Understanding Cryptography

by Christof Paar, Jan Pelzl and Tim Güneysu

www.crypto-textbook.com

Chapter 2nd 2nd Post-Quantum Cryptography (PQC)

These slides were originally prepared by Christof Paar, Jan Pelzl and Tim Güneysu. Later, they were modified by Tomas Fabsic for purposes of teaching I-ZKRY at FEI STU.

D Spring

Homework till 2.12.2024

- Read Section 13.1
- Read Section 12.1.
- Read Section 12.2. until p. 399 where the subsection about Ring-LWE starts
- Solve the problem from the exercise set no. 10 and submit it to AIS by **2.12.2024 23:59**.

Homework till 8.12.2024

- Read the remainder of Section 12.2
- Read Section 12.3 until p.414 (including p.414)
- Solve problems from the EXTRA exercise set no. 11 and submit them to AIS by **8.12.2024 23:59**. Please, note that the **deadline is on Sunday** (not on Monday, as usual).

Homework for week 13

■ Read Section 12.3 until p.417 (including the top half of p.417).

Some legal stuff (sorry): Terms of Use

- The slides can used free of charge. All copyrights for the slides remain with Christof Paar and Jan Pelzl.
- The title of the accompanying book "Understanding Cryptography" by Springer and the author's names must remain on each slide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.

E Content of this Chapter

- Introduction
- Lattice-Based Cryptography
- Code-Based Cryptography

E Content of this Chapter

• **Introduction**

- Lattice-Based Cryptography
- Code-Based Cryptography

Quantum computing

- A quantum computer is a machine that operates on **qubits** instead of classical bits.
- Roughly speaking, a single qubit q is a state of memory that is not as discrete as we know it from conventional bits, which can take the two values 0 or 1.
- Rather, a qubit is a fuzzy memory element that can also represent values "in between" the two corresponding bounds |0> and |1>.
- The overlap between these bounds is characterized by coefficients or so-called amplitudes α and β.
- This allows a qubit to be represented as a scaled combination of the two bounds like $|q\rangle = \alpha|0\rangle + \beta|1\rangle$.
- We say that the qubit q is in a **superposition** of the basis states |0> and |1>.

Advantage of quantum computing

- With two conventional bits, we can store one out of the four possible states 00, 01, 10 and 11.
- However, two qubits contain a representation of all four possible states at the same time, to be determined by the corresponding amplitudes.
- **-** In general, an n-bit register on a classical computer can hold exactly one state, while an n-qubit register represents 2^n states at the same time.
- Hence, computing with such an n-qubit quantum computer can be significantly more powerful than any n-bit classical computer.

Limitations of quantum computing

- It is a popular misunderstanding that quantum computers will lead to significant gains in performance for all applications.
- **If** In fact, they can accelerate only certain classes of computations and algorithms for which the native superposition of inputs can be efficiently exploited.

Grovers algorithm

- One problem a quantum computer can solve efficiently is searching in an unsorted database with N entries.
- A classical computer needs to iterate through the entries and compare them with the desired value, which needs N steps in the worst case.
- In contrast, Grovers algorithm can be used on a quantum computer to solve the problem in approximately \sqrt{N} steps.

Grovers algorithm and symmetric cryptosystems

- As we have seen in previous chapters, the best known attack against sound symmetric ciphers is an exhaustive key search, cf. Section 3.5.1.
- We recall that at least one known plaintext-ciphertext pair is required.
- **This attack is basically the same as searching in an unsorted database:**
	- encrypt the known plaintext with all possible keys,
	- retrieve a large database of unsorted values,
	- and then search for the known ciphertext.
- For example, AES with a 128-bit key can be broken with a classical computer in roughly 2^128 steps, assuming we have a plaintext/ciphertext pair.
- With a quantum computer running Grovers algorithm, the same attack is more efficient: It would take only 2^64 steps.

Grovers algorithm and symmetric cryptosystems

- Fortunately, the problem can be solved by increasing the key length of symmetric algorithms.
- In fact, Grover's algorithm was the main reason why AES was designed with the two key lengths of 192 and 256 bits, in addition to the 128-bit key.

Quantum computer attacks on asymmetric cryptosystems

- Unfortunately, quantum computers pose a much more serious threat to all asymmetric cryptosystems that are currently in use.
- In 1994, Peter Shor published two algorithms for quantum computers that can efficiently solve:
	- Prime factorization
	- Discrete logarithm problem
- Fortunately, large-scale quantum computers that are required to break cryptosystems like RSA and ECC cannot be built currently.
- It is commonly believed that practical attacks running on quantum computers are most likely at least 10–20 years away, possibly much longer.

Why quantum-secure asymmetric cryptosystems are needed NOW

- **Example 2 First reason: "store now, decrypt later"** attack
- Second reason: the development and the adoption of new asymmetric algorithms take a long time

PQC vs Quantum Cryptography

- **E** Quantum cryptography denotes concepts such as quantum key distribution (QKD) for securely exchanging keys over quantum channels, which are built on actual quantum effects.
- **Post-quantum cryptography (PQC), denotes the class of cryptographic** algorithms that are designed to run on conventional computers but that are capable of withstanding attacks that use powerful quantum computers.

NIST PQC Standardization Process

- **In 2017, NIST issued an open standardization call for quantum-secure** asymmetric cryptosystems.
- **This process is similar to the AES competition.**
- **The process is still ongoing, but has already led to the publication of 3 PQC** standards:
	- ML-KEM (aka Kyber)
	- ML-DSA (aka Dilithium)
	- SLH-DSA (aka SPHINCS+)

Promising PQC families

E Content of this Chapter

- Introduction
- **Lattice-Based Cryptography**
- Code-Based Cryptography

• **What is a lattice?**

• **Learning With Errors Problem (LWE)**

Definition 12.2.2 Learning With Errors Problem (LWE) Given a set of n basis vectors $\mathbf{a_i} \in \mathbb{Z}_q^m$ represented by matrix **A** and a point $\mathbf{t} \in \mathbb{Z}_a^m$.

The LWE is the problem of determining a set of secret coefficients $\mathbf{s} = (s_1, s_2, \dots, s_n)$, with $s_i \in \mathbb{Z}_q$, such that:

 $\mathbf{A} \cdot \mathbf{s} + \mathbf{e} \equiv \mathbf{t} \bmod q$

where **e** is an unknown error vector consisting of small integers modulo q.

• **Encoding and Decoding in LWE cryptosystems**

Simple-LWE Key Generation

Output: public key: $k_{pub} = (\mathbf{t}, \mathbf{A})$ with $\mathbf{t} \in \mathbb{Z}_q^k$ and $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ private key: $k_{pr} = s \in \mathbb{Z}_q^n$

- 1. Choose *n* random vectors $\mathbf{a}_i \in \mathbb{Z}_q^k$ and combine them in a matrix $\mathbf{A} = (\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}) \in \mathbb{Z}_a^{k \times n}.$
- 2. Generate a random secret key **s** from "small" integers.
- 3. Build a random error vector **e** from "small" integers.
- 4. Compute $t = A \cdot s + e$.
- 5. Return the public key $k_{pub} = (\mathbf{t}, \mathbf{A})$ and the private key $k_{pr} = \mathbf{s}$.

Simple-LWE Encryption Input: public key $k_{pub} = (\mathbf{t}, \mathbf{A})$, message $m \in \{0, 1\}$ **Output:** ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, c_{msg})$ with $\mathbf{c}_{aux} \in \mathbb{Z}_q^n$ and $c_{msg} \in \mathbb{Z}_q$

- 1. Sample small random integers into vectors $\mathbf{r}, \mathbf{e}_{aux}$ and a value e_{msg} .
- 2. Encode the message *m*: $\bar{m} = \text{enc}(m) \in \mathbb{Z}_q$.
- 3. Compute $\mathbf{c}_{aux} = \mathbf{A}^T \cdot \mathbf{r} + \mathbf{e}_{aux}$.
- 4. Compute $c_{msg} = \mathbf{t}^T \cdot \mathbf{r} + e_{msg} + \bar{m}$.
- 5. Return the ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, c_{mse})$.

Simple-LWE Decryption

Input: private key $k_{pr} = \mathbf{s} \in \mathbb{Z}_q^n$, ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, c_{msg})$ **Output:** message $m \in \{0, 1\}$

1. Return message
$$
m = \text{dec}(c_{msg} - \mathbf{s}^T \cdot \mathbf{c}_{aux}).
$$

Definition 12.2.3 The ring $R_q = \mathbb{Z}_q[x]/(x^n + 1)$ The polynomial ring $\mathbb{Z}_q[x]/(x^n+1)$ consists of all polynomials with a maximum degree of $n-1$ with coefficients from \mathbb{Z}_q and n being a power of two, i.e., $n = 2^i$.

The ring operations addition, subtraction and multiplication are performed as regular polynomial arithmetic, with the results being reduced modulo the cyclotomic polynomical $x^n + 1$. All integer coefficients are reduced modulo q.

Definition 12.2.4 Ring-LWE Problem

Let R_q denote the ring $\mathbb{Z}[x]_q/(x^n+1)$, where q is a prime and the positive integer n is a power of two. Given are polynomials **a** and $t \in R_q$.

Ring-LWE is the problem of determining a secret polynomial $s \in R_q$ such that:

 $\mathbf{a}(x) \cdot s(x) + e(x) = \mathbf{t}(x)$

where the error vector e is a polynomial in the ring R_q with small integer coefficients obtained from a discrete distribution D.

Note:

We use boldface for polynomials with large coefficient values such as $\mathbf{a}(x)$, $\mathbf{t}(x) \in$ R_q while we use plain font for polynomials such as $e(x)$, $s(x)$ which have only small values.

Ring-LWE Key Generation

Output: public key: $k_{pub} = (\mathbf{t}, \mathbf{a})$ and private key: $k_{pr} = s$

- 1. Choose $\mathbf{a}(x) \in R_q$ from the ring $R_q = \mathbb{Z}[x]_q/(x^n+1)$.
- 2. Choose $e(x), s(x) \in R_q$ with coefficients from a set of small integers according to some discrete error distribution D .
- 3. Compute $\mathbf{t}(x) = \mathbf{a}(x) \cdot s(x) + e(x) \in R_a$.
- 4. Return the public key $k_{pub} = (\mathbf{t}, \mathbf{a})$ and the private key $k_{pr} = s$.

Ring-LWE Encryption

Input: public key $k_{pub} = (\mathbf{t}, \mathbf{a})$, message $m \in \{0, 1\}^n$

Output: ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, \mathbf{c}_{mse})$

- 1. Choose error polynomials $r(x)$, $e_{aux}(x)$, $e_{msg}(x)$ with coefficients from a set of small integers according to the discrete error distribution D.
- 2. Write the *n* message bits *m* as a message polynomial $m(x)$ and generate the encoded polynomial: $\bar{\mathbf{m}}(x) = \text{enc}(m(x))$.
- 3. Compute $\mathbf{c}_{aux}(x) = \mathbf{a}(x) \cdot r(x) + e_{aux}(x)$.
- 4. Compute $\mathbf{c}_{msg}(x) = \mathbf{t}(x) \cdot r(x) + e_{msg}(x) + \mathbf{m}(x)$.
- 5. Return the ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, \mathbf{c}_{mse})$.

Ring-LWE Decryption

Input: private key $k_{pr} = s$, ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, \mathbf{c}_{msg})$ **Output:** message *m*

- 1. Compute $\mathbf{m}'(x) = \mathbf{c}_{msg}(x) \mathbf{c}_{aux}(x) \cdot s(x)$.
- 2. Return the decoded message $m = \text{dec}(\mathbf{m}'(x))$.

Chapter 12 of Understanding Cryptography by Christof Paar, Jan Pelzl and Tim Güneysu

E Content of this Chapter

- Introduction
- Lattice-Based Cryptography
- **Code-Based Cryptography**

Coding Theory

Fig. 12.6 Transfer of a message m over a noisy channel with error-coding

Linear Codes

Fig. 12.7 Principle of linear error correction coding

Minimum distance and error correction

$$
d = min\{HW(c_1 + c_2): c_1, c_2 \in C \text{ and } c_1 \neq c_2\}
$$

For linear codes:

$$
d = min\{HW(c): c \in C \text{ and } c \neq \vec{0}\}
$$

A code can correct
 $t = \lfloor (d-1)/2 \rfloor$ errors.

Note: The figure is copied from:

Hill, Raymond. A first course in coding theory. Oxford University Press, 1986.

Example 12.7.

	Messages m	Codewords c
1000011		
$G = \left[\begin{array}{rrr} 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{array} \right]$	(0000)	(0000000)
	(0 0 0 1)	(0001111)
0001111	0010	(0010101)
	0 0 1 1	0011010
(0111100)	0100	0100110
	0 1 0 1	0101001
$H = \left(\begin{array}{rrr} 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{array} \right)$	0110	0110011
	0 1 1 1	0111100
	(1000)	1000011
	1001	1001100
$d=3$	1010	1010110
$t = \lfloor (d-1)/2 \rfloor = 1$	1011	1011001
	1100	1100101
	1 1 0 1	1101010
	1110	1110000
	1111	

Chapter 12 of Understanding Cryptography by Christof Paar, Jan Pelzl and Tim Güneysu

 $d=3$ $t = |(d-1)/2| = 1$

 $c = m \cdot G$

 $c' = c + e$

 $c' \rightarrow s = H \cdot (c')^T \rightarrow syndrome table \rightarrow e \rightarrow c = c' + e \rightarrow m$

Hard problems in Coding Theory

For larger values of t the syndrome table becomes too large.

randomly generated

Let G be a generator matrix of a binary linear code C.

Suppose that C can correct t errors.

 $c = m \cdot G$

 $c' = c + e$, where $HW(e) \le t$

Minimum distance decoding problem (MDD problem)

(problem dekodovania podla minimalnej vzdialenosti) We are given c' , G and t. We want to compute m.

It is assumed that MDD problem is hard even for quantum computers. Note: For MDD to be hard, it is important that C is randomly generated. There exist some carefully designed classes of linear codes for which MDD is easy.

MDD and SDP

An equivalent problem to MDD:

Syndrome decoding problem (SDP problem)

(problem dekodovania podla syndromu)

Subsection 12.3.2 in the book.

Prominent code-based cryptosystems

- HQC (has a similar construction to the Ring-LWE scheme in 12.2.4)
- BIKE
- Classic McEliece