
Understanding Cryptography – A Textbook for

Students and Practitioners
by Christof Paar and Jan Pelzl

www.crypto-textbook.com

Chapter 7 – The RSA Cryptosystem
ver. October 11, 2024

These slides were originally prepared by Benedikt Driessen, Christof Paar and Jan

Pelzl. Later, they were modified by Tomas Fabsic for purposes of teaching I-ZKRY

at FEI STU.

Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Homework

▪ Read Chapter 7.

▪ Solve problems from the exercise set no. 5 and submit them to AIS

by 28.10.2024 23:59.

2/27

3/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Some legal stuff (sorry): Terms of use

• The slides can used free of charge. All copyrights for the slides

remain with Christof Paar and Jan Pelzl.

• The title of the accompanying book “Understanding Cryptography”

by Springer and the author’s names must remain on each slide.

• If the slides are modified, appropriate credits to the book authors

and the book title must remain within the slides.

• It is not permitted to reproduce parts or all of the slides in printed

form whatsoever without written consent by the authors.

4 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• RSA in Practice: Padding

• Key Encapsulation

• Attacks and Countermeasures

• Lessons Learned

5 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• RSA in Practice: Padding

• Key Encapsulation

• Attacks and Countermeasures

• Lessons Learned

6 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

The RSA Cryptosystem

• Martin Hellman and Whitfield Diffie published their landmark public-

key paper in 1976

• Ronald Rivest, Adi Shamir and Leonard Adleman proposed the

asymmetric RSA cryptosystem in 1977

• RSA was the most used asymmetric cryptographic algorithm during

the 1980s and 1990s.

• RSA is still very popular in practice today

• RSA is mainly used for two applications

• Transport of symmetric keys

• Digital signatures (cf. Chptr 10 of Understanding Cryptography)

7 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Encryption and Decryption

• RSA operations are done over the integer ring Zn (i.e., arithmetic

modulo n), where n = p * q, with p, q being large primes

• Encryption and decryption are simply exponentiations in the ring

• In practice x, y, n and d are very long integer numbers (≥ 1024 bits)

• The security of the scheme relies on the fact that it is hard to derive

the „private exponent“ d given the public-key (n, e)

Definition

Given the public key (n,e) = kpub and the private key d = kpr we write

y = ekpub
(x) ≡ xe mod n

x = dkpr
(y) ≡ yd mod n

where x, y ε Zn.

We call ekpub
() the encryption and dkpr

() the decryption operation.

8 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Key Generation
• Like all asymmetric schemes, RSA has set-up phase during which

the private and public keys are computed

Remarks:

• Choosing two large, distinct primes p, q (in Step 1) is non-trivial

• gcd(e, Φ(n)) = 1 ensures that e has an inverse and, thus, that there

is always a private key d

Algorithm: RSA Key Generation

Output: public key: kpub = (n, e) and private key kpr = d

1. Choose two large primes p, q

2. Compute n = p * q

3. Compute Φ(n) = (p-1) * (q-1)

4. Select the public exponent e ε {1, 2, …, Φ(n)-1} such that

gcd(e, Φ(n)) = 1

5. Compute the private key d such that d * e ≡ 1 mod Φ(n)

6. RETURN kpub = (n, e), kpr = d

9 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Example: RSA with small numbers

ALICE

Message x = 4

y = xe ≡ 43 ≡ 31 mod 33

BOB

1. Choose p = 3 and q = 11

2. Compute n = p * q = 33

3. Φ(n) = (3-1) * (11-1) = 20

4. Choose e = 3

5. d ≡ e-1 ≡7 mod 20

yd = 317 ≡ 4 = x mod 33

Kpub = (33,3)

y = 31

10 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• RSA in Practice: Padding

• Key Encapsulation

• Attacks and Countermeasures

• Lessons Learned

11 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Implementation aspects

• The RSA cryptosystem uses only one arithmetic operation (modular

exponentiation) which makes it conceptually a simple asymmetric

scheme

• Even though conceptually simple, due to the use of very long

numbers, RSA is orders of magnitude slower than symmetric

schemes, e.g. AES

• When implementing RSA (esp. on a constrained device such as

smartcards) close attention has to be paid to the correct choice of

arithmetic algorithms

• The square-and-multiply algorithm allows fast exponentiation, even

with very long numbers…

12 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply

• Basic principle: Scan exponent bits from left to right and

square/multiply operand accordingly

• Rule: Square in every iteration (Step 3) and multiply current result

by x if the exponent bit hi = 1 (Step 5)

• Modulo reduction after each step keeps the operand y small

Algorithm: Square-and-Multiply for xH mod n

Input: Exponent H, base element x, Modulus n

Output: y = xH mod n

1. Determine binary representation H = (ht, ht-1, ..., h0)2

2. FOR i = t-1 TO 0

3. y = y2 mod n

4. IF hi = 1 THEN

5. y = y * x mod n

6. RETURN y

13 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Example: Square-and-Multiply

• Computes x26 without modulo reduction

• Binary representation of exponent: 26 =(1,1,0,1,0)2=(h4,h3,h2,h1,h0)2

• Observe how the exponent evolves into x26 = x11010

Step Binary exponent Op Comment

1 x = x1 (1)2 Initial setting, h4 processed

1a (x1)2 = x2 (10)2 SQ Processing h3

1b x2 * x = x3 (11)2 MUL h3 = 1

2a (x3)2 = x6 (110)2 SQ Processing h2

2b - (110)2 - h0 = 0

3a (x6)2 = x12 (1100)2 SQ Processing h1

3b x12 * x = x13 (1101)2 MUL h1=1

4a (x13)2 = x26 (11010)2 SQ Processing h0

4b - (11010)2 - h0 = 0

14 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Complexity of Square-and-Multiply Alg.

• The square-and-multiply algorithm has a logarithmic complexity, i.e.,

its run time is proportional to the bit length (rather than the absolute

value) of the exponent

• Given an exponent with t+1 bits

 H = (ht,ht-1, ..., h0)2

with ht = 1, we need the following operations

• # Squarings = t

• Average # multiplications = 0.5 t

• Total complexity: #SQ + #MUL = 1.5 t

• Exponents are often randomly chosen, so 1.5 t is a good estimate

for the average number of operations

• Note that each squaring and each multiplication is an operation with

very long numbers, e.g., 2048 bit integers.

15 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Speed-Up Techniques

• Modular exponentiation is computationally intensive

• Even with the square-and-multiply algorithm, RSA can be quite slow

on constrained devices such as smart cards

• Some important tricks:

• Short public exponent e

• Chinese Remainder Theorem (CRT)

16 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Fast encryption with small public exponent

• Choosing a small public exponent e does not weaken the security of

RSA

• A small public exponent improves the speed of the RSA encryption

significantly

• This is a commonly used trick (e.g. TLS) and makes RSA the fastest

asymmetric scheme with regard to encryption!

Public Key e as binary string #MUL + #SQ

21+1 = 3 (11)2 1 + 1 = 2

24+1 = 17 (1 0001)2 4 + 1 = 5

216 + 1 (1 0000 0000 0000 0001)2 16 + 1 = 17

17 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Fast decryption with CRT

• Choosing a small private key d results in security weaknesses!

• In fact, d must have at least 0.3t bits, where t is the bit

length of the modulus n

• However, the Chinese Remainder Theorem (CRT) can be used to

(somewhat) accelerate exponentiation with the private key d

• Based on the CRT we can replace the computation of

xd mod Φ(n) mod n

 by two computations

xd mod (p-1) mod p and xd mod (q-1) mod q

 where q and p are „small“ compared to n

18 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Basic principle of CRT-based exponentiation

• CRT involves three distinct steps

 (1) Transformation of operand into the CRT domain

 (2) Modular exponentiation in the CRT domain

 (3) Inverse transformation into the problem domain

• These steps are equivalent to one modular exponentiation in the

problem domain

x

xp

xq

Xp
d mod (p-1) mod p

Xq
d mod (q-1) mod q

xd mod n
Problem

Domain

CRT Domain

19 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

CRT: Step 1 – Transformation

• Transformation into the CRT domain requires the knowledge of p

and q

• p and q are only known to the owner of the private key, hence CRT

cannot be applied to speed up encryption

• The transformation computes (xp, xq) which is the representation of x

in the CRT domain. They can be found easily by computing

xp ≡ x mod p and xq ≡ x mod q

20 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

CRT: Step 2 – Exponentiation

• Given dp and dq such that

dp ≡ d mod (p-1) and dq ≡ d mod (q-1)

 one exponentiation in the problem domain requires two

exponentiations in the CRT domain

yp ≡ xp
dp mod p and yq ≡ xq

dq mod q

• In practice, p and q are chosen to have half the bit length of n, i.e.,

|p| ≈ |q| ≈ |n|/2

21 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

CRT: Step 3 – Inverse Transformation

• Inverse transformation requires modular inversion twice, which is

computationally expensive

cp ≡ q-1 mod p and cq ≡ p-1 mod q

• Inverse transformation assembles yp, yq to the final result y mod n in

the problem domain

y ≡ [q * cp] * yp + [p * cq] * yq mod n

• The primes p and q typically change infrequently, therefore the cost

of inversion can be neglected because the two expresssions

 [q * cp] and [p * cq]

can be precomputed and stored

22 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Complexity of CRT
• We ignore the transformation and inverse transformation steps since

their costs can be neglected under reasonable assumptions

• Assuming that n has t+1 bits, both p and q are about t/2 bits long

• The complexity is determined by the two exponentiations in the CRT

domain. The operands are only t/2 bits long. For the exponentiations

we use the square-and-multiply algorithm:

• # squarings (one exp.): #SQ = 0.5 t

• # aver. multiplications (one exp.): #MUL = 0.25t

• Total complexity: 2 * (#MUL + #SQ) = 1.5t

• This looks the same as regular exponentations, but since the

operands have half the bit length compared to regular exponent.,

each operation (i.e., multipl. and squaring) is 4 times faster!

• Hence CRT is 4 times faster than straightforward exponentiation

23 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• RSA in Practice: Padding

• Key Encapsulation

• Attacks and Countermeasures

• Lessons Learned

24 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Finding Large Primes

• Generating keys for RSA requires finding two large primes p and q

such that n = p * q is sufficiently large

• The size of p and q is typically half the size of the desired size of n

• To find primes, random integers are generated and tested for

primality:

• The random number generator (RNG) should be non-predictable

otherwise an attacker could guess the factorization of n

RNG Primality Test
p' „p‘ is prime“

OR

„p‘ is composite“

a

candidate

prime

25 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Primality Tests

• Factoring p and q to test for primality is typically not feasible

• However, we are not interested in the factorization, we only want to

know whether p and q are composite

• Typical primality tests are probabilistic, i.e., they are not 100%

accurate but their output is correct with very high probability

• A probabilistic test has two outputs:

• „p‘ is composite“ – always true

• „p‘ is a prime“ – only true with a certain probability

• Among the well-known primality tests are the following

• Fermat Primality-Test

• Miller-Rabin Primality-Test

26 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Fermat Primality-Test

• Basic idea: Fermat‘s Little Theorem holds for all primes, i.e., if a

number p‘ is found for which ap‘-1 ≡ 1 mod p‘, it is not a prime

• For certain numbers („Carmichael numbers“) this test returns „p‘ is

likely a prime“ often – although these numbers are composite

• Therefore, the Miller-Rabin Test is preferred

Algorithm: Fermat Primality-Test

Input: Prime candidate p‘, security parameter s

Output: „p‘ is composite“ or „p‘ is likely a prime“

1. FOR i = 1 TO s

2. choose random a ε {2,3, ..., p‘-2}

3. IF ap‘-1 ≡ 1 mod p’ THEN

4. RETURN „p‘ is composite“

5. RETURN „p‘ is likely a prime“

27 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• RSA in Practice: Padding

• Key Encapsulation

• Attacks and Countermeasures

• Lessons Learned

28 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

• RSA: Problematic properties

• The following properties of schoolbook RSA are problematic:

• RSA encryption is deterministic.

• Plaintext values x = 0, x = 1 or x = −1 produce ciphertexts equal

to 0, 1 or −1.

• Small public exponents e and small plaintexts x might be subject

to attacks if no padding or weak padding is used.

• RSA is malleable.

• A cryptographic scheme is said to be malleable if the attacker Oscar

is capable of transforming the ciphertext into a different ciphertext

that leads to a known transformation of the plaintext.

• Note that the attacker does not decrypt the ciphertext but is merely

capable of manipulating the plaintext in a predictable manner..

29 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Malleability of RSA

30 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

• OAEP Padding

• A possible solution to most of the problems that RSA has is the use

of padding, which embeds a random structure into the plaintext

before encryption.

• Modern techniques such as Optimal Asymmetric Encryption

Padding (OAEP) for padding RSA messages are specified and

standardized in Public-Key Cryptography Standard #1 (PKCS #1).

31 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

32 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

• OAEP Padding

• Some details of the OAEP scheme as specified in the PKCS #1

Standard have been omitted for clarity.

• It is strongly recommended that the reader refers to the document

before implementing OAEP.

33 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• RSA in Practice: Padding

• Key Encapsulation

• Attacks and Countermeasures

• Lessons Learned

34 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

• Key Encapsulation

• In practice a public-key encryption scheme is often used to

exchange a symmetric key between 2 parties.

• However, directly encrypting a symmetric key, e.g., a 128-bit key for

AES, requires padding of the key in order to serve as input for an

asymmetric encryption such as RSA-2048.

• Even though padding such as the OAEP scheme is possible, it is

often preferred in practice to use a simpler encryption technique

called key encapsulation mechanism (KEM) for the exchange of a

symmetric key.

35 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

• How a KEM works

• Alice performs the encapsulation operation of the KEM that

generates a random value which is directly encrypted using an

asymmetric encryption scheme.

• Bob, on the other side, receives the encrypted packet and uses the

decapsulation operation of the KEM to decrypt the random value

using his private key.

• Second, the random value is used by both Alice and Bob to derive

the symmetric key with the help of a key derivation function (KDF)

such as a cryptographic hash function.

36 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

37 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• RSA in Practice: Padding

• Key Encapsulation

• Attacks and Countermeasures

• Lessons Learned

38 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Attacks and Countermeasures 1/3

• There are two distinct types of attacks on cryptosystems

• Analytical attacks try to break the mathematical structure of the

underlying problem of RSA

• Implementation attacks try to attack a real-world

implementation by exploiting inherent weaknesses in the way

RSA is realized in software or hardware

39 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Attacks and Countermeasures 2/3

RSA is typically exposed to these analytical attack vectors

• Mathematical attacks

• The best known attack is factoring of n in order to obtain Φ(n)

• Can be prevented using a sufficiently large modulus n

• The current factoring record is 829 bits. Thus, it is recommended

that n should have a bit length between 2048 and 4096 bits

• Protocol attacks

• Exploit the malleability of RSA, i.e., the property that a ciphertext

can be transformed into another ciphertext which decrypts to a

related plaintext – without knowing the private key

• Can be prevented by proper padding

40 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Attacks and Countermeasures 3/3

• Implementation attacks can be one of the following

• Side-channel analysis

• Exploit physical leakage of RSA implementation (e.g.,

power consumption, EM emanation, etc.)

• Fault-injection attacks

• Inducing faults in the device while CRT is executed can

lead to a complete leakage of the private key

More on all attacks can be found in Section 7.9 of Understanding Cryptography

41 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• RSA in Practice: Padding

• Key Encapsulation

• Attacks and Countermeasures

• Lessons Learned

42 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Lessons Learned

• RSA is mainly used for key transport and digital signatures

• The public key e can be a short integer, the private key d needs to

have the full length of the modulus n

• RSA relies on the fact that it is hard to factorize n

• A naïve implementation of RSA allows several attacks, and in

practice RSA should be used together with padding

	Slide 1: Understanding Cryptography – A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl www.crypto-textbook.com Chapter 7 – The RSA Cryptosystem ver. October 11, 2024
	Slide 2: Homework
	Slide 3: Some legal stuff (sorry): Terms of use
	Slide 4: Content of this Chapter
	Slide 5: Content of this Chapter
	Slide 6: The RSA Cryptosystem
	Slide 7: Encryption and Decryption
	Slide 8: Key Generation
	Slide 9: Example: RSA with small numbers
	Slide 10: Content of this Chapter
	Slide 11: Implementation aspects
	Slide 12: Square-and-Multiply
	Slide 13: Example: Square-and-Multiply
	Slide 14: Complexity of Square-and-Multiply Alg.
	Slide 15: Speed-Up Techniques
	Slide 16: Fast encryption with small public exponent
	Slide 17: Fast decryption with CRT
	Slide 18: Basic principle of CRT-based exponentiation
	Slide 19: CRT: Step 1 – Transformation
	Slide 20: CRT: Step 2 – Exponentiation
	Slide 21: CRT: Step 3 – Inverse Transformation
	Slide 22: Complexity of CRT
	Slide 23: Content of this Chapter
	Slide 24: Finding Large Primes
	Slide 25: Primality Tests
	Slide 26: Fermat Primality-Test
	Slide 27: Content of this Chapter
	Slide 28: RSA: Problematic properties
	Slide 29: Malleability of RSA
	Slide 30: OAEP Padding
	Slide 31
	Slide 32: OAEP Padding
	Slide 33: Content of this Chapter
	Slide 34: Key Encapsulation
	Slide 35: How a KEM works
	Slide 36
	Slide 37: Content of this Chapter
	Slide 38: Attacks and Countermeasures 1/3
	Slide 39: Attacks and Countermeasures 2/3
	Slide 40: Attacks and Countermeasures 3/3
	Slide 41: Content of this Chapter
	Slide 42: Lessons Learned

