d=3

t
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(d

1000011
01001160
0010101
0001111

01111060
1101010

~1)/2)=1

Messages m

Codewords ¢

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

I — — — — — — — — — — — — — — —
et ot ot N N M et Nt N N e et it N i

0000000
0001111
0010101
0011010
0100110
0101001
0110011
0111100
100001 1
1001100
1010110
1011001
1100101
1101010
1110000
(1111111
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B Example 12.7.

100001 1 Error e Syndrome s
G_ 0100110
“loo10101 (0000001) (001)
0001111 (0000010) (010)
(0000100) (100)
(0111100 (0001000) (111)
H={1101010 (0010000) (101)
\1011001} (0100000) (110)
(1000000) (011)
d=3
t=[(d-1)/2] =1
c=m-G
c'=c+e

¢ > s=H-(c")T -» syndrometable > e »>c=c'"+e > m
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B Hard problems in Coding Theory

For larger values of t the syndrome table becomes too large.

randomly generated

Let G be a generator matrix of a&t)inary linear code C.

Suppose that C can correct t errors.
c=m-G
c'=c+e, where HW (e) <t

Minimum distance decoding problem (MDD problem)

(problem dekodovania podila minimalnej vzdialenosti)
We are givenc, G and t,

We want to compute m.

It is assumed that MDD problem is hard even for quantum computers.

Note: For MDD to be hard, it is important that C is randomly generated. There exist
some carefully designed classes of linear codes for which MDD is easy.
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B MDD vs LWE

MDD LWE
GF(2) Zg
G A
m S
e with small HW e containing only small elements
codewordc =m -G lattice point A - s
c'=m-G+e t=A-s+e
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B MDD and SDP

An equivalent problem to MDD:
Syndrome decoding problem (SDP problem)
(problem dekodovania podla syndromu)

Subsection 12.3.2 in the book.
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B Prominent code-based cryptosystems

= HQC (has a similar construction to the Ring-LWE scheme in 12.2.4)
= BIKE

" Classic McEliece

Chapter 12 of Understanding Cryptography by Christof Paar, Jan Pelzl and Tim Glneysu
40/10



	Slide 1
	Slide 2: Homework till 2.12.2024
	Slide 3: Homework till 8.12.2024
	Slide 4: Homework for week 13
	Slide 5: Some legal stuff (sorry): Terms of Use 
	Slide 6: Content of this Chapter
	Slide 7: Content of this Chapter
	Slide 8: Quantum computing
	Slide 9: Advantage of quantum computing
	Slide 10: Limitations of quantum computing
	Slide 11: Grovers algorithm
	Slide 12: Grovers algorithm and symmetric cryptosystems
	Slide 13: Grovers algorithm and symmetric cryptosystems
	Slide 14: Quantum computer attacks on asymmetric cryptosystems
	Slide 15: Why quantum-secure asymmetric cryptosystems are needed NOW 
	Slide 16: PQC vs Quantum Cryptography
	Slide 17: NIST PQC Standardization Process
	Slide 18: Promising PQC families
	Slide 19: Content of this Chapter
	Slide 20: What is a lattice?
	Slide 21: Learning With Errors Problem (LWE)
	Slide 22: Encoding and Decoding in LWE cryptosystems
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Note:             
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Content of this Chapter
	Slide 32: Coding Theory 
	Slide 33: Linear Codes 
	Slide 34: Minimum distance and error correction  
	Slide 35: Example 12.7. 
	Slide 36: Example 12.7. 
	Slide 37:  
	Slide 38: MDD vs LWE 
	Slide 39: MDD and SDP 
	Slide 40: Prominent code-based cryptosystems 

