
http://www.MadIrish.net 

Capture the Flag Exercise: 

Web Application to Root Via Insecure Configuration 

March 10, 2009 

by Justin C. Klein Keane <justin@MadIrish.net> 

Originally developed for: 

University of Pennsylvania, School of Arts and Sciences, Information Security and 

Unix Systems group 

 

About the Project 

The LAMPSecurity project is an effort to produce training and benchmarking tools  that can be used 

to educate information security professionals and test products.  These exercises can be used for 

training purposes by following this documentation. Alternatively you may wish to test new tools, 

using the CTF virtual machines as targets. This is especially helpful in evaluating the effectiveness of 

vulnerability discovery or penetration testing tools. 

 

Getting Started 

The contents of this exercise assume that you are using the LAMPSecurity VMware image. This is a 

CentOS based Linux virtual machine preloaded with many of the attack tools necessary to do a 

security evaluation or penetration test of a remote machine.  

You can download the testing image and the target image from 

https://sourceforge.net/projects/lampsecurity. 

 

The username and password for the image can be found in this documentation. However, the point 

of the exercise is to discover the root username and password, so they are not provided up front. If 

you must have the credentials to access the virtual image, please read the end of the documented 

compromise steps. 

 

This is the concept from  original document that can be found on 

https://sourceforge.net/projects/lampsecurity/files/CaptureTheFlag/CTF4/ctf4_instructions.pdf /dow

nload 

 

Challenges 

Once the target is up and running the first challenge is to determine the IP address of the target. The 

easiest way to do this is to look at your VMWare devices (VirtualBox) on your host computer. On a 

windows system you can do this by typing: 

https://sourceforge.net/projects/lampsecurity
https://sourceforge.net/projects/lampsecurity/files/CaptureTheFlag/CTF4/ctf4_instructions.pdf/download
https://sourceforge.net/projects/lampsecurity/files/CaptureTheFlag/CTF4/ctf4_instructions.pdf/download


C:\> ipconfig /all 

 

This should reveal the subnets for which VMWare is running. Typically, you're looking for the subnet 

of the Vmnet8 device. In the following screenshot you can see the subnet of the VMWare machine is 

likely on Vmnet8, or 192.168.229.0/24. We'll use this information to locate the target later on in the 

exercise.  

 

 

Next, you'll want to download and inflate the testing image. This is the image that contains all the 

discovery and penetration testing tools that you need to complete the exercise.  e discovery and 

penetration testing tools that you need to complete the exercise. Download the LAMPSec.zip file and 

inflate it, it contains one directory called LAMPSec.  

https://netix.dl.sourceforge.net/project/lampsecurity/AttackImage/LampSec/LAMPSec.zip 

The LAMPSec image has one user named 'lampsec'. The password for this user and the root user is 

'lampsec'. 

But you can also use other Linux image for penetration testing like Backtrack Linux, Kali Linux etc. 

(https://itsfoss.com/linux-hacking-penetration-testing/) 

 

Scanning with NMAP 
NMAP (the Network MAPper http://nmap.org) can be used to quickly scan large  

ranges of IP addresses. NMAP uses a number of techniques to discover ports that  

are open on remote machines. Open ports generally indicate available services  

that an attacker can interact with, so they are of particular interest to us. Firewall  

rules on the target may limit port access, however, so there may be services that  

are unavailable from the outside. NMAP will inspect the machine and let us know 

what services are available. 

NMAP can also analyze TCP/IP fingerprints of remote machines and determine  

operating systems and versions running on those machines. Different operating  

https://netix.dl.sourceforge.net/project/lampsecurity/AttackImage/LampSec/LAMPSec.zip
https://itsfoss.com/linux-hacking-penetration-testing/


systems implement networking in subtly different ways and NMAP uses this  

information to compare responses to a large database of known OS fingerprints.  
NMAP has a graphical interface, but the command line version is often preferable  

and is just as full featured. In order to open a command prompt, access the 

Terminal program under the Applications menu → System → Terminal, or using the  

quick launch icon in the tool bar at the top of the LAMPSec VMware image.  
The first thing we should do is run an NMAP scan against the entire target IP 

address range (192.168.229.2-192.168.229.254) and discover machines. We  

should also take note of our own machine in this range just so we don't attack the  

test bed. To do this type: 
$ /sbin/ifconfig eth0 

And note the IP address. For this example we'll assume it's 192.168.229.135.  

Next let's scan the entire subnet with NMAP. To do this we'll use the -F flag, for a 

fast scan and we'll specify all the machines on the subnet except for the gateway,  

broadcast, and our machine. Open a command prompt and run NMAP by typing: 

$ nmap -F 192.168.229.2-134 192.168.229.136-254 

This will perform a fast scan of the subnet omitting 192.168.229.1 (the gateway),  

192.168.229.255 (the broadcast) and 192.168.229.135 (the local testbed 

machine). 

The NMAP scan takes some time but it should find the target: 

 

The scan finds the target in just over a minute and a half. The scan also indicates 

that several well known services are running, notably: 

port 22 ssh – a secure shell, used for remote access 



port 35 smtp – simple mail transport protocol, used for sending and receiving email 

port 80 http – hyper text transport protocol, used for serving web pages 

 

Now that we've found the target machine, let's try and do some discovery. This  

involves doing a targeted scan and grabbing information we can use to identify  

versions of services and the operating system (OS). We can use NMAP to do this,  
or we can do banner grabs manually. In this exercise we'll try both methods. In  

order to do OS detection we have to listen to packet responses from the target  

machine, an operation which requires root permissions. Let's first become root.  

In your terminal window type: 
$ su 

 

Enter the password and notice that the prompt character changes from a '$'  

symbol to a '#' symbol, indicated that you are now operating as the root user.  
Next try NMAP using the command: 

# nmap -sV -O -PN 192.168.229.134 

the -sV flags will do service version detection, the -O flag will do operating system 

fingerprinting, and the -PN flag tells NMAP to skip ICMP pinging the host before  

scanning (since we already know the host is up). ICMP pings are used by NMAP to  

determine if IP addresses are used, but many devices block ICMP traffic, so it is  

worthwhile to use this operation if you suspect a machine may occupy an address  

space, but isn't responding to NMAP. 
NMAP may take some time to perform this operation, you may want to skip ahead  

to the next section “Manual Banner Grabbing” before coming back to view the  

results You can open a new tab in the console window with Shift+Ctrl+T (or under  

the File menu) . 

Once NMAP completes the operating system and version detection, a process that  

may take 15 minutes, it will present results in a formatted output. Be sure to read  

all of the output to get a better sense of how NMAP came to it's reported  

conclusions. 

NMAP operating system and version detection output: 

 



 

 

You'll notice that the MAC address of the target is clearly identified as VMWare. 

MAC addresses are configurable, and you can easily change this value in VMWare  

to make the target look more realistic. 
You can also see that NMAP has determined that the target is running Linux, likely  

with a 2.6 version kernel. NMAP also discovered that OpenSSH 4.3 is running on  

port 22, Sendmail 8.13.5 is running on port 25, and Apache 2.2.0 is running on  

port 80. Apache was also able to determine that Apache is reporting that it is  

running on the Fedora Linux distribution. 

Note that NMAP shows port 631 is in a closed state. This is an artifice of the  

Vmware image, and should be ignored for the purposes of this exercise. 

 

Step 2 – Discovery 

Determine the versions of services and operating system running on the target. 

 

Manual Banner Grabbing 
We can go through and perform “banner grabbing” manually using utility  

programs like telnet. To do this we simply telnet to the open port and see how the  

service responds. Based on our NMAP scan we know that ports 22, 25, and 80 are  

open. Let's start with port 22. Telnet to this port using: 

$ telnet 192.168.229.134 22 

 



 

 

 

You'll notice that the service responds with the type of service it is, along with the  

version (OpenSSH 4.3). You want to take note of this type of information because  

it can provide clues about the machine and could also indicate possible  

vulnerabilities. Sometimes it is useful to Google the service name and number  

plus the word “vulnerability” to see if there are known issues with the service.  

We can continue this exercise, looking at port 25 and port 80. Port 25 should  

reveal that the host is running Sendmail version 8.13.5. You'll notice something 

odd when you telnet to port 80 though, the server won't respond right away. Try  

typing in “GET index.htm” and see what happens: 

 

 

You can see that the server doesn't respond in an expected manner, but it does  

reveal the service and version running (Apache 2.2.0) as well as the hostname  

(ctf4.sas.upenn.edu) and the operating system (Fedora) which is a lot of  

information! 

 



Step 3 – Verify 
Verify version information using alternative tools. 

Scanning using HTTPrint 
We suspect that we're dealing with an Apache server, but let's go ahead and  

verify this information using HTTPrint or another tool. 

 

Step 4 – Vulnerability scan 
Run a comprehensive vulnerability scan of the target using installed tools on pentest 

Linux distribution, but now it’s not necessary step! 

 

Manual Discovery 
Although tools like Nessus and Nikto are great for identifying potential 

vulnerabilities, manually browsing a web application is one of the best ways to  

identify problems. One issue with manually surfing around a target, however, is  

that information isn't really captured in any systematic way. In order to facilitate 

better retention of data, as well as providing a platform to revisit web requests  

and potentially tamper with them, attackers often use a local proxy to intercept  

requests to a target.  

In this part of the attack we'll use Paros, which is a Java based proxy program that has a 

lot of functionality. But you can use other proxy located on your pentest distribution. 

 

If you browse to the target website 'http://192.168.229.134' you'll notice that Paros or 

other proxy records the call, including the request from the browser and the response: 



 

 

Take some time to browse around the target website. Be sure to check into the  

interesting sites found during scanning. A good place to start looking for  

vulnerable targets is the robots.txt file. Robots.txt is a standard file that directs  

the activity of web spiders. Webmasters often place the locations of sensitive  

applications or directories into the robots.txt file to keep them out of search  

engine caches, but this provides a roadmap for attackers to juicy targets. 

 

Looking at the robots.txt for the target at http://192.168.229.134/robots.txt we 

see it lists: 

Disallow: /mail/ 

Disallow: /restricted/ 

Disallow: /conf/ 

Disallow: /sql/ 

Disallow: /admin/ 

It's worth our time to browse to these directories to see what they contain. Take a  

moment to browse to each of these URL's and take note of what is installed there.  

Can you determine if there is an open source software package installed at that 

location? Which directories appear to be password protected. Do you notice any  

directories that provide listings of their contents (or indexes)? All of this is useful  

information to an attacker, who can use this intelligence to plot an attack path or  

find weaknesses in web applications. 



Step 6 – Gain admin site access 
Gain access to the /admin portion of the site. Post a new blog posting. 

 

SQL Injection 
We've easily identified the existence of an administrative portion of the target at  

http://192.168.229.134/admin. The login form is clearly meant to keep intruders  

out. Let's try and log into the form using a classic attack technique that leverages  

SQL injection. SQL injection is an attempt to mangle SQL queries written by a  

developer by injecting new code. An example of this would be if a developer  

wrote the following code: 

 

<?php 

$sql = “select * from users where username='$username' and  

pass='$password'”; 

$results = mysql_query($sql); 

?> 

 

The developer clearly intends for PHP to parse the SQL statement so it looks  

something like: 

 

select * from users where username='name' and pass='password'; 

 
However, if an attacker can take control of the value of the variable $username 

and $password variables and cause them to contain the value: 

 

' or 1='1 

 
Then as that value is inserted into the above SQL statement, the resulting query  

becomes: 

 
select * from users where username='' or 1='1' and pass='' or 1='1' 

 

This SQL statement is open ended enough that it will always return true, and  

depending on how the developer has coded the rest of the PHP login function  

might allow the attacker to log in as the administrative user. Let's go ahead and  

try this route on the admin login page. Enter: 

' or 1='1 

into both the username and password fields: 



 

You'll notice that this doesn't work, and we get a “Login failed!” message. This is  

a great failure message, as it doesn't indicate if we got the username wrong, the  

password wrong, or the query resulted in an error. 

Not to be discouraged though, let's take a look at the source of this page. In  

Firefox you can press Ctrl+U or use the menus under View → Page Source. If you  

look at the source you'll see that there's a piece of JavaScript in the form that is 

changing the values we're inserting before submitting them. It looks like this  

script is replacing any character that isn't a letter or a number. This is stripping  

the spaces and single quotes out of our values, and defeating our attack. Many 

developers will use this type of client side validation to limit inputs attackers can  

pass. 

 

 

 

Fortunately for use, we can bypass this script entirely! If you look back at Paros  or your 

used proxy and you can see our form submission, which has clearly been altered. In the 

Paros window take note of the values in our POST request. Look in the pane to the  

lower right of Paros to see these values. You'll notice that they don't include any  

characters other than alphanumeric ones (no single quotes or spaces). This is a  

result of the JavaScript filtering our input. 

 

Note the values in Paros: 

 



 

 

The values that were submitted via POST were 'username=or11&password=or11'  

which is clearly not what we intended. Let's use Paros to sidestep this annoying  

JavaScript. Expand the bottom window by dragging the divider up. You can barely  

see the contents of this pane above the 'History', 'Spider', 'Alerts', and 'Output' 

tabs in the screen shot above. Once this bottom pane is expanded in Paros we  

can see all our GET and POST requests. 

 

Once you can view these requests select the POST request at the end of the list,  

right click on it, and select 'Resend': 



 

This will open up a new window. 

 

In the resulting 'Resend' window let's go ahead and change the values of our  

POST to the ones we intended, then click the 'Send' button. 

 



 

 

You'll notice if you glance down the HTML in the 'Response' tab that we got the 

same error. Looks like we can't log in using this tactic. 

 

Coaxing Out Error Messages 
One common technique used for attacking dynamic websites is deliberately  

inducing errors to view error statements. Error statements often contain a wealth 

of information that is helpful to developers, and malicious attackers, but usually is  

meaningless to ordinary users. Let's try resubmitting the form using:  

' test 

as the username and no password. You'll need Tamper Data to do this as the  

JavaScript will replace the single quote value otherwise. Passing this value in we  

get a handy error message: 

 

 

 



This error message enumerates the SQL statement being used, including the table  

and columns we're dealing with. Now we can see why our previous requests were 

failing. Given the values we were passing in, the resulting SQL statement must  

have been: 

 

select user_id from user where user_name = '' or 1='1'  

AND user_pass = md5('' or 1='1') 

 

The error message also shows that passwords seem to be stored in an md5  

format. In order to bypass the SQL check we need to mangle the query so it looks  

like: 

 

select user_id from user where user_name = '' or 1='1'  

AND user_pass = md5('') or 1=1 #') 

 

The '#” symbol indicate a comment in MySQL and that part of the statement will 

be ignored. In order to accomplish this we need to use the username: 

 
' or 1='1 

 

and the password: 

 
') or 1=1 # 

 

Go ahead and user Tamper Data to submit these values and you'll see that you've  

bypassed the authentication! 

 

 

You can go ahead and post a fake blog post using the 'Post blog' link just to verify!  

Another interesting thing to note is how the authentication is accomplished. If  

you look at the cookies that are set in your browser after a successful login using  

the Web Developer plugin you'll notice something interesting. If you select the  



'Cookies' menu bar then 'View Cookie Information' you'll see that the 

authentication set two cookie values. One is the 'logged_in' cookie, which seems  

to be set to some sort of timestamp. The other is the 'user_id' cookie. We can  

manipulate this cookie value by clicking the 'Edit Cookie' link. 

 

 

Try posting a blog, then setting the cookie to another value and posting another  

blog. Notice how your user_id changes the value of the poster's name on the blog  

page at http://192.168.229.134/index.html?page=blog&title=Blog 

 

Step 7 – Find XSS 
Find any one of the number of Cross Site Scripting (XSS) vulnerabilities in the site.  

 

Cross site scripting vulnerabilities are unfortunately fairly ubiquitous across the  

internet. These vulnerabilities allow attackers to manipulate page displays. By  

themselves they're fairly harmless, but if an attacker can trick a victim into  

visiting a page with crafted output they can redirect the user or expose them to  

other attack vectors. If an attacker can find a URL that can be used to display  

malicious content then they can send that URL to site users, who will trust it, and  

attack them. Looking at the URL's for the target site we see a common theme  

which may indicate XSS vulnerabilities: 

http://192.168.229.134/index.html?title=Home Page  

http://192.168.229.134 /index.html?page=blog&title=Blog  

http://192.168.229.134 /index.html?page=research&title=Research  

http://192.168.229.134 /index.html?page=contact&title=Contact 

Let's try changing the “title” variable in the URL. Notice what happens when you  

browse to the website: 

http://192.168.229.134 /index.html?title=Hello World!!!  

You'll notice a subtle change in the display, the title of the page actually contains  

http://192.168.229.134/index.html?page=blog&title=Blog


your text. If you view the page source you'll see that your title has been injected  

into the display. 

 

 

 

While this seems innocuous, try entering the URL: 

 

http://192.168.229.134 /? 

title=</title><script>location.href='http://www.google.com';</script>  

 

You'll see that the user is redirected! This could be used to set up a phishing 

scam site. Especially if the attacker URL encodes the “title” so that it's more  

difficult to pick out the actual value. Since the attacker can use JavaScript they  

could even use any number of JavaScript encoding functions. 

 

Step 8 – File include vulnerability 
Find the file include vulnerability in the site. 

 

File inclusion vulnerabilities are problems in web applications where attackers can  

cause unintended pages to be displayed through a web application. File inclusion  

is a time saving method whereby developers can reuse content. For instance,  
developers often write a “header” snippit and include it on every single page.  

This cuts down on retyping and allows changes to be made in one place and affect  

the site universally. Spotting file inclusion is difficult from the outside, but  

attackers can look for some common clues. Reviewing the web application at 

http://192.168.229.134 you'll notice some common conventions in the URL's  

presented in the top navigation bar, which are: 

http://192.168.229.134 /index.html?title=Home Page  

http://192.168.229.134 /index.html?page=blog&title=Blog  

http://192.168.229.134 /index.html?page=research&title=Research  

http://192.168.229.134 /index.html?page=contact&title=Contact 

it looks as though pages might be included based on the “page” directive. Let's  

poke around and see if we can figure out where they might be included.  

One good tool for enumerating remote web application is OWASP's DirBuster,  
which brute forces URL's. Go ahead and start DirBuster from Applications →  

Attack → DirBuster. Type in the URL http://192.168. 229.134 and click the 'Browse' 
button and select /home/lampsec/bin/DirBuster-0.12/directory-list-2.3-medium.txt. 



 

 

 

Once DirBuster is set up click the 'Start' button and let it run. You'll notice  

DirBuster finds quite a few interesting hits. DirBuster will also list response codes 

for pages it finds. Note that 302 are redirects and 500 are generally server errors  

or access denied messages. Scrolling through the list you'll see that DirBuster  

identifies '/inc/header.php' as a valid file. Let's go ahead and browse to the 

following URL: 
http://192.168.229.134 /inc 

You'll notice that directory listing is turned on! You'll also notice that once  

DirBuster finishes running it finds the directory 'pages'. Browsing to this directory:  

http://192.168.229.134 /pages/ 

reveals a directory listing that seems to correspond to the URL's we first  

discovered: 

 



 

Let's put these two pieces of information together and see if we can arbitrarily  

include the header twice. Let's assume that the PHP is looking in the /pages 

directory for a certain page, but we want to include the header file in the /inc  

directory. Try the following URL: 

 

http://192.168.229.134 /?page=../inc/header 

 

 

You'll notice the header gets included twice! It looks like there is a file include  

vulnerability in the site. We'll use this vulnerability to expose sensitive data in the  

next step. 

 



Step 9 – Crack account passwords 
Find the .htpasswd file in the /restricted directory and crack the passwords. Use  

one of the cracked passwords to log into the target machine. 

 

Exposing and Cracking Apache Passwords 
Apache has a nice way to protect directories by requiring a username and a  

password to be used to access them. Unfortunately, the password hashing  

Apache uses isn't very strong and if we can get a hold of the .htpasswd file we  

might be able to crack one of the passwords. Guessing passwords, or brute  

forcing, usually takes one of two forms. We can try a password guessing attack 

against an authentication service on the remote machine (like SSH) or, if we can  

grab password hashes, we can try to crack them on our local machine. The  

second method is preferable because it is faster and stealthier. In order to gain 

an Apache password hash out of the .htpasswd file we can't download it directly.  
If you try to access the file at: 

 

http://192.168.229.134 /restricted/.htpasswd 

 
You'll get an access denied (forbidden) error. However, if we use the file include 

vulnerability we discovered before we can insert this file into the page output and  

view it. Let's first try: 

 
http://192.168.229.134 /?page=../restricted/.htpasswd 

 

You'll notice nothing seems to happen. The reason for this is that PHP developers 

will commonly try to defeat this attack by forcing only PHP pages to be included.  

They do this using code of the form: 

 

<?php 

$page = $_GET['page']; 

include($page . “.php”); 

?> 

 

So when we request the .htpasswd, what PHP is actually trying to include is 

.htpasswd.php, which doesn't exist. 

 

Fortunately for us, PHP is written in C, and C demarcates strings using the null  

byte. This means that if we append a null byte to the end of our URL request  

(%00 in ASCII URL encoding) the include statement will terminate the filename at 

our null byte, failing to append the “.php” file extension. Try the following URL:  



http://192.168.229.134 /?page=../restricted/.htpasswd%00  

which reveals the contents of the .htpasswd: 

 

 

 

If you view the source of this page the contents will be more nicely formatted. 

 

Now that we have the contents of the .htpasswd file it's time to crack them. Copy  

the usernames and passwords into a text file using the notepad icon in the  

application bar at the top of the LAMPSec image. Copy the included .htpasswd 

accounts and passwords into gedit and save the file as htpasswd (no preceding  

period) in /home/lampsec/bin/john-1.7.0.2/run. 

 



 

 

Now that we have the hashes locally, let's run John the Ripper, a password  

cracking program on them. John the Ripper is extremely fast, but it's power is  

largely limited by the word list you provide it. You could download a much better  

wordlist than the one provided on the LAMPSec image, but the DirBuster wordlists  

will work fine for our purposes. To run John the Ripper first change into the correct  

directory then fire it up like so: 

 

$ cd ~/bin/john-1.7.0.1/run 

$ ./john –wordlist=../../DirBuster-0.12/directory-list-2.3-small.txt 

htpasswd 

 

John should run through this list extremely fast and guess at least one password:  

 



 

 

Now that we've got a password let's try and log in to see if the password actually 

works. Let's try and log into the target using: 

$ ssh sorzek@192.168.229.134 

When prompted for a password enter our cracked password 'pacman' and you  

should get a command prompt that looks like: 

 

[sorzek@ctf4 ~]$ 

 

Indicating that you've successfully logged into the remote host! It seems that 

Sally Orzek is using the same password for her .htaccess account and her actual  

machine account. Go ahead and confirm your new identity using the 'whoami'  

command: 

 
[sorzek@ctf4 ~]$ whoami 

 

You may also want to see where you are on the target by printing the current  

working direcotry: 

 
[sorzek@ctf4 ~]$ pwd 

 

Step 10 – Steal the SSH private key 
Log into and explore the system. Steal an SSH private key and log in as another  

user with higher privileges (like an admin). 

 

Now that you've got a local system account there are quite a few more avenues to  

exploit the system. It is possible that there are programs or systems installed on 

the machine that are vulnerable to local compromises that haven't been patched.  

Many systems consider local vulnerabilities to be less of a threat since attackers  

must first have a local account to exploit them. However, as we're beginning to 

see, any one weakness might be used to exploit another weakness and so on.  

Let's begin poking around the target system to see what we can find. We might  

fist want to look through the command history for this account. BASH, the  

command line we're using, saves a history so you can use the up arrow to repeat  



previously issued commands. These commands are saved in .bash_history. We  

can view this file using: 
$ cat ~/.bash_history 

We might also want to see if anyone else is logged into the machine. Attackers 

will commonly do this to see if an administrator is logged in who might notice  

unusual activity. You can check who all is logged in using the 'w' command like  

so: 

$ w 

Assuming the coast is clear let's see what other users are on the system. There 

are two quick ways we might do this, one is to list the /home directory, the other  

is to view the password file. You can do either one using: 

$ ls /home 

or 

$ cat /etc/passwd 

We may want to read any mail for the sorzek account. We could do this lo gging 

into the webmail interface at http://192.168.0.6/mail, or by perusing her mail 

spool using: 

$ less /var/spool/mail/sorzek 

You can quit less by pressing 'Esc' then ':q', that is the colon character, then q,  

and pressing enter. 

Let's poke around the /home directory for a moment. First list the contents of the  

directory: 

 

$ ls /home 

Now let's see if we can poke into any of the other users' home directories.  
Looking at the /etc/group file, which lists all the groups on the system, with:  

$ cat /etc/group 

$ ls /home 

Now let's see if we can poke into any of the other users' home directories.  

Looking at the /etc/group file, which lists all the groups on the system, with:  

$ cat /etc/group 

 

Copy and paste that data out of your command window and into a gedit text file  

like we did before with the .htpasswd contents. The file should look something 

like: 

PuTTY-User-Key-File-2: ssh-rsa 

Encryption: none 

Comment: rsa-key-20090309 

Public-Lines: 4 

AAAAB3NzaC1yc2EAAAABJQAAAIB9HrXHbV0tQkPRiM2zG8/1tIgCD2gA3GwsjopS  

N+k9OVHLe7OW6+ZRLXNHVP1FJ6BBVcZDV+CxpgAQj8lsIhiyskjbNzs85k7+8aVb  

/JTq8KBnikbXLY2YgPVkkgZ1U9zPKzabSCjARrAxDOx1XEFfZ69T2ZyHP1MwfXGi 
MTJgxQ== 



Private-Lines: 8 

AAAAgDzegfJQ4Ticxwv9XSazlZogeYR2MpiilX11xsA24CufWDl6cwsmp2XDFXyl 

4v8MW8zB8b/lj+e4imjsAR/ZPHHlGRyGDyUSrJTusp1arl9UNzZgWnOz2kzvyTMP  

R5DazAply2MYcvccGrhx7AXbjOsJZRcyh3gDnF0fu718jdTlAAAAQQD1JRPJe/MR 

xOSX3D1ZdMUaSwsIopexRcG5GGZX9LNPMs1eyrEigmIkNQ6viwBI766ase/+79Xw 

8seUasmkEkCDAAAAQQCCqQzL9X2f7nZvIRQTZGHiHMIQ6lGnBxwwTaN+N4oKBpcX  

nyysSEW+C1Hk/EyXIc2rdLQrsqxjZhtEPdMNGQcXAAAAQQD0btOMDZFaO3DyWzIX 

e7KATkMX3ISCajhE+kypXijoFmNOmJqLd956co6kDjFchCnUpMfWqWXP/pcj0/A5 

y8vH 

Private-MAC: 0b95165eb462c2f0857f1defa082eb5979d9ea69 

 

Unfortunately this key is in the format of a PuTTY private key. PuTTY is a Windows  

based GUI used for SSH and SFTP. Because this private key is designed for PuTTY  

we can't use it natively on our Linux LAMPSec machine. We'll have to convert the  

key to the Linux format before we can try using it. In order to format this key we  

need to use the Windows based PuTTY Key Generation tool. 

Fortunately the LAMPSec image has WINE, a Windows emulator installed on it. We 

can use WINE to install and run Windows programs on our Linux based LAMPSec  

machine. This is especially handy if we want to run security programs that are  

only available on Windows. 
 

We'll need to install PuTTY in order to convert the key to  a Linux format so we can 

use it. In order to install the program, we'll first need to download it using the  

wget command like so: 

 

$ wget http://the.earth.li/~sgtatham/putty/latest/x86/putty-0.60- 

installer.exe 

 

Once the program downloads run the installer using: 
$ wine putty-0.60-installer.exe 

Once installed you can use PuTTY. Let's use the PuTTY Key Generator to get the  

Linux format for Andrew Chen's private key. Open up PuTTY from the Applications  

menu → Wine → Programs → PuTTY → PuTTYgen. Once the program is open click 

the 'Load' button and load up Andrew Chen's private key from the filesystem: 

 



 

 

Next, click the 'Conversions' menu → Export OpenSSH key. Save the exported key  

as achen_priv.key in /home/lampsec . Next we have to change the permissions on  

the key: 

 
$ chmod 0700 /home/lampsec/achen_priv.key 

 

And finally we can try to log into the target site as achen: 

 

$ ssh -i /home/lampsec/achen_priv.key achen@192.168.229.134 

 

You'll notice that no password is required! This key pair was generated with a  

blank passphrase, and especially dangerous configuration from a security  

perspective. Now you're logged in as Andrew Chen, one of the machine  

administrators! 

 

mailto:achen@192.168.229.134


 

 

Let's see if Andrew Chen has any greater privileges than the last account we  

compromised. Try the following command, which uses the sudo command to  

carry out a command as root with the 'su', or switch user command, which when  

issued without a username argument means “switch to the root account”: 

 

$ sudo su 

 
Notice your command prompt changed to a pound symbol, that indicates that 

you're root! This is a result of a listing in the sudoers file that indicates that the  

achen account doesn't need to enter a password to issue co mmands as root. This 

is often utilized as a convenience, but obviously is a fairly big security risk. You  

can verify that you're actually the root user with the 'whoami' command: 

 

# whoami 

 

You could also grab the root password by viewing Andrew Chen's .bash history file 

using: 

 

$ cat /home/achen/.bash_history 

 
You'll see the root password listed in amongst the other commands. This sort of  

thing is sadly fairly common when admins type fast and don't verify commands  

they're issuing. 

 

 

Other Unscripted Attack Vectors: 
1. Enumerate the users on the system using the EXPN and VRFY commands  

via telnetting to port 25 

2. Get the MySQL root password from the file in the /conf directory  



3. Log into MySQL from a local user account, view the users table, dump it and  

try cracking the passwords using MD5 rainbow tables  

(http://lampsecurity.org/node/17). 

4. Uncover the user passwords via SQL injection using SQLmap (installed in  

/usr/bin/sqlmap) 

5. Upload the c99 shell to the target website  

6. The older 2.6.15 Linux kernel may be vulnerable to any number or local root  

exploits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 



 

 


