Understanding Cryptography – A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl

www.crypto-textbook.com

Chapter 6 – Introduction to Public-Key Cryptography

ver. October 6, 2024

Understanding

A Textbook for Students an

D Springer

These slides were originally prepared by Timo Kasper and Christof Paar. Later, they were modified by Tomas Fabsic for purposes of teaching I-ZKRY at FEI STU.

Homework

- Do the Homework from the presentation on Modes of Encryption.
- Read Chapter 6.
- Solve problems from the exercise set no. 4 and submit them to AIS by **14.10.2024 23:59**.

Some legal stuff (sorry): Terms of Use

- The slides can used free of charge. All copyrights for the slides remain with Christof Paar and Jan Pelzl.
- The title of the accompanying book "Understanding Cryptography" by Springer and the author's names must remain on each slide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.

- Symmetric Cryptography Revisited
- Principles of Asymmetric Cryptography
- Practical Aspects of Public-Key Cryptography
- Important Public-Key Algorithms
- Essential Number Theory for Public-Key Algorithms

- **Symmetric Cryptography Revisited**
- Principles of Asymmetric Cryptography
- Practical Aspects of Public-Key Cryptography
- Important Public-Key Algorithms
- Essential Number Theory for Public-Key Algorithms

Symmetric Cryptography revisited

Two properties of symmetric (secret-key) crypto-systems:

- The **same secret key** *K* is used for encryption and decryption
- Encryption and Decryption are very similar (or even identical) functions

Symmetric Cryptography: Analogy

Safe with a strong lock, only Alice and Bob have a copy of the key

- Alice encrypts \rightarrow locks message in the safe with her key
- Bob decrypts \rightarrow uses his copy of the key to open the safe

Symmetric Cryptography: Shortcomings

- AES is very secure, fast & widespread **but**:
- Key distribution problem: The secret key must be **transported securely**
- Number of keys: In a network, each pair of users requires an individual key

• Alice or Bob can **cheat each other**, because they have identical keys. **Example**: Alice can claim that she never ordered a TV on-line from Bob (he could have fabricated her order). To prevent this: "non-repudiation"

- Symmetric Cryptography Revisited
- **Principles of Asymmetric Cryptography**
- Practical Aspects of Public-Key Cryptography
- Important Public-Key Algorithms
- Essential Number Theory for Public-Key Algorithms

Idea behind Asymmetric Cryptography

1976: first publication of such an algorithm by Whitfield Diffie and Martin Hellman,and also by Ralph Merkle.

Asymmetric (Public-Key) Cryptography

Principle: "Split up" the key

 \rightarrow During the key generation, a key pair K_{pub} and K_{pr} is computed

Chapter 6 of *Understanding Cryptography* by Christof Paar and Jan Pelzl

Asymmetric Cryptography: Analogy

Safe with public lock and private lock:

- Alice deposits (encrypts) a message with the *not secret* public key *Kpub*
- Only Bob has the *secret* private key K_{pr} to retrieve (decrypt) the message

- Symmetric Cryptography Revisited
- Principles of Asymmetric Cryptography
- **Practical Aspects of Public-Key Cryptography**
- Important Public-Key Algorithms
- Essential Number Theory for Public-Key Algorithms

→ Key Distribution Problem solved *

*) at least for now; public keys need to be authenticated, cf.Chptr. 14 *of Understanding Cryptogr*.

Security Mechanisms of Public-Key Cryptography

Here are main mechanisms that can be realized with asymmetric cryptography:

- **Key Distribution** (e.g., Diffie-Hellman key exchange, RSA) without a preshared secret (key)
- **Nonrepudiation and Digital Signatures** (e.g., RSA, DSA or ECDSA) to provide message integrity
- **Identification**, using challenge-response protocols with digital signatures
- **Encryption** (e.g., RSA / Elgamal) Disadvantage: Computationally very intensive (1000 times slower than symmetric Algorithms!)

Basic Key Transport Protocol 1/2

In practice: **Hybrid systems**, incorporating asymmetric and symmetric algorithms

1. Key exchange (for symmetric schemes) and **digital signatures** are performed with (slow) **asymmetric** algorithms

2. Encryption of data is done using (fast) symmetric ciphers, e.g., **block ciphers or stream ciphers**

Basic Key Transport Protocol 2/2

Example: Hybrid protocol with AES as the symmetric cipher

- Symmetric Cryptography Revisited
- Principles of Asymmetric Cryptography
- Practical Aspects of Public-Key Cryptography
- **Important Public-Key Algorithms**
- Essential Number Theory for Public-Key Algorithms

How to build Public-Key Algorithms

Asymmetric schemes are based on a "one-way function" $f()$:

- Computing $y = f(x)$ is computationally easy
- Computing $x = f¹(y)$ is computationally infeasible

One way functions are based on **mathematically hard problems**.

Three main families:

• **Factoring integers** (RSA, ...):

Given a composite integer *n*, find its prime factors (Multiply two primes: easy)

- **Discrete Logarithm** (Diffie-Hellman, Elgamal, DSA, …): Given *a, y* and *m,* find *x* such that *a ^x* = *y* mod *m* (Exponentiation *a ^x*: easy)
- **Elliptic Curves (EC)** (ECDH, ECDSA): Generalization of discrete logarithm

Note: The problems are considered mathematically hard, but no proof exists (so far).

Key Lengths and Security Levels

- Symmetric Cryptography Revisited
- Principles of Asymmetric Cryptography
- Practical Aspects of Public-Key Cryptography
- Important Public-Key Algorithms
- **Essential Number Theory for Public-Key Algorithms**

Euclidean Algorithm 1/2

- Compute the greatest common divisor $\gcd(r_0, r_1)$ of two integers r_0 and r_1
- gcd is **easy for small numbers**:
	- 1. factor r_0 and r_1
	- 2. gcd = highest common factor
- Example:

 $r_o = 84 \pm 2$. 2 3 . 7 $r_1 = 30 \pm 2 \cdot 3 \cdot 5$

 \rightarrow The gcd is the product of all common prime factors:

 $2 \cdot 3 = 6 = gcd(30,84)$

• **But:** Factoring is complicated (and often infeasible) for large numbers

Euclidean Algorithm 2/2

- Observation: $\gcd(r_0, r_1) = \gcd(r_0 r_1, r_1)$
- → Core idea:
	- Reduce the problem of finding the gcd of two given numbers to that of the **gcd of two smaller numbers**
	- Repeat process recursively
	- The final $gcd(r_i, 0) = r_i$ is the answer to the original problem !

Example: $gcd(r_0, r_1)$ for $r_0 = 27$ and $r_1 = 21$

 $gcd(27, 21) = gcd(1 \cdot 21 + 6, 21) = gcd(21, 6)$

$$
gcd(21, 6) = gcd(3 \cdot 6 + 3, 6) = gcd(6, 3)
$$

$$
gcd(6, 3) = gcd(2 \cdot 3 + 0, 3) = gcd(3, 0) = 3
$$

• Note: very efficient method even for long numbers: The complexity grows **linearly** with the number of bits

For the full Euclidean Algorithm see Chapter 6 in *Understanding Cryptography.*

Extended Euclidean Algorithm 1/2

- Extend the Euclidean algorithm to find modular inverse of r_1 mod r_0
- EEA computes *s*,*t*, and the gcd : $\gcd(r_0, r_1) = s \cdot r_0 + t \cdot r_1$
- Take the relation **mod** *r⁰*

 $s\cdot 0 + t\cdot r_1 \equiv 1 \mod r_0$

 $s \cdot r_0 + t \cdot r_1 = 1$

 $r_1 \cdot t \equiv 1 \mod r_0$

 \rightarrow Compare with the definition of modular inverse: *t* **is the inverse of** r_1 **mod** r_0

- Note that $gcd(r_0, r_1) = 1$ in order for the inverse to exist
- **Recursive formulae** to calculate *s* and *t* in each step

→ "magic table" for *r*, *s*, *t* and a quotient *q* to derive the inverse with pen and paper

(cf. Section 6.3.2 in *Understanding Cryptography*)

Extended Euclidean Algorithm 2/2

Example:

- Calculate the modular Inverse of 12 mod 67:
- From magic table follows $-5.67 + 28.12 = 1$
- Hence **28 is the inverse** of 12 mod 67.

• Check: $28.12 = 336 \equiv 1 \mod 67$

For the full Extended Euclidean Algorithm see Chapter 6 in *Understanding Cryptography.* \bullet Check: $28 \cdot 12 = 336 \equiv 1 \mod 67$ \checkmark
For the full Extended Euclidean Algorithm see Chapter 6 in *Understanding*
Chapter 6 of *Understanding Cryptography* by Christof Paar and Jan Pelzl

Euler's Phi Function 1/2

- *New problem, important for public-key systems, e.g., RSA:* Given the set of the *m* integers {0, 1, 2, …, *m* -1}, **How many** numbers in the set are **relatively prime to** *m* ?
- Answer: **Euler's Phi function** *Φ(m)*
- **Example** for the sets {0,1,2,3,4,5} (*m*=6), and {0,1,2,3,4} (*m*=5)

- $gcd(0,6) = 6$ $gcd(0,5) = 5$ $gcd(1,6) = 1$ \leftarrow $gcd(1,5) = 1$ \longleftarrow $gcd(2, 6) = 2$ $gcd(2,5) = 1$ \longleftarrow $gcd(3,6) = 3$ $gcd(3,5) = 1$ \longleftarrow $gcd(4,6) = 2$ $gcd(4,5) = 1$ \longleftarrow $gcd(5,6) = 1$ \longleftarrow
- \rightarrow 1 and 5 relatively prime to *m*=6, \rightarrow \rightarrow ϕ (5) = 4 hence *Φ***(6) = 2**
-

• Testing one gcd per number in the set is **extremely slow for large** *m***.**

Euler's Phi Function 2/2

• **If** canonical factorization of *m* known**:** (where *pⁱ* primes and *eⁱ* positive integers)

• **then** calculate Phi according to the relation

$$
m = p_1^{e_1} \cdot p_2^{e_2} \cdot \dots \cdot p_n^{e_n}
$$

$$
\Phi(m) = \prod_{i=1}^n (p_i^{e_i} - p_i^{e_i - 1})
$$

- Phi especially easy for $e_i = 1$, e.g., $m = p \cdot q \rightarrow \Phi(m) = (p-1) \cdot (q-1)$
- **Example** *m* = 899 = 29 . 31: *Φ***(899)** = (29-1) . (31-1) = 28 . 30 **= 840**
- **Note:** Finding *Φ(m)* is computationally easy **if factorization of** *m* **is known** (otherwise the calculation of *Φ(m)* becomes computationally infeasible for large numbers)

Fermat's Little Theorem

- Given a **prime** *p* and an **integer** *a*: • Can be rewritten as $a^{p-1}=1 \pmod{p}$ in case gcd(a,p)=1.
- **Use: Find modular inverse**, if p is prime. Rewrite to $a(a^{p-2}) \equiv 1 \pmod{p}$ • Comparing with definition of the modular inverse $\equiv 1 \mod m$ $\rightarrow a^{-1} \equiv a^{p-2} \pmod{p}$ is the modular inverse modulo a prime *p*

Example:
$$
a = 2
$$
, $p = 7$
 $a^{p-2} = 2^5 = 32 \equiv 4 \mod 7$
verify: $2 \cdot 4 \equiv 1 \mod 7$

• Fermat's Little Theorem works only **modulo a prime** *p*

Euler's Theorem

- Generalization of Fermat's little theorem to **any integer modulus**
- Given two **relatively prime integers** *a* and \boldsymbol{m} : $a^{\Phi(m)} \equiv 1 \pmod{m}$
- **Example**: *m*=12, *a*=5
	- 1. Calculate Euler's Phi Function

$$
\Phi(12) = \Phi(2^2 \cdot 3) = (2^2 - 2^1)(3^1 - 3^0) = (4 - 2)(3 - 1) = 4
$$

2. Verify Euler's Theorem

$$
5^{\Phi(12)} = 5^4 = 25^2 = 625 \equiv 1 \mod 12
$$

• Fermat's little theorem = special case of Euler's Theorem

• for a prime **p**:
$$
\Phi(p) = (p^1 - p^0) = p - 1
$$

\n \Rightarrow Fermat: $a^{\Phi(p)} = a^{p-1} \equiv 1 \pmod{p}$

Lessons Learned

- Public-key algorithms have **capabilities that symmetric ciphers don't have**, in particular digital signature and key establishment functions.
- Public-key algorithms are **computationally intensive** (a nice way of saying that they are *slow*), and hence are poorly suited for bulk data encryption*.*
- Only **three families of public-key schemes** are widely used. This is considerably fewer than in the case of symmetric algorithms.
- The **extended Euclidean algorithm** allows us to compute **modular inverses** quickly, which is important for almost all public-key schemes.
- **Euler's phi function** gives us the number of elements smaller than an integer *n* that are relatively prime to *n.* This is important for the RSA crypto scheme.