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Homework

▪ Read Chapter 7.

▪ Solve problems from the exercise set no. 5 and submit them to AIS 

by 28.10.2024 23:59. 
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Some legal stuff (sorry): Terms of use

• The slides can used free of charge. All copyrights for the slides 

remain with  Christof Paar and Jan Pelzl. 

• The title of the accompanying book “Understanding Cryptography” 

by Springer and the author’s names must remain on each slide.

• If the slides are modified, appropriate credits to the book authors 

and the book title must remain within the slides. 

• It is not permitted to reproduce parts or all of the slides in printed 

form whatsoever without written consent by the authors.
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Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• RSA in Practice: Padding

• Key Encapsulation

• Attacks and Countermeasures

• Lessons Learned
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The RSA Cryptosystem

• Martin Hellman and Whitfield Diffie published their landmark public-

key paper in 1976

• Ronald Rivest, Adi Shamir and Leonard Adleman proposed the 

asymmetric RSA cryptosystem  in 1977

• RSA was the most used asymmetric cryptographic algorithm during 

the 1980s and 1990s. 

• RSA is still very popular in practice today

• RSA is mainly used for two applications

• Transport of symmetric keys

• Digital signatures (cf. Chptr 10 of Understanding Cryptography)



7 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Encryption and Decryption

• RSA operations are done over the integer ring Zn (i.e., arithmetic 

modulo n), where n = p * q, with p, q being large primes

• Encryption and decryption are simply exponentiations in the ring

• In practice x, y, n and d are very long integer numbers (≥ 1024 bits)

• The security of the scheme relies on the fact that it is hard to derive 

the „private exponent“ d given the public-key (n, e)

Definition

Given the public key (n,e) = kpub and the private key d = kpr we write

y = ekpub
(x) ≡ xe mod n

x = dkpr
(y) ≡ yd mod n

where x, y ε Zn. 

We call ekpub
() the encryption and dkpr

() the decryption operation.
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Key Generation
• Like all asymmetric schemes, RSA has set-up phase during which 

the private and public keys are computed

Remarks:

• Choosing two large, distinct primes p, q (in Step 1) is non-trivial

• gcd(e, Φ(n)) = 1 ensures that e has an inverse and, thus, that there 

is always a private key d

Algorithm: RSA Key Generation

Output: public key: kpub = (n, e) and private key kpr = d

1. Choose two large primes p, q

2. Compute n = p * q

3. Compute Φ(n) = (p-1) * (q-1)

4. Select the public exponent e ε {1, 2, …, Φ(n)-1} such that

gcd(e, Φ(n) ) = 1

5. Compute the private key d such that d * e ≡ 1 mod Φ(n)

6. RETURN kpub = (n, e), kpr = d
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Example: RSA with small numbers

ALICE

Message x = 4

y = xe ≡ 43 ≡ 31 mod 33

BOB

1. Choose p = 3 and q = 11

2. Compute n = p * q = 33

3. Φ(n) = (3-1) * (11-1) = 20

4. Choose e = 3

5. d ≡ e-1 ≡7 mod 20

yd = 317 ≡ 4 = x mod 33

Kpub = (33,3)

y = 31
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Implementation aspects

• The RSA cryptosystem uses only one arithmetic operation (modular 

exponentiation) which makes it conceptually a simple asymmetric 

scheme

• Even though conceptually simple, due to the use of very long 

numbers, RSA is orders of magnitude slower than symmetric 

schemes, e.g. AES

• When implementing RSA (esp. on a constrained device such as 

smartcards) close attention has to be paid to the correct choice of 

arithmetic algorithms

• The square-and-multiply algorithm allows fast exponentiation, even 

with very long numbers…
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Square-and-Multiply

• Basic principle: Scan exponent bits from left to right and 

square/multiply operand accordingly

• Rule: Square in every iteration (Step 3) and multiply current result 

by x if the exponent bit hi = 1 (Step 5)

• Modulo reduction after each step keeps the operand y small

Algorithm: Square-and-Multiply for xH mod n 

Input: Exponent H, base element x, Modulus n

Output: y = xH mod n

1. Determine binary representation H = (ht, ht-1, ..., h0)2

2. FOR i = t-1 TO 0

3. y = y2 mod n

4. IF hi = 1 THEN

5. y = y * x mod n

6. RETURN y
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Example: Square-and-Multiply

• Computes x26 without modulo reduction

• Binary representation of exponent: 26 =(1,1,0,1,0)2=(h4,h3,h2,h1,h0)2

• Observe how the exponent evolves into x26  = x11010

Step Binary exponent Op Comment

1 x = x1 (1)2 Initial setting, h4 processed

1a (x1)2 = x2 (10)2 SQ Processing h3

1b x2 * x = x3 (11)2 MUL h3 = 1

2a (x3)2 = x6 (110)2 SQ Processing h2

2b - (110)2 - h0 = 0

3a (x6)2 = x12 (1100)2 SQ Processing h1

3b x12 * x = x13 (1101)2 MUL h1=1

4a (x13)2 = x26 (11010)2 SQ Processing h0

4b - (11010)2 - h0 = 0
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Complexity of Square-and-Multiply Alg.

• The square-and-multiply algorithm has a logarithmic complexity, i.e., 

its run time is proportional to the bit length (rather than the absolute 

value) of the exponent

• Given an exponent with t+1 bits

 H = (ht,ht-1, ..., h0)2 

with ht = 1, we need the following operations 

• # Squarings      = t

• Average # multiplications   = 0.5 t

• Total complexity: #SQ + #MUL = 1.5 t

• Exponents are often randomly chosen, so 1.5 t is a good estimate 

for the average number of operations

• Note that each squaring and each multiplication is an operation with 

very long numbers, e.g., 2048 bit integers.
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Speed-Up Techniques

• Modular exponentiation is computationally intensive

• Even with the square-and-multiply algorithm, RSA can be quite slow 

on constrained devices such as smart cards

• Some important tricks:

• Short public exponent e

• Chinese Remainder Theorem (CRT)
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Fast encryption with small public exponent

• Choosing a small public exponent e does not weaken the security of 

RSA

• A small public exponent improves the speed of the RSA encryption 

significantly

• This is a commonly used trick (e.g. TLS) and makes RSA the fastest 

asymmetric scheme with regard to encryption!

Public Key e as binary string #MUL + #SQ

21+1 = 3 (11)2 1 + 1 = 2

24+1 = 17 (1 0001)2 4 + 1 = 5

216 + 1 (1 0000 0000 0000 0001)2 16 + 1 = 17
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Fast decryption with CRT

• Choosing a small private key d results in security weaknesses! 

• In fact, d must have at least 0.3t bits, where t is the bit 

length of the modulus n

• However, the Chinese Remainder Theorem (CRT) can be used to 

(somewhat) accelerate exponentiation with the private key d

• Based on the CRT we can replace the computation of 

xd mod Φ(n) mod n 

 by two computations 

xd mod (p-1) mod p and xd mod (q-1) mod q 

 where q and p are „small“ compared to n
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Basic principle of CRT-based exponentiation

• CRT involves three distinct steps

 (1) Transformation of operand into the CRT domain

 (2) Modular exponentiation in the CRT domain

 (3) Inverse transformation into the problem domain

• These steps are equivalent to one modular exponentiation in the 

problem domain

x

xp

xq

Xp
d mod (p-1) mod p

Xq
d mod (q-1) mod q

xd mod n
Problem

Domain

CRT Domain
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CRT: Step 1 – Transformation

• Transformation into the CRT domain requires the knowledge of p 

and q

• p and q are only known to the owner of the private key, hence CRT 

cannot be applied to speed up encryption

• The transformation computes (xp, xq) which is the representation of x

in the CRT domain. They can be found easily by computing

xp ≡ x mod p and      xq ≡ x mod q
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CRT: Step 2 – Exponentiation

• Given dp and dq such that

dp ≡ d mod (p-1)      and dq ≡ d mod (q-1)

 one exponentiation in the problem domain requires two 

exponentiations in the CRT domain

yp ≡ xp
dp mod p      and yq ≡ xq

dq mod q

• In practice, p and q are chosen to have half the bit length of n, i.e., 

|p| ≈ |q| ≈ |n|/2
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CRT: Step 3 – Inverse Transformation

• Inverse transformation requires modular inversion twice, which is 

computationally expensive

cp ≡ q-1 mod p      and cq ≡ p-1 mod q

• Inverse transformation assembles yp, yq to the final result y mod n in 

the problem domain

y ≡ [ q * cp ] * yp + [ p * cq ] * yq mod n

• The primes p and q typically change infrequently, therefore the cost 

of inversion can be neglected because the two expresssions

  [ q * cp ]  and [ p * cq ] 

can be precomputed and stored
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Complexity of CRT
• We ignore the transformation and inverse transformation steps since 

their costs can be neglected under reasonable assumptions

• Assuming that n has t+1 bits, both p and q are about t/2 bits long

• The complexity is determined by the two exponentiations in the CRT 

domain. The operands are only t/2 bits long. For the exponentiations 

we use the square-and-multiply algorithm:

• # squarings (one exp.): #SQ = 0.5 t

• # aver. multiplications (one exp.): #MUL = 0.25t

• Total complexity: 2 * (#MUL + #SQ) = 1.5t

• This looks the same as regular exponentations, but since the 

operands have half the bit length compared to regular exponent., 

each operation (i.e., multipl. and squaring) is 4 times faster! 

• Hence CRT is 4 times faster than straightforward exponentiation
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Finding Large Primes

• Generating keys for RSA requires finding two large primes p and q 

such that n = p * q is sufficiently large

• The size of p and q is typically half the size of the desired size of n

• To find primes, random integers are generated and tested for 

primality:

• The random number generator (RNG) should be non-predictable 

otherwise an attacker could guess the factorization of n

RNG Primality Test
p' „p‘ is prime“

OR

„p‘ is composite“

a

candidate

prime
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Primality Tests

• Factoring p and q to test for primality is typically not feasible 

• However, we are not interested in the factorization, we only want to 

know whether p and q are composite

• Typical primality tests are probabilistic, i.e., they are not 100% 

accurate but their output is correct with very high probability

• A probabilistic test has two outputs:

• „p‘ is composite“ – always true 

• „p‘ is a prime“ – only true with a certain probability

• Among the well-known primality tests are the following

• Fermat Primality-Test

• Miller-Rabin Primality-Test
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Fermat Primality-Test

• Basic idea: Fermat‘s Little Theorem holds for all primes, i.e., if a 

number p‘ is found for which ap‘-1 ≡ 1 mod p‘, it is not a prime

• For certain numbers („Carmichael numbers“) this test returns „p‘ is 

likely a prime“ often – although these numbers are composite

• Therefore, the Miller-Rabin Test is preferred

Algorithm: Fermat Primality-Test

Input: Prime candidate p‘, security parameter s

Output: „p‘ is composite“ or „p‘ is likely a prime“

1. FOR i = 1 TO s

2. choose random a ε {2,3, ..., p‘-2}

3. IF ap‘-1  ≡ 1 mod p’ THEN

4. RETURN „p‘ is composite“

5. RETURN „p‘ is likely a prime“



27 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• RSA in Practice: Padding

• Key Encapsulation

• Attacks and Countermeasures

• Lessons Learned



28 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

• RSA: Problematic properties

• The following properties of schoolbook RSA are problematic:

• RSA encryption is deterministic.

• Plaintext values x = 0, x = 1 or x = −1 produce ciphertexts equal 

to 0, 1 or −1.

• Small public exponents e and small plaintexts x might be subject 

to attacks if no padding or weak padding is used. 

• RSA is malleable.

• A cryptographic scheme is said to be malleable if the attacker Oscar 

is capable of transforming the ciphertext into a different ciphertext 

that leads to a known transformation of the plaintext. 

• Note that the attacker does not decrypt the ciphertext but is merely 

capable of manipulating the plaintext in a predictable manner..
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• Malleability of RSA
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• OAEP Padding

• A possible solution to most of the problems that RSA has is the use 

of padding, which embeds a random structure into the plaintext 

before encryption. 

• Modern techniques such as Optimal Asymmetric Encryption 

Padding (OAEP) for padding RSA messages are specified and 

standardized in Public-Key Cryptography Standard #1 (PKCS #1).
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• OAEP Padding

• Some details of the OAEP scheme as specified in the PKCS #1 

Standard have been omitted for clarity. 

• It is strongly recommended that the reader refers to the document 

before implementing OAEP.
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• Key Encapsulation

• In practice a public-key encryption scheme is often used to 

exchange a symmetric key between 2 parties. 

• However, directly encrypting a symmetric key, e.g., a 128-bit key for 

AES, requires padding of the key in order to serve as input for an 

asymmetric encryption such as RSA-2048. 

• Even though padding such as the OAEP scheme is possible, it is 

often preferred in practice to use a simpler encryption technique 

called key encapsulation mechanism (KEM) for the exchange of a 

symmetric key. 
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• How a KEM works

• Alice performs the encapsulation operation of the KEM that 

generates a random value which is directly encrypted using an 

asymmetric encryption scheme. 

• Bob, on the other side, receives the encrypted packet and uses the 

decapsulation operation of the KEM to decrypt the random value 

using his private key.

• Second, the random value is used by both Alice and Bob to derive 

the symmetric key with the help of a key derivation function (KDF) 

such as a cryptographic hash function.
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Attacks and Countermeasures 1/3

• There are two distinct types of attacks on cryptosystems

• Analytical attacks try to break the mathematical structure of the 

underlying problem of RSA

• Implementation attacks try to attack a real-world 

implementation by exploiting inherent weaknesses in the way 

RSA is realized in software or hardware
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Attacks and Countermeasures 2/3

RSA is typically exposed to these analytical attack vectors

• Mathematical attacks

• The best known attack is factoring of n in order to obtain Φ(n) 

• Can be prevented using a sufficiently large modulus n

• The current factoring record is 829 bits. Thus, it is recommended 

that n should have a bit length between 2048 and 4096 bits

• Protocol attacks

• Exploit the malleability of RSA, i.e., the property that a ciphertext 

can be transformed into another ciphertext which decrypts to a 

related plaintext – without knowing the private key

• Can be prevented by proper padding
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Attacks and Countermeasures 3/3

• Implementation attacks can be one of the following

• Side-channel analysis

• Exploit physical leakage of RSA implementation (e.g., 

power consumption, EM emanation, etc.)

• Fault-injection attacks

• Inducing faults in the device while CRT is executed can 

lead to a complete leakage of the private key

More on all attacks can be found in Section 7.9 of Understanding Cryptography
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Lessons Learned

• RSA is mainly used for key transport and digital signatures

• The public key e can be a short integer, the private key d needs to 

have the full length of the modulus n

• RSA relies on the fact that it is hard to factorize n

• A naïve implementation of RSA allows several attacks, and in 

practice RSA should be used together with padding


	Slide 1:   Understanding Cryptography – A Textbook for Students and Practitioners by Christof Paar and Jan Pelzl  www.crypto-textbook.com   Chapter 7 – The RSA Cryptosystem ver. October 11, 2024 
	Slide 2: Homework
	Slide 3: Some legal stuff (sorry): Terms of use
	Slide 4: Content of this Chapter
	Slide 5: Content of this Chapter
	Slide 6: The RSA Cryptosystem
	Slide 7: Encryption and Decryption
	Slide 8: Key Generation
	Slide 9: Example: RSA with small numbers
	Slide 10: Content of this Chapter
	Slide 11: Implementation aspects
	Slide 12: Square-and-Multiply
	Slide 13: Example: Square-and-Multiply
	Slide 14: Complexity of Square-and-Multiply Alg.
	Slide 15: Speed-Up Techniques
	Slide 16: Fast encryption with small public exponent
	Slide 17: Fast decryption with CRT
	Slide 18: Basic principle of CRT-based exponentiation
	Slide 19: CRT: Step 1 – Transformation
	Slide 20: CRT: Step 2 – Exponentiation
	Slide 21: CRT: Step 3 – Inverse Transformation
	Slide 22: Complexity of CRT
	Slide 23: Content of this Chapter
	Slide 24: Finding Large Primes
	Slide 25: Primality Tests
	Slide 26: Fermat Primality-Test
	Slide 27: Content of this Chapter
	Slide 28: RSA: Problematic properties
	Slide 29: Malleability of RSA
	Slide 30: OAEP Padding
	Slide 31
	Slide 32: OAEP Padding
	Slide 33: Content of this Chapter
	Slide 34: Key Encapsulation
	Slide 35: How a KEM works
	Slide 36
	Slide 37: Content of this Chapter
	Slide 38: Attacks and Countermeasures 1/3
	Slide 39: Attacks and Countermeasures 2/3
	Slide 40: Attacks and Countermeasures 3/3
	Slide 41: Content of this Chapter
	Slide 42: Lessons Learned

