Understanding Cryptography – A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl

www.crypto-textbook.com

Chapter 5 – More About Block Ciphers

ver. October 5, 2024

Understanding Cryptography

A Textbook for Students and Practitions

D Springer

These slides were originally prepared by Amir Moradi, Christof Paar and Jan Pelzl. Later, they were modified by Tomas Fabsic for purposes of teaching I-ZKRY at FEI STU.

Homework

• Read Section 5.1 (you can skip subsections 5.1.3, 5.1.4 and 5.1.6).

Some legal stuff (sorry): Terms of Use

- The slides can used free of charge. All copyrights for the slides remain with Christof Paar and Jan Pelzl.
- The title of the accompanying book "Understanding Cryptography" by Springer and the author's names must remain on each slide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.

- Encryption with Block Ciphers for Confidentiality: Modes of Operation
 - Electronic Code Book mode (ECB)
 - Cipher Block Chaining mode (CBC)
 - Counter mode (CTR)

Block Ciphers

- A block cipher is much more than just an encryption algorithm, it can be used ...
 - to build different types of block-based encryption schemes
 - to realize stream ciphers
 - to construct hash functions
 - to make message authentication codes
 - to build key establishment protocols
 - to make a CSPRNG
 - ...

Encryption with Block Ciphers for Confidentiality

- There are several ways of encrypting long plaintexts, e.g., an e-mail or a computer file, with a block cipher ("modes of operation")
 - Electronic Code Book mode (ECB)
 - Cipher Block Chaining mode (CBC)
 - Counter mode (CTR)
- All of the above modes have only one goal confidentiality (dôvernosť).
- Confidentiality:
 - The content of the message is hidden from illegitimate parties.

Encryption with Block Ciphers for Authenticity and Integrity

- Other important goals in cryptography:
 - Is the message really coming from the original sender? (authenticity)
 - Was the ciphertext altered during transmission? (integrity)
- Modes providing authenticity and integrity (Chapter 13):
 - CBC-MAC
 - Cipher-based MAC (CMAC)
- Modes providing both confidentiality and authenticity and integrity (Chapter 13):
 - Cipher Block Chaining-Message Authentication Code (CCM)
 - Galois Counter mode (GCM)
- Today, CCM and GCM are the most recommended modes when confidentiality is needed!

- Encryption with Block Ciphers for Confidentiality: Modes of Operation
 - Electronic Code Book mode (ECB)
 - Cipher Block Chaining mode (CBC)
 - Counter mode (CTR)

Electronic Code Book mode (ECB)

- $e_k(x_i)$ denote the encryption of a *b*-bit plaintext block x_i with key k
- $e_k^{-1}(y_i)$ denote the decryption of *b*-bit ciphertext block y_i with key k
- Messages which exceed b bits are partitioned into b-bit blocks
- Each Block is encrypted separately

ECB: advantages/disadvantages

- Advantages
 - no block synchronization between sender and receiver is required
 - bit errors caused by noisy channels only affect the corresponding block but not succeeding blocks
 - Block cipher operating can be parallelized
 - advantage for high-speed implementations
- <u>Disadvantages</u>
 - ECB encrypts highly deterministically!
 - identical plaintexts result in identical ciphertexts
 - an attacker recognizes if the same message has been sent twice
 - plaintext blocks are encrypted independently of previous blocks
 - an attacker may reorder ciphertext blocks which results in valid plaintext

Substitution Attack on ECB

- Once a particular plaintext to ciphertext block mapping $x_i \rightarrow y_i$ is known, a sequence of ciphertext blocks can easily be manipulated
- Suppose an *electronic bank transfer*

Block #	1	2	3	4	5	
	Sending	Sending	Receiving	Receiving	Amount	
	Bank A	Account #	Bank B	Account #	\$	

- the encryption key between the two banks does not change too frequently
- The attacker sends \$1.00 transfers from his account at bank A to his account at bank B repeatedly
 - He can check for ciphertext blocks that repeat, and he stores blocks
 1,3 and 4 of these transfers
- He now simply replaces block 4 of other transfers with the block
 4 that he stored before
 - *all transfers* from some account of bank A to some account of bank B are redirected to go into the attacker's B account!

Example of encrypting bitmaps in ECB mode

Identical plaintexts are mapped to identical ciphertexts

• Statistical properties in the plaintext are preserved in the ciphertext

- Encryption with Block Ciphers for Confidentiality: Modes of Operation
 - Electronic Code Book mode (ECB)
 - Cipher Block Chaining mode (CBC)
 - Counter mode (CTR)

Cipher Block Chaining mode (CBC)

- There are two main ideas behind the CBC mode:
 - The encryption of all blocks are "chained together"
 - ciphertext y_i depends not only on block x_i but on all previous plaintext blocks as well
 - The encryption is randomized by using an initialization vector (IV)

Encryption (first block): $y_1 = e_k(x_1 \bigoplus IV)$ Encryption (general block): $y_i = e_k(x_i \bigoplus y_{i-1}), i \ge 2$ Decryption (first block): $x_1 = e_k^{-1}(y_1) \bigoplus IV$ Decryption (general block): $x_i = e_k^{-1}(y_i) \bigoplus y_{i-1}, i \ge 2$

Cipher Block Chaining mode (CBC)

- For the first plaintext block x_1 there is no previous ciphertext
 - an IV is added to the first plaintext to make each CBC encryption nondeterministic
 - the first ciphertext y_1 depends on plaintext x_1 and the IV
- The second ciphertext y_2 depends on the IV, x_1 and x_2
- The third ciphertext y_3 depends on the IV and x_1 , x_2 and x_3 , and so on

Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Substitution Attack on CBC

- Suppose the last example (*electronic bank transfer*)
- If the IV is properly chosen for every wire transfer, the attack will not work at all
- If the IV is kept the same for several transfers, the attacker would recognize the transfers from his account at bank A to back B
- If we choose a new IV every time we encrypt, the CBC mode becomes a probabilistic encryption scheme, i.e., two encryptions of the same plaintext look entirely different
- It is not needed to keep the IV secret!
- Typically, the IV should be a non-secret nonce (value used only once)

- Encryption with Block Ciphers for Confidentiality: Modes of Operation
 - Electronic Code Book mode (ECB)
 - Cipher Block Chaining mode (CBC)
 - Counter mode (CTR)

Counter mode (CTR)

- It uses a block cipher as a stream cipher
- The key stream is computed in a blockwise fashion
- The input to the block cipher is a counter which assumes a different value every time the block cipher computes a new key stream block

- can be parallelized since the 2nd encryption can begin before the 1st one has finished
- IV and counter value do not have to be secret

Chapter 5 of Understanding Cryptography by Christof Paar and Jan Pelzl

Lessons Learned

- There are many different ways to encrypt with a block cipher.
- Some modes of operation turn a block cipher into a stream cipher.
- The straightforward ECB mode has security weaknesses, independent of the underlying block cipher.
- The counter mode allows parallelization of encryption and is thus suited for highspeed implementations.