Understanding Cryptography

by Christof Paar, Jan Pelzl and Tim Güneysu

www.crypto-textbook.com

Chapter 12 – Post-Quantum Cryptography Cryptograph 2 – Post-Quantum Cryptography (PQC)

These slides were originally prepared by Christof Paar, Jan Pelzl and Tim Güneysu. Later, they were modified by Tomas Fabsic for purposes of teaching I-ZKRY at FEI STU.

D Springer

Homework till 2.12.2024

- Read Section 13.1
- Read Section 12.1.
- Read Section 12.2. until p. 399 where the subsection about Ring-LWE starts
- Solve the problem from the exercise set no. 10 and submit it to AIS by <u>2.12.2024 23:59</u>.

Homework till 8.12.2024

- Read the remainder of Section 12.2
- Read Section 12.3 until p.414 (including p.414)
- Solve problems from the EXTRA exercise set no. 11 and submit them to AIS by <u>8.12.2024 23:59</u>. Please, note that the <u>deadline is</u> <u>on Sunday</u> (not on Monday, as usual).

Homework for week 13

Read Section 12.3 until p.417 (including the top half of p.417).

Some legal stuff (sorry): Terms of Use

- The slides can used free of charge. All copyrights for the slides remain with Christof Paar and Jan Pelzl.
- The title of the accompanying book "Understanding Cryptography" by Springer and the author's names must remain on each slide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.

Content of this Chapter

- Introduction
- Lattice-Based Cryptography
- Code-Based Cryptography

Content of this Chapter

Introduction

- Lattice-Based Cryptography
- Code-Based Cryptography

Quantum computing

- A quantum computer is a machine that operates on qubits instead of classical bits.
- Roughly speaking, a single qubit |q> is a state of memory that is not as discrete as we know it from conventional bits, which can take the two values 0 or 1.
- Rather, a qubit is a fuzzy memory element that can also represent values "in between" the two corresponding bounds |0> and |1>.
- The overlap between these bounds is characterized by coefficients or so-called amplitudes α and β.
- This allows a qubit to be represented as a scaled combination of the two bounds like $|q\rangle = \alpha |0\rangle + \beta |1\rangle$.
- We say that the qubit q is in a **superposition** of the basis states |0> and |1>.

Advantage of quantum computing

- With two conventional bits, we can store one out of the four possible states 00, 01, 10 and 11.
- However, two qubits contain a representation of all four possible states at the same time, to be determined by the corresponding amplitudes.
- In general, an n-bit register on a classical computer can hold exactly one state, while an n-qubit register represents 2ⁿ states at the same time.
- Hence, computing with such an n-qubit quantum computer can be significantly more powerful than any n-bit classical computer.

Limitations of quantum computing

- It is a popular misunderstanding that quantum computers will lead to significant gains in performance for all applications.
- In fact, they can accelerate only certain classes of computations and algorithms for which the native superposition of inputs can be efficiently exploited.

Grovers algorithm

- One problem a quantum computer can solve efficiently is searching in an unsorted database with N entries.
- A classical computer needs to iterate through the entries and compare them with the desired value, which needs N steps in the worst case.
- In contrast, Grovers algorithm can be used on a quantum computer to solve the problem in approximately \sqrt{N} steps.

Grovers algorithm and symmetric cryptosystems

- As we have seen in previous chapters, the best known attack against sound symmetric ciphers is an exhaustive key search, cf. Section 3.5.1.
- We recall that at least one known plaintext-ciphertext pair is required.
- This attack is basically the same as searching in an unsorted database:
 - encrypt the known plaintext with all possible keys,
 - retrieve a large database of unsorted values,
 - and then search for the known ciphertext.
- For example, AES with a 128-bit key can be broken with a classical computer in roughly 2^128 steps, assuming we have a plaintext/ciphertext pair.
- With a quantum computer running Grovers algorithm, the same attack is more efficient: It would take only 2^64 steps.

Grovers algorithm and symmetric cryptosystems

- Fortunately, the problem can be solved by increasing the key length of symmetric algorithms.
- In fact, Grover's algorithm was the main reason why AES was designed with the two key lengths of 192 and 256 bits, in addition to the 128-bit key.

Quantum computer attacks on asymmetric cryptosystems

- Unfortunately, quantum computers pose a much more serious threat to all asymmetric cryptosystems that are currently in use.
- In 1994, Peter Shor published two algorithms for quantum computers that can efficiently solve:
 - Prime factorization
 - Discrete logarithm problem
- Fortunately, large-scale quantum computers that are required to break cryptosystems like RSA and ECC cannot be built currently.
- It is commonly believed that practical attacks running on quantum computers are most likely at least 10–20 years away, possibly much longer.

Why quantum-secure asymmetric cryptosystems are needed NOW

- First reason: "store now, decrypt later" attack
- Second reason: the development and the adoption of new asymmetric algorithms take a long time

PQC vs Quantum Cryptography

- Quantum cryptography denotes concepts such as quantum key distribution (QKD) for securely exchanging keys over quantum channels, which are built on actual quantum effects.
- Post-quantum cryptography (PQC), denotes the class of cryptographic algorithms that are designed to run on conventional computers but that are capable of withstanding attacks that use powerful quantum computers.

NIST PQC Standardization Process

- In 2017, NIST issued an open standardization call for quantum-secure asymmetric cryptosystems.
- This process is similar to the AES competition.
- The process is still ongoing, but has already led to the publication of 3 PQC standards:
 - ML-KEM (aka Kyber)
 - ML-DSA (aka Dilithium)
 - SLH-DSA (aka SPHINCS+)

Promising PQC families

PQC Family	Supported Services	s Cryptosystems
Lattice based arentography	key transport	LWE, KYBER, FRODO,
Lattice-based cryptography	digital signatures	DILITHIUM, FALCON
Code-based cryptography	key transport	McEliece, Niederreiter
Hash-based cryptography	digital signatures	MSS, XMSS, LMS, SPHINCS+

Content of this Chapter

- Introduction
- Lattice-Based Cryptography
- Code-Based Cryptography

• What is a lattice?

Chapter 12 of Understanding Cryptography by Christof Paar, Jan Pelzl and Tim Güneysu

Learning With Errors Problem (LWE)

Definition 12.2.2 Learning With Errors Problem (LWE) Given a set of *n* basis vectors $\mathbf{a}_{i} \in \mathbb{Z}_{q}^{m}$ represented by matrix **A** and a point $\mathbf{t} \in \mathbb{Z}_{q}^{m}$.

The LWE is the problem of determining a set of secret coefficients $\mathbf{s} = (s_1, s_2, ..., s_n)$, with $s_i \in \mathbb{Z}_q$, such that:

 $\mathbf{A} \cdot \mathbf{s} + \mathbf{e} \equiv \mathbf{t} \mod q$

where e is an unknown error vector consisting of small integers modulo q.

• Encoding and Decoding in LWE cryptosystems

Simple-LWE Key Generation

Output: public key: $k_{pub} = (\mathbf{t}, \mathbf{A})$ with $\mathbf{t} \in \mathbb{Z}_q^k$ and $\mathbf{A} \in \mathbb{Z}_q^{k \times n}$ private key: $k_{pr} = \mathbf{s} \in \mathbb{Z}_q^n$

- 1. Choose *n* random vectors $\mathbf{a}_i \in \mathbb{Z}_q^k$ and combine them in a matrix $\mathbf{A} = (\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n}) \in \mathbb{Z}_q^{k \times n}$.
- 2. Generate a random secret key s from "small" integers.
- 3. Build a random error vector **e** from "small" integers.
- 4. Compute $\mathbf{t} = \mathbf{A} \cdot \mathbf{s} + \mathbf{e}$.
- 5. Return the public key $k_{pub} = (\mathbf{t}, \mathbf{A})$ and the private key $k_{pr} = \mathbf{s}$.

Simple-LWE Encryption Input: public key $k_{pub} = (\mathbf{t}, \mathbf{A})$, message $m \in \{0, 1\}$ Output: ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, c_{msg})$ with $\mathbf{c}_{aux} \in \mathbb{Z}_q^n$ and $c_{msg} \in \mathbb{Z}_q$

- 1. Sample small random integers into vectors $\mathbf{r}, \mathbf{e}_{aux}$ and a value e_{msg} .
- 2. Encode the message m: $\bar{m} = \text{enc}(m) \in \mathbb{Z}_q$.
- 3. Compute $\mathbf{c}_{aux} = \mathbf{A}^T \cdot \mathbf{r} + \mathbf{e}_{aux}$.
- 4. Compute $c_{msg} = \mathbf{t}^T \cdot \mathbf{r} + e_{msg} + \bar{m}$.
- 5. Return the ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, c_{msg})$.

Simple-LWE Decryption

Input: private key $k_{pr} = \mathbf{s} \in \mathbb{Z}_q^n$, ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, c_{msg})$ **Output**: message $m \in \{0, 1\}$

1. Return message
$$m = \det (c_{msg} - \mathbf{s}^T \cdot \mathbf{c}_{aux}).$$

Definition 12.2.3 The ring $R_q = \mathbb{Z}_q[x]/(x^n + 1)$ The polynomial ring $\mathbb{Z}_q[x]/(x^n + 1)$ consists of all polynomials with a maximum degree of n - 1 with coefficients from \mathbb{Z}_q and nbeing a power of two, i.e., $n = 2^i$.

The ring operations addition, subtraction and multiplication are performed as regular polynomial arithmetic, with the results being reduced modulo the cyclotomic polynomical $x^n + 1$. All integer coefficients are reduced modulo q.

Definition 12.2.4 Ring-LWE Problem

Let R_q denote the ring $\mathbb{Z}[x]_q/(x^n+1)$, where q is a prime and the positive integer n is a power of two. Given are polynomials \mathbf{a} and $\mathbf{t} \in R_q$.

Ring-LWE is the problem of determining a secret polynomial $s \in R_q$ *such that:*

 $\mathbf{a}(x) \cdot \mathbf{s}(x) + \mathbf{e}(x) = \mathbf{t}(x)$

where the error vector e is a polynomial in the ring R_q with small integer coefficients obtained from a discrete distribution D.

Note:

We use boldface for polynomials with large coefficient values such as $\mathbf{a}(x), \mathbf{t}(x) \in R_q$ while we use plain font for polynomials such as e(x), s(x) which have only small values.

Ring-LWE Key Generation

Output: public key: $k_{pub} = (\mathbf{t}, \mathbf{a})$ and private key: $k_{pr} = s$

- 1. Choose $\mathbf{a}(x) \in R_q$ from the ring $R_q = \mathbb{Z}[x]_q/(x^n+1)$.
- 2. Choose $e(x), s(x) \in R_q$ with coefficients from a set of small integers according to some discrete error distribution *D*.
- 3. Compute $\mathbf{t}(x) = \mathbf{a}(x) \cdot s(x) + e(x) \in R_q$.
- 4. Return the public key $k_{pub} = (\mathbf{t}, \mathbf{a})$ and the private key $k_{pr} = s$.

Ring-LWE Encryption

Input: public key $k_{pub} = (\mathbf{t}, \mathbf{a})$, message $m \in \{0, 1\}^n$

Output: ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, \mathbf{c}_{msg})$

- 1. Choose error polynomials r(x), $e_{aux}(x)$, $e_{msg}(x)$ with coefficients from a set of small integers according to the discrete error distribution D.
- 2. Write the *n* message bits *m* as a message polynomial m(x) and generate the encoded polynomial: $\bar{\mathbf{m}}(x) = \operatorname{enc}(m(x))$.
- 3. Compute $\mathbf{c}_{aux}(x) = \mathbf{a}(x) \cdot r(x) + e_{aux}(x)$.
- 4. Compute $\mathbf{c}_{msg}(x) = \mathbf{t}(x) \cdot r(x) + e_{msg}(x) + \mathbf{\bar{m}}(x)$.
- 5. Return the ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, \mathbf{c}_{msg})$.

Ring-LWE Decryption

Input: private key $k_{pr} = s$, ciphertext $\mathbf{c} = (\mathbf{c}_{aux}, \mathbf{c}_{msg})$ **Output**: message *m*

- 1. Compute $\mathbf{m}'(x) = \mathbf{c}_{msg}(x) \mathbf{c}_{aux}(x) \cdot s(x)$.
- 2. Return the decoded message $m = dec(\mathbf{m}'(x))$.

Chapter 12 of Understanding Cryptography by Christof Paar, Jan Pelzl and Tim Güneysu

Scheme	Туре	Equivalent Security	n	k	\boldsymbol{q}	δ
Kyber-512	Module-LWE	AES-128	256	2	3329	2^{-139}
Kyber-768	Module-LWE	AES-192	256	3	3329	2^{-164}
Kyber-1024	Module-LWE	AES-256	256	4		2^{-174}
NEWHOPE-512	Ring-LWE	AES-128	512	1	12289	2^{-213}
NEWHOPE-1024	Ring-LWE	AES-256	1024	1	12289	
FRODOKEM-640	Standard-LWE	AES-128	640	1		$2^{-138.7}$
FRODOKEM-1340	Standard-LWE	AES-256	1340	1	2^{16}	$2^{-252.5}$

Content of this Chapter

- Introduction
- Lattice-Based Cryptography
- Code-Based Cryptography

Coding Theory

Fig. 12.6 Transfer of a message *m* over a noisy channel with error-coding

Linear Codes

Fig. 12.7 Principle of linear error correction coding

Minimum distance and error correction

$$d = \min\{HW(c_1 + c_2): c_1, c_2 \in C \text{ and } c_1 \neq c_2\}$$

For linear codes:
$$d = \min\{HW(c): c \in C \text{ and } c \neq \vec{0}\}$$

A code can correct
$$t = \lfloor (d-1)/2 \rfloor \text{ errors.}$$

Note: The figure is copied from:

Hill, Raymond. A first course in coding theory. Oxford University Press, 1986.

Chapter 12 of Understanding Cryptography by Christof Paar, Jan Pelzl and Tim Güneysu

Example 12.7.

(100011)	Messages m	Codewords c
$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$	$\begin{array}{c} \left(\begin{array}{c} 0 & 0 & 0 & 0 \\ \left(\begin{array}{c} 0 & 0 & 0 & 1 \\ \left(\begin{array}{c} 0 & 0 & 1 & 0 \end{array} \right) \end{array} \right) \end{array}$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ (& 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ (& 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$
$H = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$	$\begin{array}{c} (0 \ 0 \ 1 \ 1) \\ (0 \ 1 \ 0 \ 0) \\ (0 \ 1 \ 0 \ 1) \\ (0 \ 1 \ 1 \ 0) \\ (0 \ 1 \ 1 \ 1) \end{array}$	$\begin{pmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ (0 & 1 & 0 & 0 & 1 & 1 & 0 \\ (0 & 1 & 0 & 1 & 0 & 0 & 1 \\ (0 & 1 & 1 & 0 & 0 & 1 & 1 \\ (0 & 1 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$
$d=3$ $t = \lfloor (d-1)/2 \rfloor = 1$	$(0 \ 1 \ 1 \ 1)$ $(1 \ 0 \ 0 \ 0)$ $(1 \ 0 \ 1 \ 0)$ $(1 \ 0 \ 1 \ 0)$ $(1 \ 0 \ 1 \ 1)$ $(1 \ 0 \ 1 \ 1)$ $(1 \ 1 \ 0 \ 0)$	(0 1 1 1 1 0 0) (1 0 0 0 1 1) (1 0 0 0 0 1 1) (1 0 0 1 1 0 0) (1 0 1 0 1 1 0) (1 0 1 1 0 0 1) (1 0 1 1 0 0 1 0 1) (1 1 0 0 1 0 1)
	$(1 \ 1 \ 0 \ 0) \\ (1 \ 1 \ 0 \ 1) \\ (1 \ 1 \ 1 \ 0) \\ (1 \ 1 \ 1 \ 1 \ 1)$	$(1 1 0 1 0 1 0) \\ (1 1 0 1 0 1 0) \\ (1 1 1 0 0 0 0) \\ (1 1 1 1 1 1 1)$

Chapter 12 of Understanding Cryptography by Christof Paar, Jan Pelzl and Tim Güneysu

(1000011)	Error <i>e</i>	Syndrome s
$G = \begin{pmatrix} 0 \ 1 \ 0 \ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \ 0 \ 1 \\ 0 \ 0 \ 1 \ 1 \ 1 \\ \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ (& 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ (1 & 0 & 0 \end{pmatrix}$
$H = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$	$\begin{array}{c} (0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	$(1 \ 0 \ 0) \\ (1 \ 1 \ 1) \\ (1 \ 0 \ 1) \\ (1 \ 1 \ 0) \\ (0 \ 1 \ 1) $

d=3 $t = \lfloor (d-1)/2 \rfloor = 1$

 $c = m \cdot G$

c' = c + e

 $c' \rightarrow s = H \cdot (c')^T \rightarrow syndrome \ table \rightarrow e \rightarrow c = c' + e \rightarrow m$

Chapter 12 of Understanding Cryptography by Christof Paar, Jan Pelzl and Tim Güneysu

Hard problems in Coding Theory

For larger values of t the syndrome table becomes too large.

randomly generated

Let G be a generator matrix of a binary linear code C.

Suppose that C can correct t errors.

- $c = m \cdot G$
- c' = c + e, where $HW(e) \le t$

Minimum distance decoding problem (MDD problem)

(problem dekodovania podla minimalnej vzdialenosti) We are given c', G and t. We want to compute m.

It is assumed that MDD problem is hard even for quantum computers. Note: For MDD to be hard, it is important that C is randomly generated. There exist some carefully designed classes of linear codes for which MDD is easy.

MDD	LWE
GF(2)	Z_q
G	A
m	S
e with small HW	e containing only small elements
codeword $c = m \cdot G$	lattice point $A \cdot s$
$c' = m \cdot G + e$	$t = A \cdot s + e$

MDD and SDP

An equivalent problem to MDD:

Syndrome decoding problem (SDP problem)

(problem dekodovania podla syndromu)

Subsection 12.3.2 in the book.

Prominent code-based cryptosystems

- HQC (has a similar construction to the Ring-LWE scheme in 12.2.4)
- BIKE
- Classic McEliece