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Homework

* Read Chapter 2.

* Solve problems from the exercises set no. 2 and submit them to AIS
by 30.9.2024 23:59.
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Some legal stuff (sorry): Terms of Use

* The slides can used free of charge. All copyrights for the slides remain with
the authors.

* The title of the accompanying book “Understanding Cryptography” by
Springer and the author’'s names must remain on each slide.

* |If the slides are modified, appropriate credits to the book authors and the
book title must remain within the slides.

° It is not permitted to reproduce parts or all of the slides in printed form
whatsoever without written consent by the authors.
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Content of this Chapter

° Intro to stream ciphers
* Random number generators (RNGS)
* Linear feedback shift registers (LFSRs)

° Modern stream ciphers
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B Stream Ciphers in the Field of Cryptology

< Cryptology >
(Crypt;graphD (CryptavnalysiSD
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( Block Ciphers) @ream Ciphe@

Stream Ciphers were invented in 1917 by Gilbert Vernam
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B Stream Cipher vs. Block Cipher
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* Block Ciphers:

* Always encrypt a full block (several bits)

The encryption of any plaintext bit in a given block depends on every
other plaintext bit in the same block.

* Block size is usually 128 bits.

* Are more common for Internet applications
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B Stream Cipher vs. Block Cipher
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(key stream generator = generator prudu bitov)

Stream Ciphers

Encrypt bits individually

In the past, they were particularly relevant for applications with low
computational resources, e.g., for cell phones or other small embedded
devices.

Today, however, there exist also block ciphers with very low
computational requirements (e.g. PRESENT).

At the same time, there are modern stream ciphers that are very well

suited for high-speed software implementations (e.g. ChaCha).
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B Synchronous vs. Asynchronous Stream Cipher
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* Synchronous Stream Cipher

* Key stream depend only on the key (and possibly an initialization vector V)

°* Most modern stream ciphers are synchronous.

* Asynchronous Stream Ciphers

* Key stream depends also on the ciphertext (dotted feedback enabled)
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B Encryption and Decryption with Stream Ciphers
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Plaintext x;, ciphertext y, and key stream s; consist of individual bits
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Encryption and decryption are simple additions modulo 2 (aka XOR)

Encryption and decryption are the same functions

Encryption: y; =eg(X;) =%+ s; mod 2

Decryption: x;=e(y;) =y;+Ss; mod 2

Xi, i, Si €{0,1}
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B Why is Modulo 2 Addition a Good Encryption Function?

* Modulo 2 addition is equivalent to XOR operation

* For perfectly random key stream s; , each ciphertext output bit
has a 50% chance to be O or 1

- Good statistic property for ciphertext

* Inverting XOR is simple, since it is the same XOR operation
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* Imagine if stream ciphers used modulo 2 multiplication instead of
modulo 2 addition. Why wouldn’t it work?
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B How can a stream cipher be secure?
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* Security of stream cipher depends entirely on the key stream s, :

° Should be random , i.e., Pr(s;=0)=Pr(s;=1) =0.5

° Must be reproducible by sender and receiver

* Important question: How do we build the key stream?
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Content of this Chapter

° Intro to stream ciphers
* Random number generators (RNGS)
* Linear feedback shift registers (LFSRs)

° Modern stream ciphers
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B Random number generators (RNGSs)

< True RNG > GseudorandomNQ C:
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B True Random Number Generators (TRNGS)

* Based on physical random processes: coin flipping, dice rolling, semiconductor
noise, radioactive decay, mouse movement, clock jitter of digital circuits

° Output stream s; should have good statistical properties:
Pr(s; = 0) = Pr(s; = 1) = 50% (often achieved by post-processing)

* Qutput can neither be predicted nor be reproduced

* Typically used for generation of keys, nonces (number used only-once) and for
many other purposes

* Disadvantage: they are slow

* Can we use TRNGs to build the key stream?
° Problem is that the output from TRNG is not reproducible.

° In order to decrypt, the recipient has to learn the whole key stream through
a secure channel.

° But the key stream is as large as the message -> impractical.
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B One-Time Pad (OTP)

A stream cipher which uses a TRNG to produce the key stream is called a

one-time pad (OTP) (Vernamova Sifra)

Definition 2.2.2 One-Time Pad (OTP)
A stream cipher for which

1. the key stream s, s1,52,...1s generated by a true random num-
ber generator, and

2. the key stream is only known to the legitimate communicating
parties, and

3. every key stream bit s; is only used once

is called a one-time pad. The one-time pad is unconditionally se-
cure.

Definition 2.2.1 Unconditional Security

A cryptosystem is unconditionally or information-theoretically se-
cure if it cannot be broken even with infinite computational re-
sources.

OTP is unconditionally secure if and only if the key k;. is used once!
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B One-Time Pad (OTP)

Unconditionally secure cryptosystem:
Yo = %o @ kg
y1 = X @k

Every equation is a linear equation with two unknowns
—> for every y,are x; =0 and x; = 1 equiprobable!

—This is true iff k,, k;, ... are independent, i.e., all k; have to be
generated truly random

—> It can be shown that this systems can provably not be solved.

Disadvantage: For almost all applications the OTP is impractical
since the key must be as long as the message! (Imagine you
have to encrypt a 1GByte email attachment.)
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B Random number generators (RNGSs)

< True RNG > GseudorandomNQ C:
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B Pseudorandom Number Generator (PRNG)

* Generate sequences from initial seed value
* Typically, output stream has good statistical properties
* QOutput can be reproduced and can be predicted

Often computed in a recursive way:
s, = seed
S, = T(S,S_1,--sSi ;)

Example: rand() function in ANSI C:

S, =12345
s.., =1103515245s, +12345mod 2*

Most PRNGs have bad cryptographic properties!
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B Cryptanalyzing a Stream Cipher Based on a Simple PRNG

Simple PRNG: Linear Congruential Generator (LCG)
S, = seed
S:.,;, =AS, +Bmodm

k
l k=(A,B,seed)
LCG
T Yi
h—w -

Assume
* unknown A, B and S, as key
* Size of A, B and S; to be 100 bit
* Ciphertext is known

* First 300 bits of plaintext are known (e.g. header of the file)
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B Random number generators (RNGSs)

< True RNG > GseudorandomNQ C:
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B Cryptographically Secure Pseudorandom Number
Generator (CSPRNG)

* Special PRNG with additional property:
* Qutput must be unpredictable

More precisely: Given n consecutive bits of output s; , the following output bits s,
cannot be predicted (in polynomial time).

* Remark: There are almost no other applications that need unpredictability,
whereas many, many (technical) systems need PRNGs.

* |tis CSPRNGs that are used in stream ciphers to generate key streams!

k
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Si
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B Uses of CSPRNGs

* CSPRNGs are needed in cryptography for:
* stream ciphers
* fast generation of keys for symmetric ciphers (also for block ciphers)
* fast generation of “random” bits (e.g. nonces)
* Often, CSPRNG is used together with TRNG:
* Firstly, TRNG generates a seed.
* Then, CSPRNG expands the seed into more bits.
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B Constructions of CSPRNGs

Popular constructions of CSPRNGs:
* Based on linear feedback shift registers (LFSRS)
* Will be discussed next.
* Based on add-rotate-XOR (ARX) approach.
* We will see this when we discuss stream ciphers Salsa20 and ChaCha.

* Based on block ciphers.
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Content of this Chapter

° Intro to stream ciphers
* Random number generators (RNGS)
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B Linear Feedback Shift Registers (LFSRS)
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* Concatenated flip-flops (FF), i.e., a shift register together with a feedback path

Feedback computes fresh input by XOR of certain state bits

Degree m given by number of storage elements

not feedback from this flip-flop (“open switch”)

Output sequence repeats periodically

Maximum output length: 2m-1
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B Linear Feedback Shift Registers (LFSRs): Example with m=3

'
FF, FF, FFy
i 59 - 51 - S0 = S5;...51 50
N\ N\ N\
A A A
[ | |
CLK - - - - - L= - L= - !
clk | FF, | FF; | FFy=s;
0 1 0 0
* LFSR output described by recursive equation: 1 0 1 0
S..3=S.,+S mod2 2 |10 1
3 1 1 0
. : : 4 1 1 1
* Maximum output length (of 23-1=7) achieved only for certain
. : 5 0 1 1
feedback configurations, .e.g., the one shown here.
6 0 0 1
7 1 0 0
8 0 1 0
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B Security of LFSRs

LFSRs typically described by polynomials:
P(X)= X"+ p,_ X" +...+ p,X+ P,

* Single LFSRs generate highly predictable output

* If 2m output bits of an LFSR of degree m are known, the feedback

coefficients p; of the LFSR can be found by solving a system of linear
equations*

* Because of this many stream ciphers use combinations of LFSRs

*See Chapter 2 of Understanding Cryptography for further details.
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Content of this Chapter

° Intro to stream ciphers
* Random number generators (RNGS)
* Linear feedback shift registers (LFSRs)

°* Modern stream ciphers
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B [nitialization Vectors (IVs) (Inicializaéné vektory)

Used in many stream cipher constructions.

IV serves as a randomizer and should take a new value for every encryption session.

Their main purpose is that two key streams produced by the cipher should be
different, even though the key has not changed.

I\VVs do not have to be kept secret.

Methods for generating 1Vs are discussed in Section 5.1.2. of the book.
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* Three LFSRs of length 93, 84, 111

—
-

* XOR-Sum of all three LFSR outputs generates key stream s,
* Small in Hardware:

* Total register count: 288

* Non-linearity: 3 AND-Gates

* 7 XOR-Gates (4 with three inputs)
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B Trivium

‘ key stream

* Three LFSRs of length 93, 84, 111
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* XOR-Sum of all three LFSRs outputs generates key stream s;

* Small in Hardware:
* Total register count: 288
* Non-linearity: 3 AND-Gates
* 7 XOR-Gates (4 with three inputs)
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B Trivium
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* Three LFSRs of length 93, 84, 111
* XOR-Sum of all three LFSR outputs generates key stream s,
* Small in Hardware:

* Total register count: 288

* Non-linearity: 3 AND-Gates

* 7 XOR-Gates (4 with three inputs)
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B Operation of Trivium
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* Load 80-bit IV into A ] T |
* Load 80-bit key into B : I — e

~p—f[c_ | THi—&
* Set C109 , C110 , C177 =1, all other bits O | ?

Warm-Up:

N

Si
b key stream

* Clock cipher 4 x 288 = 1152 times without generating output

Encryption:

* XOR-Sum of all three LFSR outputs generates key stream s;

Properties:

* Can produce up to 2°* bits of output from an 80-bit key and an 80-bit IV.

* Was developed to be a very small and efficient cipher and is not intended for

high-security applications!
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B Salsa20

* Salsa20 is a family of software-efficient stream ciphers.
* Based on add-rotate-XOR (ARX) approach.
* The original cipher has 20 rounds and is denoted by Salsa20/20.

* Salsa20/20 is already faster than AES (the most popular block
cipher) on most CPUs.

* Salsa20 variants with a reduced round count, named Salsa20/12
and Salsa20/8, are even faster.

* In the following we will describe Salsa20 with 20 rounds.

35/27 Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl



B Salsa20

* Supports key lengths of 256 and 128 bits. (256 is recommended by the
designer)

* The core of Salsa20 is a function with a 512-bit input and a 512- bit output.
* For both encryption and decryption, Salsa20 processes:

° the key (we will assume 256-bit key),

* a 64-bit nonce (has the role of 1V)

* and a 64-bit block number,

and generates a 512-bit block of key stream. (one can encrypt (or decrypt)
512 plaintext or ciphertext bits at once.

* Thus, for one choice of nonce Salsa20 can generate a key stream of length:
26% x 512 = 273 bits

* Since each block depends only on the key, the nonce and the block
number, the key stream blocks can be computed independently of each
other and blocks can be computed in parallel. (advantageous for high-
speed implementations).
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B Salsa20 - internal state

* The internal state of Salsa20 has 512 bits.

* |t consists of sixteen 32-bit words u; and can be arranged as a 4-by-4
matrix:

o | Uy | U | U3

g | Us | Ug | U7
g | g (U U]

12|13 |U14 (U5
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B Salsa20 - initial state

* Eight 32-bit words are formed by the key k=[k.k, ... k+].
* Two words indicate the stream position p = [pyp4]-

(p can be seen as a counter indicating the position of the current 512-bit block
within the range of all 2% 512-bit blocks of the key stream)

* Two words come from the nonce n = [nyn,].

* Four words are a constant ¢ = [¢,c, c,c53] (the constant ¢ is given by the
ASCI| encoded string “expand 32-byte k).

co| ko [ky |ka
!E{:z, C1 |l |1

Po|P1|C2|ka
k5 k@ k? C3

=
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B Salsa20 - QR function

* The core operation in Salsa20 is the quarter-round function QR(a,b,c,d).
* |t repeatedly applies three simple operations on 32-bit words:

* 32-bit addition modulo 232,

* 32-bit XOR

* and a constant 32-bit rotation by c positions to the left ROTLE.

* The four-word output is computed from a four-word input by the quarter-
round function QR as shown in Figure 2.8.
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Fig. 2.8 Quarter-round function QR(a,b,c.d) of Salsa20
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B Salsa20 - rounds
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* Four quarter rounds form (not surprisingly) a round.
* Two consecutive rounds are called a double-round.

* In odd-numbered rounds, QR is applied to each of the four columns in
the 4-by-4 matrix.

* In even-numbered rounds, QR is applied to each of the four rows.

»
=
r

Yo Vi V2 V3 ——— (Yo Y1 Uz U3 | —— 2 22 23
Vy Vs Vg V7 QR() Uy, Us Ug U7 QR() iy 5 L L7

Ve Vg Vip Vi Ug Ug Uy Uy < Z9 Lo <yt

Vi2 Vi3 V14 Vis Upp Ujz Upy U5 212 <13 214 <45

Fig. 2.9 Double-round function of Salsa20

* For encryption or decryption, 20 rounds or 10 double-rounds are applied.
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B ChaCha

* ChaCha is another fast, software-oriented stream cipher.
* [t follows the same basic design principles as Salsa20.

* The cipher can be configured with eight (ChaCha8), twelve (ChaChal2),
or twenty rounds (ChaChaZ20).
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B Lessons Learned

® Stream ciphers are an important part of modern cryptography but are somewhat less

widely used than block ciphers.

® The one-time pad is a provably secure symmetric cipher. However, it is highly
impractical for most applications because the key length has to equal the message
length.

® Stream ciphers sometimes require fewer resources, e.g., code size or chip area, for

implementation than block ciphers, and they can be very fast.

® Secure and fast stream ciphers such as ChaCha20 can be built from functions that

consist of the add-rotate-XOR operations.

® The requirements for a cryptographically secure pseudorandom number generator are
far more demanding than the requirements for pseudorandom number generators used

in other fields of engineering such as testing or simulation.

® Single LFSRs make poor stream ciphers despite their good statistical properties.

However, careful combination of several LFSRs can yield strong ciphers.
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