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Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Homework till 4.11.

▪ Read Sections 7.7. – 7.12. from Chapter 7. 

▪ Read Section 8.2 together with „Pomocný materiál o grupách“.

▪ Solve problems from the exercise set no. 6 and submit them to AIS 

by 4.11.2024 23:59.

▪ You do not need to read the rest of this presentation. We will cover 

the material in the presentation next week.
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Chapter 2 of Understanding Cryptography by Christof Paar and Jan Pelzl

Homework till 11.11.

▪ Read Chapter 8 (you can skip Section 8.3.3).

▪ Solve problems from the exercise set no. 7 and submit them to AIS 

by 11.11.2024 23:59.

3/27



▪ The slides can used free of charge. All copyrights for the slides remain with  

Christof Paar and Jan Pelzl. 

▪ The title of the accompanying book “Understanding Cryptography” by Springer 

and the author’s names must remain on each slide.

▪ If the slides are modified, appropriate credits to the book authors and the book 

title must remain within the slides. 

▪ It is not permitted to reproduce parts or all of the slides in printed form 

whatsoever without written consent by the authors.

 Some legal stuff (sorry): Terms of Use
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▪ The Discrete Logarithm Problem 

▪ Diffie–Hellman Key Exchange

▪ The Elgamal Encryption Scheme 

 Content of this Chapter
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Discrete Logarithm Problem (DLP) in Zp*

▪ Given is the finite cyclic group Zp* of order p−1 and a primitive element α ∈ Zp* 

and another element β ∈ Zp*. 

▪ The DLP is the problem of determining the integer 1 ≤ x ≤ p−1 such that

αx ≡ β mod p

▪ This computation is called the discrete logarithm problem (DLP)

x = logα β mod p 

▪ Example: Compute x  for 5x ≡ 41 mod 47

Remark: For the coverage of groups and cyclic groups, we refer to Chapter 8 of 

Understanding Cryptography

 The Discrete Logarithm Problem
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▪ Given is a finite cyclic group G with the group operation ◦ and cardinality n. 

▪ We consider a primitive element α ∈ G and another element β ∈ G. 

▪ The discrete logarithm problem is finding the integer x, where 1 ≤ x ≤ n, such 

that: 

β = α ◦ α ◦ α ◦. . .◦ α = αx

 The Generalized Discrete Logarithm Problem

x times
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The following discrete logarithm problems have been proposed for use in 

cryptography

1. The multiplicative group of the prime field Zp or a subgroup of it. For instance, 

the classical DHKE uses this group (cf. previous slides), but also Elgamal 

encryption or the Digital Signature Algorithm (DSA). 

2. The cyclic group formed by an elliptic curve (see Chapter 9)

3. The multiplicative group of a Galois field GF(2m) or a subgroup of it. Schemes 

such as the DHKE can be realized with them. 

4. Hyperelliptic curves or algebraic varieties, which can be viewed as 

generalization of elliptic curves. 

Remark: The groups 1. and 2. are most often used in practice.

 The Generalized Discrete Logarithm Problem
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▪ Security of many asymmetric primitives is based on the difficulty of computing

the DLP in cyclic groups, i.e.,

Compute x for a given α and β such that β = α ◦ α ◦ α ◦. . .◦ α = αx

▪ The following algorithms for computing discrete logarithms exist

• Generic algorithms: Work in any cyclic group

−Brute-Force Search

−Shanks‘ Baby-Step-Giant-Step Method

−Pollard‘s Rho Method

−Pohlig-Hellman Method

• Non-generic Algorithms: Work only in specific groups, in particular in Zp* 

−The Index Calculus Method

▪ Remark: Elliptic curves can only be attacked with generic algorithms which are

weaker than non-generic algorithms. Hence, elliptic curves are secure with

shorter key lengths than the DLP in prime fields Zp 

 Attacks against the Discrete Logarithm Problem
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 Attacks against the Discrete Logarithm Problem
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▪ In order to prevent attacks that compute the DLP, it is recommended to use

primes with a length of at least 2048 bits for schemes such as Diffie-Hellman in 

Zp*



▪ Proposed in 1976 by Whitfield Diffie and Martin Hellman

▪ Widely used (e.g. in TLS)

▪ The Diffie–Hellman Key Exchange (DHKE) is a key exchange protocol and not 

used for encryption

(For the purpose of encryption based on the DHKE, ElGamal can be used.)

 Diffie–Hellman Key Exchange: Overview
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Diffie–Hellman Key Exchange: Set-up

1. Choose a large prime p.

2. Choose a generator α ∈ Zp*. 

3. Publish p and α.
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Alice

Diffie–Hellman Key Exchange

Bob

Choose random private key

kprA=a ∈{2,…,p-2}

Choose random private key

kprB=b ∈ {2,…,p-2}

Compute corresponding public key

kpubA= A = αa mod p

Compute correspondig public key

kpubB= B = αb mod p

Compute common secret

kAB = Ba = (αa)b mod p

Compute common secret

kAB = Ab = (αb)a mod p

A

B

y
y = AESkAB(x) x = AES-1

kAB(y)

13/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

We can now use the joint key kAB

for encryption, e.g., with AES



Alice

Diffie–Hellman Key Exchange: Example

Bob

Choose random private key

kprA= a = 5

Choose random private key

kprB=b = 12

Compute corresponding public key

kpubA= A = 25 = 3 mod 29

Compute correspondig public key

kpubB= B = 212 = 7 mod 29

Compute common secret

kAB = Ba = 75 = 16 mod 29

Compute common secret

kAB = Ab = 312 = 16 mod 29

A

B

Domain parameters p=29, α=2
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Proof of correctness:

Alice computes: Ba = (αb)a mod p

Bob computes:  Ab = (αa)b mod p 

i.e., Alice and Bob compute the same key kAB ! 



▪ (a,A) and (b,B) are ephemeral key pairs (dočasné (efemérne) páry kľúčov)

▪ When Alice and Bob run DHKE again, they will generate new values of (a,A) 

and (b,B).

▪ This is different than in RSA where (d,(n,e)) is a long-term key-pair.

 Ephemeral keys in DHKE

15/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



▪ Which information does Oscar have?

• α, p

• A = αa mod p

• B = αb mod p

▪ Which information does Oscar want to have?

• kAB = αba = αab mod p

• This is known as Diffie-Hellman Problem (DHP)

 Security of the classical Diffie–Hellman Key Exchange 
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▪ The only known way to solve the DHP is to solve the DLP, i.e.

1.Compute a = logα A

2.Compute kAB = Ba = αba

▪ It is, however, possible that there exists another method for solving the DHP 

without computing the discrete logarithm. 

▪ It is conjectured that there is no easier method to solve the DHP than solving 

the DLP (i.e. DHP and DLP are conjectured to be equivalently hard).

 Diffie-Hellman Problem 
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▪ Proposed by Taher Elgamal in 1985

▪ Can be viewed as an extension of the DHKE protocol

▪ Based on the intractability of the discrete logarithm problem and the Diffie–

Hellman problem

 The Elgamal Encryption Scheme: Overview
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 The Elgamal Encryption Scheme: Principle

Alice Bob

choose d = kprB ∈ {2,…,p-2}

compute β = kpubB= αd mod p

choose i = kprA ∈ {2,…,p-2}

compute ephemeral key

kE = kpubA= αi mod p

compute kM = kE
d mod p

compute kM = βi mod p

encrypt message x ∈ Zp*:

y = x·kM mod p

kE

y

β

decrypt x = y·kM
-1 mod p
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This looks very similar to the DHKE! The actual Elgamal protocol re-orders 

the computations which helps to save one communication (cf. next slide)



 The Elgamal Encryption Protocol
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▪

 Long-term and ephemeral keys in Elgamal
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▪ Key Generation

• Generation of prime p of size of at least 2048 bits

• cf. Section 7.6 in Understanding Cryptography for prime-finding algorithms

▪ Encryption

• Encryption is probabilistic! (unlike in schoolbook RSA)

• The ciphertext has twice as many bits as plaintext (in RSA bit-lengths of plaintext 

and ciphertext are the same)

• Requires two modular exponentiations and a modular multiplication

• All operands have a bitlength of  log2p

• Efficient execution requires methods such as the square-and-multiply algorithm 

▪ Decryption

• Requires one modular exponentiation and one modular inversion

• As shown in Understanding Cryptography, the inversion can be computed from the 

ephemeral key

 Computational Aspects
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▪ Passive attacks

• Attacker eavesdrops p, α, β = αd , kE = αi, y = x· βi and wants to recover x

• Problem relies on the DHP

▪ Active attacks

• If  the public keys are not authentic, an attacker could send an incorrect 

public key (cf. Chapter 14)

• An Attack is also possible if the secret exponent i is being used more than 

once (cf. Understanding Cryptography for more details on the attack)

• Like RSA, schoolbook Elgamal is malleable. In practice, it is therefore used 

with padding.

 Security
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▪ The Diffie–Hellman protocol is a widely used method for key exchange. It is 

based on cyclic groups.

▪ The discrete logarithm problem is one of the most important one-way 

functions in modern asymmetric cryptography. Many public-key algorithms 

are based on it.

▪ For the Diffie–Hellman protocol in Zp*, the prime p should be at least 2048 

bits long. 

▪ The Elgamal scheme is an extension of the DHKE where the derived session 

key is used as a multiplicative masked to encrypt a message.

▪ Elgamal is a probabilistic encryption scheme, i.e., encrypting two identical 

messages does not yield two identical ciphertexts.

 Lessons Learned
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