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Chapter 1

List of symbols

Z the ring of integers

N the set of integers f1; 2; 3; : : :g

Z

m

the ring of integers redu
ed modulo m

Z

n

m

the n-dimensional ve
tor spa
e over Z

m

GF (q) the �nite �eld of order q

GF (q)[X℄ the algebra of polynomials over GF (q)

(in indeterminate X)

H Shannon's entropy

I(X; Y ) the amount of mutual information between X and Y

g
d greatest 
ommon divisor

l
m least 
ommon multiple

LSB(X) the least signi�
ant bit of a binary representation of X

PRBG Pseudo-Random Bit Generator

LFSR Linear Feedba
k Shift Register

FCSR Feedba
k with Carry Shift Register

NSG Natural Sequen
e Generator
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Chapter 2

Introdu
tion

2.1 Motivation

Cryptography is nowadays an inseparable part of a large number

of business pro
esses and our everyday a
tivities although in many


ases we have no idea about it. Internet, bank transfers, mobile

phones are 
ommon examples of the usage of 
ryptography.

The main goals of 
ryptography are to a
hieve priva
y, data in-

tegrity, authenti
ity, and non-repudiation [54℄.

In this dissertation we will deal with some aspe
ts of

� stream 
iphers � en
ryption algorithms, used to ensure priva
y,

and

� hash fun
tions � algorithms used to ensure data integrity.

A signi�
ant milestone in the area of stream 
iphers was the year

1917 when G.Vernam invented his one-time pad. It was the �rst un-


onditionally se
ure 
ipher (a

ording to the Shannon's de�nition)

against the 
iphertext-only atta
k. Stream 
iphers are popular due

to their high en
ryption/de
ryption speed. Their simple and 
heap

hardware design is often preferred in real-world appli
ations. Prob-

ably the most widely used appli
ation of stream 
iphers are mobile

phones (GSM, UMTS).

Espe
ially after the publi
ation of the �nal report of the proje
t

NESSIE [68℄ one 
an get the feeling that stream 
iphers are less

se
ure than blo
k 
iphers sin
e no stream 
ipher was re
ommended

from the proje
t proposals. That is probably not true but the design

of blo
k 
iphers seems to be more sophisti
ated in the present time.
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However there are still many open questions in the "
lassi
al" design

of stream 
iphers and new design trends (inspired by the design of

blo
k 
iphers) appeared in re
ent years [71℄, [33℄, [13℄.

At the same time this was a new 
all for random and pseudoran-

dom sequen
es whi
h lasts up to these days. Modelling, simulation,

and 
ryptography are probably the most important of them. The

so-
alled truly random sequen
es are usually obtained from physi
al

sour
es or pro
esses with random behaviour. Emitters, and noise

samplers in ele
tri
al 
ir
uits are 
ommon examples. However, slow

speed of a truly random sequen
e produ
tion is a severe problem.

Moreover a sample we get is �nite and hen
e some other require-

ments are needed. This leads to an intensive resear
h in the area

of pseudorandom sequen
es. In spite of their deterministi
 produ
-

tion they possess (statisti
al) properties 
ommon to truly random

sequen
es. Moreover they 
an be produ
ed very fast, e�
iently,

and are reprodu
ible when some initial seeds are known - what is

an important feature in some appli
ations.

In the area of 
ryptography pseudorandom sequen
es are of tre-

mendous interest. Many items in 
ryptographi
 proto
ols (e.g. 
hal-

lenges), signature s
hemes and of 
ourse the keys for 
ryptosystems

must be generated in a random fashion. Moreover pseudorandom

sequen
es are the 
ore of stream 
iphers. Pseudorandom genera-

tors suitable for use in 
ryptographi
 appli
ations may need to meet

stronger requirements than those for other appli
ations. In parti
u-

lar, their outputs must be unpredi
table in the absen
e of knowledge

of the inputs.

It 
an be simply said that hash fun
tions "
ompress" (in a lossy

manner) a string of an arbitrary length (a message) to a string of a

�xed length (a message digest or hash value). The main goal is not

to 
ompress the message but to produ
e a message digest that in

some sense represents this message. (An analogous example is the

�ngerprint of a human being.)

Hash fun
tions have a large number of appli
ations in 
omputer

s
ien
e (optimized a

ess to the stored data) and in 
ryptography

(integrity prote
tion of stored/transmitted data) as well. The uni-

form distribution of message digests is usually the most important

requirement in 
omputer s
ien
e appli
ations. However hash fun
-

tions used in 
ryptographi
 appli
ations may need to meet stronger

requirements. First of all they must be one-way, i.e. given a message
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digest it must be "di�
ult" (
omputationally infeasible) to �nd a

message that would hash to this given message digest. Moreover,

given a message it must be "di�
ult" to produ
e another message

su
h that these two messages have the same message digest.

Hash fun
tions are used almost in all pra
ti
al digital signature

s
hemes. (Digital signature s
hemes are rather slow whi
h makes

it impra
ti
al to sign large messages. A 
ommon approa
h is to

produ
e a message digest and then to sign it.)

Clearly, integrity prote
tion via hash fun
tions di�ers from the in-

tegrity prote
tion via the well-known 
y
li
 redundan
y 
odes (CRCs)

that enable the dete
tion of errors that o

ur due the noise in the

transmission 
hannel. Analogy in hash fun
tions is a message au-

thenti
ation 
ode (MAC) that is a hash fun
tion with a se
ret key.

2.2 Resear
h targets

In this dissertation there are properties of some spe
i�
ally 
on-

stru
ted pseudorandom sequen
es studied both from the point of

view of 
ryptography and 
ryptanalysis. This dissertation deals

also with a relatively new dire
tion in 
ryptography � the usage

of quasigroups in the design of stream 
iphers and hash fun
tions.

The resear
h targets 
an be formulated as follows:

1. to introdu
e ne
essary basi
 notions 
on
erning pseudorandom

generators and hash fun
tions in 
ryptography;

2. to study 
ryptographi
 properties of the 
on
atenation of peri-

ods of several ml-pseudorandom sequen
es;

3. to 
ryptanalyse stream 
iphers that are based on the 
on
ate-

nation of transformed runs of two ml-sequen
es;

4. to 
ryptanalyse one stream 
ipher based on a quasigroup, whi
h

was proposed in [59℄,

5. to study the se
urity of a hash fun
tion based on a quasigroup,

whi
h was proposed in [21℄, [22℄.

The stru
ture of this dissertation is as follows. Se
tion 3 deals

with the state of the art in stream 
iphers and hash fun
tions. Basi


notions 
on
erning stream 
iphers are outlined in Se
tion 3.1. Sta-

tisti
al tests of randomness of sequen
es are mentioned in Se
tion
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3.2. Design approa
hes for stream 
iphers are des
ribed in Se
-

tion 3.3 in
luding several examples in Se
tion 3.4. Basi
 atta
ks on

stream 
iphers are des
ribed in Se
tion 3.5. Basi
 notions 
on
ern-

ing hash fun
tions are outlined in Se
tion 3.6. Design approa
hes for

hash fun
tions are des
ribed in Se
tion 3.7. Basi
 atta
ks on hash

fun
tions are des
ribed in Se
tion 3.8. Finally, a short information

about the proje
ts NESSIE and CRYPTREC is given in Se
tion

3.9 in
luding the re
ommended stream 
iphers and hash fun
tions.

The results of our resear
h are presented in Se
tion 4. This se
tion

is based on the author's papers [85℄, [86℄, [87℄, [88℄, [89℄, [90℄, [91℄,

[92℄ and [93℄. Cryptographi
 properties of the 
on
atenation of pe-

riods of several ml-pseudorandom sequen
es are studied in Se
tion

4.1. Se
tion 4.2 deals with 
ryptanalysis of a stream 
ipher based

on the 
on
atenation of transformed runs of two ml-sequen
es. Sev-

eral atta
ks on a stream 
ipher based on a quasigroup (proposed in

[59℄) are des
ribed in Se
tion 4.3. The properties of a hash fun
tion

based on a quasigroup (proposed in [21℄, [22℄) are studied in Se
tion

4.4. Con
lusions are given in Se
tion 5. A 
omplete list of author's

papers, 
onferen
e presentations, and other related a
tivities 
an be

found in Se
tion 6. Finally, Bibliography is to be found at the end

of this dissertation.
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Chapter 3

Stream 
iphers and hash

fun
tions � state of the art

3.1 Stream 
iphers

Stream 
iphers form an important 
lass of symmetri
 (
lassi
al,

se
ret-key) 
ryptosystems.

De�nition 3.1.1 [32℄, [83℄ A 
ryptosystem is formally a 5-tuple

(P; C;K; E ;D), where:

� P is a �nite set of plaintexts,

� C is a �nite set of 
iphertexts,

� K is a �nite set of keys,

� E is a �nite set of en
ryption transformations e

k

e

: P ! C,

where the key k

e

2 K is the parameter of the en
ryption trans-

formation,

� D is a �nite set of de
ryption transformations d

k

d

: C ! P,

where the key k

d

2 K is the parameter of the de
ryption trans-

formation. The following must hold: d

k

d

(e

k

e

(P )) = P , 8P 2 P.

Cryptosystems 
an be roughly subdivided into the following

two groups a

ording to the relation between the en
ryption and

de
ryption keys:

symmetri
 (
lassi
al). En
ryption key 
an be easily 
omputed

from the de
ryption key and vi
e versa. Sin
e these keys are
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usually (spe
ularly) identi
al, they are not 
onsidered sepa-

rately. Se
urity of symmetri
 
ryptosystems is based on the

se
re
y of the key.

asymmetri
 (publi
). Di�erent keys are used for en
ryption and

de
ryption. En
ryption (publi
) key 
an be made publi
. De-


ryption (private) key must be kept se
ret (the parameters used

to 
al
ulate the de
ryption key must be kept se
ret, too). It is

required that it is not possible to 
ompute (in a real-time) the

de
ryption key from the en
ryption key.

A

ording to the en
ryption transformation 
ryptosystems 
an

be subdivided as follows [72℄:

blo
k 
iphers. They transform a plaintext blo
k using a �xed en-


ryption transformation, i.e. a plaintext blo
k is substituted

with another blo
k. It is required that the blo
k is large

enough, to make the di
tionary atta
k impossible. Typi
al

blo
k size nowadays is 128 or 256 bits. However in some appli-


ations the 64-bit blo
k is still favourable.

stream 
iphers. Individual blo
ks of plaintext (also 
alled sym-

bols, be
ause they are mu
h shorter than blo
ks used within

blo
k 
iphers) are transformed using a time-varying en
ryp-

tion transformation that is dependent on the inner state of the

stream 
ipher.

High en
ryption/de
ryption speed and simple hardware imple-

mentation are 
ommon and most favourable properties of stream


iphers. Moreover, their properties are usually analyzable and prov-

able using algebrai
 te
hniques.

Stream 
iphers 
an be subdivided into [72, pp.6�7℄:

syn
hronous. The next inner state of the stream 
ipher depends

only on its previous inner state and not on plaintext,

self-syn
hronizing. The next inner state of the stream 
ipher de-

pends on its previous inner state and on a �xed number of

previously en
rypted symbols.

The des
ription of its advantages, disadvantages and resistan
e

against several kinds of atta
ks 
an be found in [78, pp.197�199,

202�203℄, [54, pp.193�195℄, [72, pp.14�15℄.
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Remark 3.1.2 One may 
onstru
t a stream 
ipher also from a blo
k


ipher [78, pp.189�211℄. Running a blo
k 
ipher in the so 
alled

output feedba
k (OFB) mode or in the 
ipher feedba
k (CFB) mode,

respe
tively we obtain a syn
hronous or a self-syn
hronizing stream


ipher, respe
tively.

An important position among the stream 
iphers has the so-
alled

binary additive stream 
ipher.

De�nition 3.1.3 Let P = (p

0

; p

1

; : : : ; p

N�1

) denote the bits of the

plaintext, C = (


0

; 


1

; : : : ; 


N�1

) denote the 
iphertext bits, and

z = (z

0

; z

1

; : : : ; z

N�1

) denote the keystream bits. Binary additive

stream 
ipher is a syn
hronous stream 
ipher. Its en
ryption trans-

formation is given as:




i

= p

i

� z

i

; i = 0; 1; : : : ; N � 1:

The symbol � denotes the addition modulo 2 or in other words it is

the XOR operation. De
ryption transformation is then:

p

i

= 


i

� z

i

; i = 0; 1; : : : ; N � 1:

If the keystream z is also the key k of the 
ryptosystem, this 
i-

pher is also known as the Vernam 
ipher. If the individual

bits of the keystream z were produ
ed randomly and independently,

the Vernam 
ipher is absolutely se
ure (a

ording to the Shan-

non's de�nition, see Se
tion 3.5) against the 
iphertext-only at-

ta
k. Let H be the Shannon's entropy. Hen
e the following holds:

H(P=C) = H(P ), i.e. the un
ertainty about the plaintext if the 
i-

phertext is known is the same as the un
ertainty about the plaintext

itself.

Shannon has proved, that the ne
essary 
ondition to 
onsider a

symmetri
 
ryptosystem as an absolutely se
ure one is

H(k) � H(P ) (i.e. un
ertainty about the key of the 
ryptosys-

tem may not be smaller than the un
ertainty about the plaintext).

If the bits of the key were produ
ed randomly and independently,

then H(k) = kkk, where kkk denotes the number of bits in the key

k. Thus kkk � H(P ). As it 
an be seen, the Vernam 
ipher is the

optimal solution from the point of view of the key length.

Two important problems arise when the Vernam 
ipher is used

in real-world appli
ations:
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key generation. One of the basi
 se
urity prin
iples is that the

key 
an be used only on
e. Thus a new key is needed for ea
h

message to be en
rypted. Moreover the key must be as long

as the message and the key bits must be generated randomly

and independently. It 
an be done using a physi
al true ran-

dom number generator. However su
h generators are very slow

whi
h makes them impossible to use when a heavy tra�
 must

be en
rypted.

key distribution. Both, a sender and a re
eiver must agree on

a key. The key must be transmitted from the sender to the

re
eiver. Thus a trusted and se
ure 
hannel is ne
essary to be

shared between the sender and re
eiver.

These were the reasons that has brought the pseudorandom bit

generators into the 
entre of interest in the area of stream 
iphers.

De�nition 3.1.4 [83, Chapter 12℄, [54, Chapter 5℄ Let kkk; kzk be

positive integers su
h that kzk � kkk + 1. A (kkk; kzk)-pseudo-

random bit generator (more brie�y, a (kkk; kzk)-PRBG) is a de-

terministi
 algorithm (running in polynomial time as a fun
tion of

kkk) whi
h, given a truly random binary sequen
e k of length kkk,

outputs a binary sequen
e z of length kzk whi
h "appears" to be

random. The input to the PRBG is 
alled the seed, while the out-

put of the PRBG is 
alled a pseudorandom bit sequen
e. (PRBGs

used in stream 
iphers to produ
e keystreams are often referred to

as keystream or running-key generators.)

The design goal in stream 
iphers is to e�
iently produ
e pseu-

dorandom sequen
es - keystreams, i.e. sequen
es that possess prop-

erties 
ommon to truly random sequen
es, that are unpredi
table

and in some sense "indistinguishable" from these sequen
es.

De�nition 3.1.5 [83, Chapter 12℄ Suppose p

0

and p

1

are two prob-

ability distributions on the set Z

kzk

2

of bit-strings of length kzk. Let

A : Z

kzk

2

! f0; 1g be a probabilisti
 algorithm that runs in polyno-

mial time (as a fun
tion of kzk). Let � > 0. For j = 0; 1, de�ne

E

A

(p

j

) =

=

P

(z

1

;:::;z

kzk

)2Z

kzk

2

p

j

(z

1

; : : : ; z

kzk

)p(A(z

1

; : : : ; z

kzk

) = 1j(z

1

; : : : ; z

kzk

)):

13



We say that A is an �-distinguisher of p

0

and p

1

provided that

kE

A

(p

0

)�E

A

(p

1

)k � �, and we say that p

0

and p

1

are �-distinguish-

able if there exists an �-distinguisher A of p

0

and p

1

.

De�nition 3.1.6 [54, Chapter 5, p.171℄ A PRBG is said to pass

all polynomial-time statisti
al tests if no polynomial-time algorithm


an 
orre
tly distinguish between an output sequen
e of the generator

and a truly random sequen
e of the same length with probability

signi�
antly greater than 1=2.

De�nition 3.1.7 [83, Chapter 12℄ Let p

1

be the probability distri-

bution on the set Z

kzk

2

of bit-strings of length kzk indu
ed by the

(kkk; kzk)-PRBG. Then the probabilisti
 algorithm B

i

, 1 < i � kzk

is an �-next bit predi
tor for (kkk; klk)-PRBG if and only if

X

(z

1

;:::;z

i�1

)2Z

i�1

2

p

1

(z

1

; : : : ; z

i�1

)p(z

i

= B

i

j(z

1

; : : : ; z

i�1

)) �

1

2

+ �:

See [83, Chapter 12℄ for the 
onne
tions between distinguishers

and next-bit predi
tors.

De�nition 3.1.8 [54, Chapter 5, p.171℄ A PRBG is said to pass

the next-bit test if there is no polynomial-time algorithm whi
h, on

input of the �rst l bits of an output sequen
e z, 
an predi
t the

(l + 1)

st

bit of z with probability signi�
antly greater than 1=2.

The importan
e of the next-bit predi
tors is expressed in the

following Theorem.

Theorem 3.1.9 [54, Chapter 5, p.171℄ A PRBG passes the next-bit

test if and only if it passes all polynomial-time statisti
al tests.

Studying properties and se
urity of almost all pra
ti
al designs of

stream 
iphers using the previously stated notions of unpredi
tabil-

ity and indistinguishability is almost impossible. That is why other

(weaker) measures are used in real world.

Notation 3.1.10 Let an in�nite sequen
e z of elements from a

symbol set S be denoted as z = z

0

; z

1

; z

2

; : : : , z

i

2 S, i � 0.

Further let the N-
ouple beginning of this sequen
e be denoted as

z

N

= z

0

; z

1

; z

2

; : : : ; z

N�1

.
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There are usually binary sequen
es used in 
ryptographi
 appli-


ations, i.e. S = f0; 1g. Sin
e many of the used sequen
es are

produ
ed by some �nite automata, it is natural to de�ne the period

of the sequen
e.

De�nition 3.1.11 Let z = z

0

; z

1

; z

2

; : : : be an in�nite sequen
e. If

there exist r; q 2 N, q � 0; r > 0, su
h that z

q

= z

q+r

,

z

q+1

= z

q+r+1

; : : : , then the sequen
e z is 
alled ultimately periodi
.

If q = 0, the sequen
e z is referred to as periodi
. The smallest

integer r for whi
h the previous statements hold is 
alled the period

of the sequen
e z.

Grouping identi
al adja
ent elements in a sequen
e together leads

to the notion of a run.

De�nition 3.1.12 Let z

N

= z

0

; z

1

; z

2

; : : : ; z

N�1

be an N-
ouple se-

quen
e. Then a subsequen
e z

i

; z

i+1

; : : : ; z

i+d�1

, 0 � i � N � 1,

1 � d � N � i is 
alled a run of length d, if z

i

= z

i+1

= � � � = z

i+d�1

provided z

i�1

6= z

i

(if i > 0) and z

i+d�1

6= z

i+d

(if i+ d < N). If the

sequen
e z

N

is binary then a run 
onsisting of ones, resp. zeros is


alled a blo
k, resp. a gap.

De�nition 3.1.13 [4℄ Relation

a

0

s

i

+ a

1

s

i�1

+ � � �+ a

m

s

i�m

= 0; (3.1)

a

i

; s

i

2 GF (q); a

0

6= 0; a

m

6= 0;

i = m;m + 1; m+ 2; : : :

is 
alled the mth-order linear re
urring relation. Sequen
e s

0

; s

1

;

s

2

; : : : satisfying this relation is 
alled the mth-order linear re
urring

sequen
e (or the solution of the linear re
urring relation). Elements

s

0

; s

1

; : : : ; s

m�1

are referred to as the initial values.

De�nition 3.1.14 [4℄ There are two important polynomials 
on-

ne
ted to the linear re
urring relation (3.1):

the left 
hara
teristi
 polynomial: a(x) = a

0

+a

1

x+� � �+a

m

x

m

,

the right 
hara
teristi
 polynomial: �a(x) = a

0

x

m

+ a

1

x

m�1

+

+ � � �+ a

m

.

It holds that a(x) = x

m

�a(1=x).

15



If there are "many" 
oe�
ients a

i

of the (left or right, respe
-

tively) 
hara
teristi
 polynomial equal to zero, the polynomial is

said to be "sparse". Otherwise the polynomial is referred to as the

"dense" one.

De�nition 3.1.15 [57℄ Polynomial of the smallest degree, whi
h is


hara
teristi
 polynomial of the sequen
e s

0

; s

1

; s

2

; : : : is 
alled the

minimal polynomial of this sequen
e.

De�nition 3.1.16 [57℄ Linear 
omplexity of a sequen
e is the de-

gree of the minimal polynomial of this sequen
e.

De�nition 3.1.17 Let us denote s = s

0

; s

1

; : : : ; s

N�1

as fs

i

g

N�1

i=0

.

Let us de�ne the following set of sequen
es 
onstru
ted from the

sequen
e s: J = ffs

i

g

j

i=0

; j = 0; 1; : : : ; N�1g. The linear 
omplexity

pro�le is a fun
tion J ! N, whi
h assigns to ea
h sequen
e from J

its linear 
omplexity. (Note that the linear 
omplexity pro�le is a

nonde
reasing fun
tion.)

Any sequen
e produ
ed by some generator must possess the fol-

lowing features in order to be useful in 
ryptography as a keystream

sequen
e:

� long period, sin
e only its part 
an be used as a keystream

for en
ryption. Moreover long period is a basi
 
ondition for

unpredi
tability of a sequen
e. Another important fa
t is that

the period of a sequen
e represents an upper bound for its linear


omplexity.

� large linear 
omplexity. It is well known that a sequen
e with

linear 
omplexity m 
an be 
ompletely re
onstru
ted from

its 2m 
onse
utive bits. More pre
isely, it is possible to �nd

the minimal polynomial of this sequen
e using the Berlekamp-

Massey algorithm [51℄. The 
omplexity of this algorithm is

roughly the square of the sequen
e length. If m is small and a


iphertext is given, only a short plaintext is required to 
al
u-

late the 
orresponding part of the keystream and then to �nd

the minimal polynomial of the keystream whi
h yields in the

break of the 
ipher. (If the short plaintext is not known, the at-

ta
ker may try to guess probable words in the plaintext.) The


omplexities of higher orders (quadrati
 [11℄, 
ubi
, et
.) 
an

be de�ned too. However there is no known e�
ient algorithm
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to 
al
ulate them. In past years also the 2-adi
 
omplexity

was studied with the 
onne
tion to feedba
k with 
arry shift

registers (FCSRs) [15℄, [41℄, [42℄. However for most 
urrent

designs of stream 
iphers (or keystream generators) it is im-

possible to give useful estimates of the 2-adi
 
omplexity of

their keystreams.

� linear 
omplexity pro�le, that is only a little bit di�erent from

the ideal one, whi
h is represented by the n=2 line. Moreover

the di�eren
es should be irregular. If a linear 
omplexity is


onstant on a large segment under the n=2 line it is possible to

approximate the keystream (or a part of it) using a linear re
ur-

ring relation of a smaller order. A ni
e example is the sequen
e

0; 0; : : : ; 0; 1. Its linear 
omplexity is maximal, i.e. equal to the

number of bits in this sequen
e. However this sequen
e 
an be

very well approximated by the all-zero sequen
e.

� proper statisti
al properties. As it was said a (pseudorandom)

keystream should possess features 
ommon to truly random se-

quen
es. How random a keystream appears 
an be 
he
ked

when statisti
al tests are applied on it (see Se
tion 3.2 for fur-

ther details).

A 
ommonly used approa
h in the keystream generator evalua-

tion is a 
ombination of theoreti
 and experimental approa
h. The

period and linear 
omplexity (or their lower and upper bounds)

of keystreams produ
ed by the studied generator are determined

using algebrai
 te
hniques. Some basi
 statisti
al properties su
h

as number of ones, frequen
y of pairs of bits, number of runs of a

given length, et
. in a period of a keystream are sometimes studied

analyti
ally, too. However these results do not express statisti
al

properties of a keystream in a su�
ient manner. Then a battery of

statisti
al tests (see [45℄, [23℄, [24℄, [76℄) is applied on a number of

keystreams. (One should realize that it is not possible to test all the

keystreams and moreover only a small, negligible part of the period

of the keystream is tested.) Finally the resistan
e of the keystream

generator against the known atta
ks is studied.
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3.2 Statisti
al tests of pseudorandom sequen
es

Any sequen
e must possess 
ommon features expe
ted in random

sequen
es in order to be 
onsidered pseudorandom.

Golomb was the �rst one who formulated ne
essary (but not suf-

�
ient) 
onditions a pseudorandom sequen
e has to satisfy in order

to be 
onsidered random.

Let z

N

= z

0

; z

1

; :::; z

N�1

be a binary sequen
e (for a periodi


sequen
e let N be its period). Golomb's randomness postulates

state:

P1: The number of ones and zeros in z

N

di�ers at most by 1.

P2: In the sequen
e z

N

, one half of runs has length 1, one fourth has

length 2, one eighth has length 3, et
. Moreover, the number

of blo
ks and the number of gaps of a given length is roughly

equal in z

N

.

P3: Auto
orrelation fun
tion C(t) is two-valued, i.e. there exists

su
h a number K 2 Z, that the following holds:

NC(t) =

N�1

X

i=0

(2z

i

� 1)(2z

i+t

� 1) =

�

N; if t = 0

K; if 1 � t � N � 1:

However, these postulates are too stri
t for a pra
ti
al evaluation

of a keystream generator.

Let H

0

be the hypothesis that the studied sequen
e possesses

features 
ommon to a random sequen
e. Alternative hypothesis (the

studied sequen
e does not possess features 
ommon to a random

sequen
e), is denoted H

1

. Whi
h one of these hypotheses will be

a

epted we de
ide after performing a statisti
al test. If we reje
t

H

0

although it was 
orre
t, we make the Type-I of error. Probability

of this type of an error is referred to as the size of the test and is

denoted as �. A typi
al 
hoi
e of the test size is 0:001 � � � 0:05.

If we a

ept H

0

although H

1

is valid, we make the Type-II of error.

Probability of this error is denoted as �. The number 1�� is referred

to as the power of the test. It is ne
essary to 
onsider the length of

the sequen
e during the 
hoi
e of parameters � or �. It is important

to realize that power of the test is more important than its size sin
e

a

eptan
e of a "bad" sequen
e (or a "bad" keystream generator)
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an 
ause a se
urity in
ident whereas reje
tion of a "good" sequen
e


an 
ause "only" ine�
ien
y.

There are various statisti
al tests (theoreti
al or empiri
al) to

be applied to 
he
k whether the studied sequen
e possesses some

feature 
ommon to a random sequen
e. Usually a two-sided test is

applied. A large number of statisti
al tests 
an be found e.g. in

[45℄, however not all of them are meaningful to be applied to binary

sequen
es.

FIPS 140-2

This standard for non
lassi�ed data suggests 4 statisti
al tests

a sequen
e should pass to be 
onsidered pseudorandom. Required

number of bits in a sample of a sequen
e is 20 000. FIPS 140-2 ([24℄)

is the su

essor of FIPS 140-1 ([23℄). A very important 
hange has

been done: the test size was set to � = 10

�4

, whereas in FIPS 140-1

it was � = 10

�6

. These tests are based on the law of large numbers

and the �

2

-test.

1. Monobit test

The number of o

uren
es of element 1 in the sample (denoted

as n

1

) should pass the inequality 9 725 < n

1

< 10 275.

2. The poker test (equidistribution of quadruples)

The studied sample is divided into 5 000 
onse
utive non-over-

lapping quadruples. The number of o

uren
es of individual

quadruples, denoted as o

i

; i = 0; : : : ; 15, is determined and the

following value is 
al
ulated.

V =

16

5 000

15

X

i=0

o

2

i

� 5 000:

A sample passes this test if it holds that 2:16 < V < 46:17.

3. Run test

Let us denote B

i

, resp. G

i

the number of blo
ks, resp. gaps

of length i in the sample. (Runs longer than 6 are 
ounted

together with runs of length 6.) The values B

i

, resp. G

i

should

o

ur in intervals spe
i�ed in the following table.
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Length of run Interval

1 2 343 � 2 657

2 1 135 � 1 365

3 542 � 708

4 251 � 373

5 111 � 201

6 111 � 201

Table 3.1: FIPS 140-2: Required number of runs

4. Long run test

A sample passes this test if it does not 
ontain runs of length

26 or longer.

Probably the only publi
ation dealing with statisti
al tests (and


ontaining a mathemati
al ba
kground) of pseudorandom sequen
es

used in 
ryptography is [76℄ (see also 
orre
tions in [40℄). There are

16 tests des
ribed (mathemati
al ba
kground as well as the imple-

mentation) in this book. Sour
e 
odes for Linux are to be found at

http://
sr
.nist.gov/rng/rng2.html. Other software pa
kages

for statisti
al testing of pseudorandom sequen
es are e.g. DIEHARD

or Crypt-X.

3.3 Design of stream 
iphers

There are four di�erent approa
hes to the design of stream 
iphers

a

ording to Rueppel [74℄, [75℄:

System-theoreti
. A new keystream generator is designed using

the best known design prin
iples. Next the a

omplishment of

basi
 
riteria (period, linear 
omplexity, statisti
al properties,

et
.) on keystream generators is 
he
ked. Finally, it is studied

whether the new keystream generator is a di�
ult and unknown

problem (from the point of view of possible atta
ks) for an

atta
ker.

Information-theoreti
. The idea is to keep the 
ryptanalyst in

the dark about the plaintext. No matter how mu
h work the


ryptanalyst invests, he will never get a unique solution.
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Complexity-theoreti
. The goal is to base the 
ryptosystem on,

or make it equivalent to, some known and di�
ult problem su
h

as fa
toring or 
al
ulating dis
rete logarithms.

Randomized. The keystream generator designed using this ap-

proa
h is based on a large number of transformations. The

idea is to for
e the 
ryptanalyst to examine lots of useless data

in his attempts at 
ryptanalysis. (Note: Complexity and a

number of transformations do not guarantee se
urity. An ex-

ample of a "super-random" generator 
an be found in [45, p.4,

Algorithm K℄.)

The most 
ommonly used design approa
h is the system-theoreti


one. Almost all the designs based on linear feedba
k shift regis-

ters rank among this 
ategory (for further details see this Se
tion

hereafter). However, there are also several stream 
iphers designed

a

ording to the 
omplexity-theoreti
 approa
h (e.g. BBS).

Next we introdu
e several basi
 building blo
ks of stream 
iphers.

Several designs of stream 
iphers are in
luded as examples.

Linear 
ongruential generator

One of the 
ommon ways of produ
ing pseudorandom sequen
es

(mostly used in modelling and simulation) is the linear 
ongruential

generator [45℄. It is based on the re
urring relation

z

i

= (a:z

i�1

+ b) mod m;

where a; b;m are 
hosen 
onstants (integers), an integer

z

0

2 f0; 1; : : : ; (m � 1)g is 
alled the seed, or the initial loading

of the generator (se
ret key). A proper 
hoi
e of the 
onstants en-

sures the maximal period of the produ
ed keystream (e.g. when b

and m are relatively prime). It is well known (see e.g. [45℄) that

linear 
ongruential generator passes many standard statisti
al tests.

However, there are also tests [9℄, [47℄ that this generator fails.

The output of the linear 
ongruential generator is easily pre-

di
table, thus it is not suitable for 
ryptographi
 appli
ations.

It was suggested to extra
t a given number of most signi�
ant

bits from ea
h item of the sequen
e z. However, this transformation

does not improve the se
urity of this generator signi�
antly [46℄.
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It is possible to generalize the 
on
ept of a linear 
ongruential

generator to a polynomial one. Also these generators are not 
on-

sidered se
ure [47℄.

Linear feedba
k shift register (LFSR)

Linear feedba
k shift register L (see Fig. 3.1) represents a te
h-

ni
al (hardware) implementation of a solution of a linear re
urring

relation (3.1). It is a 
ommon basi
 building blo
k of keystream

generators.

Figure 3.1: Linear feedba
k shift register

Below we show several possible representations of elements of a

linear re
urring sequen
e. Linear re
urring sequen
es are studied

e.g. in [38℄, [48℄, [57℄.

Theorem 3.3.1 [57℄ Let s

0

; s

1

; s

2

; ::: be a solution of the linear re-


urring relation (3.1) in the �eld GF (q) with a left 
hara
teristi


polynomial a(x). If �

1

; �

2

; : : : ; �

m

are mutually di�erent roots of

the polynomial a(x), then s

i

=

P

m

j=1

�

j

�

i

j

, for i = 0; 1; 2; : : : , where

�

1

; �

2

; : : : ; �

m

are the elements of the extension �eld to the GF (q)

for the a(x) polynomial, that are uniquely determined by the initial

values s

0

; s

1

; : : : ; s

m�1

.

De�nition 3.3.2 [57℄ Let � be an element from F = GF (q

m

), that

is an m-th order extension to the �eld K = GF (q). Then the tra
e

of the element � is de�ned as Tr

F=K

(�) = �+�

q

+�

q

2

+ � � �+�

q

m�1

.
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The tra
e Tr

F=K

(�) is a linear fun
tion from the �eld F onto

the �eld K, provided both �elds are understood as a linear (ve
tor)

spa
es over the �eld K.

Theorem 3.3.3 [57℄ Let s

0

; s

1

; s

2

; ::: be a solution to the linear re-


urring relation (3.1) in K = GF (q) with a left 
hara
teristi
 poly-

nomial a(x), that is irredu
ible over K. Let � be a root of a(x) in the

extension �eld F = GF (q

m

) of the �eld K. Then s

i

= Tr

F=K

(��

i

),

for i = 0; 1; 2; : : : , where � is a uniquely determined element from

F .

This representation of elements of linear re
urring relations is

of parti
ular importan
e for the analysis of 
ombination of several

linear re
urring relations.

As it was said before, the period of a keystream is a very impor-

tant feature. Thus it is natural to ask how to 
onstru
t an LFSR

to obtain the maximal possible period of the produ
ed keystream.

It is quite easy to see that an m-bit long LFSR 
an produ
e only

sequen
es with period at most 2

m

� 1.

De�nition 3.3.4 [4℄ A polynomial a(x) 2 GF (2)[X℄, deg a(x) = m

is said to be primitive, if it holds that a(x) divides x

2

m

�1

� 1 and

does not divide any polynomial x

t

� 1, where t < 2

m

� 1.

Theorem 3.3.5 [4, p.350, Theorem 9℄ If the left 
hara
teristi
 poly-

nomial a(x) 2 GF (2)[X℄, deg a(x) = m asso
iated with an LFSR

is primitive, then any sequen
e this LFSR produ
es from a non-zero

inital loading has period 2

m

� 1. An LFSR with asso
iated prim-

itive polynomial is also 
alled ml-LFSR and sequen
es it produ
es

are 
alled ml-sequen
es.

ml-sequen
es are well known due to their ni
e statisti
al prop-

erties and they also pass the Golomb randomness postulates (see

Se
tion 3.2). The distribution of patterns in an ml-sequen
e is ex-

pressed in the following theorem.

Theorem 3.3.6 [54, p.197,Fa
t 6.14℄ Let u be an ml-sequen
e gen-

erated by an ml-LFSR L, that is kLk bits long. Let k be an integer,

1 � k � kLk, and let �u be any subsequen
e of u of length 2

kLk

+k�2.

Then ea
h non-zero sequen
e of length k appers exa
tly 2

kLk�k

times

as a subsequen
e of �u. Furthermore, the zero sequen
e of length k

appears exa
tly 2

kLk�k

� 1 times as a subsequen
e of �u.
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It is also possible to asso
iate a formal power series s(x) =

s

0

+ s

1

x + s

2

x

2

+ : : : to a binary sequen
e s = s

0

; s

1

; s

2

; : : : as

its generating fun
tion. A

ording to [4, p.340, Consequen
e of the

Theorem 5℄ ea
h solution to the linear re
urring relation (3.1) has in

GF (2)[X℄ a generating fun
tion s(x) =

h(x)

a(x)

, h(x); a(x) 2 GF (2)[X℄,

deg h(x) < deg a(x) and a(x) is the left 
hara
teristi
 polynomial of

the linear re
urring relation.

An LFSR 
annot be used itself as a keystream generator. Its

se
urity weakness is the small linear 
omplexity of the produ
ed

keystream.

J.L.Massey in [51℄ proved that Berlekamp algorithm for de
oding

BCH 
odes is a general solution to the problem of synthesis of the

shortest LFSR that generates a given sequen
e. Let s = s

0

; s

1

; s

2

; : : :

be a binary sequen
e and m be its linear 
omplexity. Then it is pos-

sible to �nd uniquely the shortest LFSR that generates the sequen
e

s using the Berlekamp-Massey algorithm from 2m 
onse
utive bits

of the sequen
e s. The 
omplexity of this algorithm is roughly the

square of the sequen
e length.

We will des
ribe several modi�
ations of an LFSR that enlarge

the linear 
omplexity of a produ
ed sequen
e. These designs 
an be

found in a large number of 
lassi
al stream 
iphers.

Filtered LFSR

Linear feedba
k shift register is in fa
t a �nite automat. One of

its possible modi�
ations is to 
hange the output fun
tion. Whereas

the output of a "
lassi
al" LFSR is a single bit of its loading in the

given time, the output of a �ltered LFSR is a value of a Boolean

fun
tion that takes as input all the bits of the LFSR loading in the

given time. Properties of �ltered LFSRs are studied in [72℄.

Let a sequen
e s

0

; s

1

; s

2

; ::: be a solution to a linear re
urring

relation (3.1) in GF (2) with a left 
hara
teristi
 polynomial a(x).

Further let n � m of the LFSR bits be an input to a �lter fun
tion

f : Z

n

2

! Z

2

. The �lter fun
tion must be nonlinear, otherwise it

makes no sense to use it. Let 0 � j

1

< j

2

< : : : j

n

< m be the

indi
es of these bits. The output of this �ltered LFSR in time i is

z

i

= f(s

i+j

1

; s

i+j

2

; : : : ; s

i+j

n

).

The next two Theorems 
hara
terize the important properties -

period and linear 
omplexity of a �ltered LFSR.
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Figure 3.2: Filtered LFSR

Theorem 3.3.7 [82℄ Let a(x) be a left 
hara
teristi
 polynomial of

a �ltered LFSR with a non-zero initial loading. If the �lter fun
-

tion f is balan
ed or (2

deg a(x)

� 1 is a prime number and f is

not a 
onstant fun
tion), then the period of this �ltered LFSR is

2

deg a(x)

� 1.

Theorem 3.3.8 [72℄ Let a(x) be a primitive left 
hara
teristi
 poly-

nomial of a �ltered LFSR. Let f : Z

n

2

! Z

2

be the �lter fun
tion.

Then the linear 
omplexity of the output sequen
e z, denoted as �(z),


an be upperbounded by:

�(z) �

n

X

i=1

�

deg a(x)

i

�

:

Clo
k-
ontrolled LFSR

Let a sequen
e s = s

0

; s

1

; s

2

; ::: be a solution to a linear re
urring

relation (3.1) in the �eld GF (2) with a left 
hara
teristi
 polynomial

a(x). Let z = z

0

; z

1

; z

2

; ::: be the output sequen
e from a 
lo
k-


ontrolled LFSR.

One of the methods for in
reasing the linear 
omplexity of a

sequen
e z is to 
hange the 
lo
king of the register. Note, that in

general it will be s

i

6= z

i

. The 
hange of the 
lo
king of an LFSR

also in
reases the resistan
e against the so-
alled 
orrelation atta
ks

(see Se
tion 3.5 for further details).

The 
lo
k 
ontrol of an LFSR 
an be in general understood as

a sele
tion of elements from its output sequen
e s driven by the so-


alled (periodi
) de
imation sequen
e d = d

0

; d

1

; d

2

; : : : ,

0 � d

i

� 2

deg a(x)

� 2, i = 0; 1; 2; : : : ,
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z

0

= s

0

;

z

i

= s

P

i�1

j=0

d

j

; i = 1; 2; : : : :

LFSR with 
onstant 
lo
king

The simplest 
ase is the sele
tion of ea
h t-th element,

i.e. z

i

= s

it

. The next Theorem 
hara
terizes the important prop-

erties of an LFSR with a 
onstant 
lo
king, namely its period, and

linear 
omplexity.

Theorem 3.3.9 [72℄ Let s be a linear re
urring sequen
e over GF (q)

with period T and 
hara
teristi
 polynomial a(x), deg a(x) = m, that

is irredu
ible over GF (q). Let � be a root of a(x). Then the sequen
e

z

i

= s

it

has the following properties:

� its 
hara
teristi
 polynomial is the minimal polynomial for the

element �

t

,

� its period T

�

=

T

g
d(t;T )

,

� its linear 
omplexity is equal to the multipli
ative order of q in

Z

T

�

.

Moreover for all t 2 fk; kq; kq

2

; : : : (mod T )g is the output sequen
e

z the same for a proper 
hoi
e of the initial loading.

Self 
lo
k-
ontrolled LFSR

Rueppel in [73℄ proposed a linear feedba
k shift register whi
h is

self 
lo
k-
ontrolled.

Let a sequen
e s = s

0

; s

1

; s

2

; ::: be a solution to a linear re
urring

relation (3.1) in GF (2) with a(x) being the left 
hara
teristi
 poly-

nomial. Let z = z

0

; z

1

; z

2

; : : : be the output sequen
e from the self


lo
k-
ontrolled LFSR. The 
lo
k-
ontrol works as follows:

� z

0

= s

0

,

� if z

i

= 0 then the register is 
lo
ked l-times (in other words if

z

i

= s

j

then z

i+1

= s

j+l

),

� if z

i

= 1 then the register is 
lo
ked k-times,
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where l; k 2 N are arbitrarily 
hosen 
onstants. The output sequen
e

z is also 
alled an [l; k℄ self-de
imated sequen
e.

If the polynomial a(x) is primitive and the 
onstants l; k are

properly 
hosen, it is possible for the sequen
e z to a
hieve uni-

form distribution of patterns and also a maximal period equal to

b(2=3) � (2

deg a(x)

� 1)
. Performed exhaustive sear
h experiments

show also a large linear 
omplexity and an almost �at auto
orrela-

tion fun
tion.

If the 
onstants l and k are known to the atta
ker, it is possible

to �nd the initial loading of the register from the sequen
e z � it

su�
es to solve a system of linear equations. Thus a self 
lo
k-


ontrolled LFSR is not resistant against the known plaintext atta
k

(see Se
tion 3.5). Hen
e a self 
lo
k-
ontrolled LFSR should not be

itself a keystream generator. Anyway it 
an be used as a building

blo
k for keystream generator.

The 
lo
k-
ontrol of an LFSR using the output of another LFSR

is studied in [3℄. The generalization of this idea, the so-
alled 
as
ade

of LFSRs, is studied in [29℄.

Other registers

Up to now we have dis
ussed a linear feedba
k shift register and

several of its modi�
ations. It is also possible to build a shift reg-

ister with a nonlinear feedba
k. However they are not favoured as

building blo
ks for keystream generators. The main reason is the

insu�
ient knowledge about their properties. On the other hand

the not well developed mathemati
al methods 
on
erning analysis

of nonlinear feedba
k shift registers make the 
ryptanalysis mu
h

harder. However the designers of keystream generators favour well

known and analyzed building blo
ks.

Feedba
k with 
arry shift register (FCSR) is another kind of reg-

ister [41℄, [42℄, [15℄. It is based on the theory of 2-adi
 numbers. It

is known that for any periodi
 sequen
e there exists an FCSR that

generates it. The mutual relation between LFSR and FCSR is un-

known up to now [15℄. An upper bound on the period of sequen
es

produ
ed by an FCSR has been determined. It is also known how to


hoose the parameters of an FCSR to obtain sequen
es with maxi-

mal period. The problem is that a sequen
e with maximal period is
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not obtained for all the initial loadings of an FCSR (with properly


hosen parameters to obtain sequen
es with maximal period) [78℄,

[15℄.

The only published keystream generators (known to me) based

on FCSRs 
an be found in [78℄. These generators are simple modi�-


ations of the well known keystream generators (usually one or more

LFSRs are substituted by FCSRs). However their se
urity is often

an open problem. Cryptanalysis of two su
h designs - the parity

and the threshold keystream generators was done in [84℄, [69℄.

Combination of LFSRs

One of the 
lassi
al methods of building a keystream generator

is to use several LFSRs and to 
ombine their outputs using a (non-

linear) 
ombination fun
tion. The most simple 
ase is the XOR of

two linear re
urring sequen
es. We de�ne also a spe
ial operation -

the bitwise multipli
ation of sequen
es.

De�nition 3.3.10 [57℄ Let s

0

; s

1

; s

2

; : : : and s

0

0

; s

0

1

; s

0

2

; : : : be two

linear re
urring sequen
es over GF (2) with asso
iated left 
hara
-

teristi
 polynomials a(x) and a

0

(x). We de�ne the sum of these

sequen
es s + s

0

to be the sequen
e s

0

+ s

0

0

; s

1

+ s

0

1

; s

2

+ s

0

2

; : : : ,

where + denotes the addition in GF (2) (in other words XOR). Next

we de�ne the (bitwise) produ
t of these sequen
es s:s

0

to be the se-

quen
e s

0

:s

0

0

; s

1

:s

0

1

; s

2

:s

0

2

; : : : , where : denotes the multipli
ation in

GF (2) (in other words AND).

The set of all linear re
urring sequen
es, generated by a primi-

tive polynomial a(x), is 
losed with respe
t to the sum [4, p.351℄.

Moreover it is 
losed also with respe
t to the shift and s
alar multi-

pli
ation.

Linear 
omplexity of a sequen
e produ
ed as a polynomial 
om-

bination of several (spe
ial) linear re
urring sequen
es is determined

in the following Theorem.

Theorem 3.3.11 [57℄ Let F be a nonlinear fun
tion over GF (2),

F (s

(1)

; s

(2)

; : : : ; s

(N)

) =

= u

0

+

P

u

i

s

(i)

+

P

u

ij

s

(i)

s

(j)

+ � � �+ u

12:::N

s

(1)

s

(2)

: : : s

(N)

;

where u

i

; u

ij

; : : : ; u

12:::N

2 GF (2). Let s

(1)

; s

(2)

; : : : ; s

(N)

be linear

re
urring sequen
es over GF (2) with minimal polynomials m

s

(i)

(x),
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degm

s

(i)

(x) = M

i

. Let us assume that ea
h polynomial m

s

(i)

has

only simple roots in GF (2

M

i

) n GF (2) and none of the roots is

a s
alar multiple of another root. Let us further assume that the

degrees of the minimal polynomials are pairwise relatively prime.

Then a sequen
e z = F (s

(1)

; s

(2)

; : : : ; s

(N)

) has a minimal polyno-

mial m

z

(x) of degree M = F

0

(M

1

;M

2

; : : : ;M

N

). The polynomial F

0

is given by the same expression as the polynomial F , with (integer)


oe�
ients u

0

i

; u

0

ij

; : : : ; u

0

12:::N

, that are equal to 0 or 1, respe
tively

whenever u

i

; u

ij

; : : : ; u

12:::N

are equal or non-equal to zero, respe
-

tively. The polynomial F

0

is evaluated in integers and not in the

�eld GF (2). All the roots of the minimal polynomial m

z

(x) are sim-

ple and are from GF (2

m

) nGF (2), where m =

Q

N

i=1

M

i

.

Besides the nonlinearity of a 
ombination fun
tion F (see e.g.

[72℄, [57℄), an important role plays also its 
orrelation immunity (see

e.g. [72℄, [79℄). The 
orrelation immunity 
hara
terizes the relation

between the output of a fun
tion and its inputs.

De�nition 3.3.12 [72℄, [30℄ A fun
tion f : Z

n

2

! Z

2

is said to be

k-th order 
orrelation immune, 1 � k < n, if I(f(X); Y ) = 0 for

ea
h k-dimensional subve
tor Y of a ve
tor X, where I(U; V ) =

H(U)�H(U=V ) is the so-
alled amount of mutual information be-

tween U and V .

The relation among the order of 
orrelation immunity, algebrai


order and number of variables of a Boolean fun
tion is determined

in the next Theorem.

Theorem 3.3.13 [79℄ If a fun
tion f : Z

n

2

! Z

2

is k-th order


orrelation immune, 1 � k < n, then ea
h term in its algebrai


normal form must have less than n� k + 1 variables.

Constru
tion of sequen
es with a given 
orrelation immunity is

studied in [79℄.

NSG: natural sequen
e generator

A spe
ial 
lass of keystream generators - the so-
alled natural

sequen
e generators (NSGs) is studied in [15℄. From a design point

of view there is an obvious similarity with a �ltered LFSR. NSG

is based on a 
ounter and on an output (�lter) fun
tion. The i-th
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keystream bit z

i

is produ
ed a

ording to the rule

z

i

= f(i+ k mod N), where f : Z

N

! Z

2

is the output fun
tion, N

is the period of the keystream and k 2 Z

N

is a se
ret key.

A quite spe
ial design of an NSG allows the appli
ation of many

number theoreti
 results. It 
an be easily seen that the output fun
-

tion plays an important role in the se
urity of the NSG. There are

several 
onstru
tions of the output fun
tion studied in [15℄. It is

important that under the proper 
hoi
e of the NSG parameters one

may obtain a keystream generator with high nonlinearity, linear,

weight and sphere 
omplexity. It is also resistant against the di�er-

ential 
ryptanalysis. It is interesting that one of the parameters is

the period of the keystream, whi
h is usually 
hosen to be a prime

number (sometimes a spe
ial form is required).

Although NSGs may possess many ni
e properties, they are very

slow (about 4 kB per se
ond) both in hardware and software. It

is mostly due to the operations that NSGs use: multipli
ation and

exponentiation are the 
ommon ones. Thus the pra
ti
al usage of

NSGs is rather restri
ted. One of the possible areas is the key gen-

eration.

Other designs

Some re
ent stream 
iphers have been designed for e�
ient soft-

ware implementation, and are not based on LFSRs [62℄. Examples

in
lude the stream 
iphers RC4, SEAL, S
ream and the NESSIE

submission LEVIATHAN. These 
iphers are build upon the blo
k


ipher design ideas. In some 
ases, they are in fa
t a blo
k 
ipher in

a spe
ial mode of operation (e.g. the BMGL stream 
ipher, whi
h

is one of the submissions to NESSIE).

3.4 Examples of stream 
iphers

There are several 
hosen stream 
iphers presented in this Se
tion.

Ge�e's generator

Ge�e's generator is based on a polynomial 
ombination of out-

puts from three LFSRs L1, L2 and L3. Let Li(t), i = 1; 2; 3 be

the output from the LFSR Li in time t. The output of the gen-

erator in time t is then z

t

= (L1(t) � 1):L2(t) � L1(t):L3(t). The
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period of the keystream is the least 
ommon multiple of periods

of sequen
es produ
ed by the individual LFSRs. The linear 
om-

plexity of the keystream (under a proper 
hoi
e of LFSR polyno-

mials) 
an be determined due to the Theorem 3.3.11. Note that

Pr(z

t

= L2(t)) = Pr(z

t

= L3(t)) = 0:75, thus a 
orrelation atta
k

is possible to be performed. Hen
e the Ge�e's generator is inse
ure.

However it is a ni
e design for demonstrating divide-and-
onquer

and 
orrelation atta
ks (see Se
tion 3.5).

Generator LILI�128

LILI�128 [17℄ is one of the keystream generators submitted to the

NESSIE proje
t. Its design 
ombines two prin
iples - �lter fun
tion

and 
lo
k 
ontrol. LILI�128 
onsists of two nonlinearly �ltered LF-

SRs. The output the �rst register 
ontrols the 
lo
king of the se
ond

register. The output of the keystream generator is the output from

the se
ond register. The produ
ed keystream has a large period and

also a large linear 
omplexity. However there is an atta
k faster than

exhaustive sear
h against this generator and that was the reason why

it was not in
luded in the NESSIE portfolio of re
ommended stream


iphers.

BBS: Blum, Blum, Shub generator

BBS is a "number-theoreti
" keystream generator designed a
-


ording to the 
omplexity-theoreti
 approa
h [7℄. Its se
urity is

based on the problem of fa
toring integers. An important fa
t is

that the keystream is unpredi
table (neither to the left, nor to the

right).

Algorithm of the BBS keystream generator:

1. Choose primes p and q su
h that p 6= q, p � 3 mod 4,

q � 3 mod 4. Cal
ulate n = pq.

2. Choose a random w 2 [1; n � 1℄, su
h that g
d(w; n) = 1.

Cal
ulate x

0

 w

2

mod n.

3. Keystream z

1

; z

2

; : : : ; z

N

is produ
ed as follows:

x

i

 x

2

i�1

mod n.

z

i

 LSB(x

i

) for i = 1; 2; : : : ; N .

LSB(x

i

) is the least signi�
ant bit of a binary representation of

x

i

.
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Due to the operations the BBS uses, it ranks among the slow gen-

erators. Thus its pra
ti
al usage as a keystream generator is limited

to appli
ations, where the en
ryption speed does not play mu
h a

role or whi
h require high se
urity. For example, it 
an be used as

a generator of random values (e.g. keys) for other 
ryptographi


primitives.

A large number of keystream generators 
an be found e.g. in [78℄,

[54℄.

3.5 Atta
ks on stream 
iphers

The natural requirement on any 
ryptosystem is its se
urity. There

are also other important properties of 
ryptosystems, su
h as e.g.

error propagation, key size, et
. (see Ker
kho�s's and Shannon's

requirements on 
ryptosystems in [32, pp.40�41℄).

A well known requirement, formulated by Ker
kho�s in the 19-th


entury, is that the se
urity of any 
ryptosystem should be based on

keeping the key se
ret and not on keeping the entire 
ryptosystem

se
ret.

The famous notions of perfe
t and relative se
re
y of 
ryptosys-

tems were introdu
ed by Shannon. A perfe
tly se
ure 
ryptosystem

must have the following property: the amount of information about

the plaintext and the key does not in
rease when a new 
iphertext

is obtained.

More formally, H(P;K=C) = H(P;K), where P 2 P, C 2 C,

K 2 K and H is the entropy fun
tion (see e.g. [32, pp.81�82℄). As-

suming the mutual independen
y between the key and the plaintext

one 
an write H(P;K) = H(P ) + H(K). Cryptosystems that are

not perfe
tly se
ure 
an be only relatively se
ure.

A 
ryptosystem is said to be 
omputationally se
ure, if it is not

possible to perform an atta
k against it in a real time with really

available 
omputing power (number of pro
essors, amount of mem-

ory and dis
 storage, et
.).

Moreover, Shannon introdu
ed also the notion of ideal se
re
y

1

.

When the uni
ity distan
e is in�nite, one speaks about ideal se
re
y.

The uni
ity distan
e determines the amount of a 
iphertext needed

1

An ideally se
ure 
ryptosystem does not have to be perfe
tly se
ure!
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for �nding the 
orresponding plaintext uniquely (see [78, pp.235�

236℄).

Basi
 assumptions for 
ryptanalysis were formulated by Ker
k-

ho�s in the 19-th 
entury. A

ording to them a 
ryptanalyst has

detailed knowledge about the 
ryptosystem, in
luding all the details

about the algorithm and also about its te
hni
al implementation. If

the 
ryptanalyst, having this knowledge, is not able to break the


ryptosystem, it is reasonable to assume that an atta
ker will not

be able to break this 
ryptosystem without this knowledge.

The goal of an atta
k on a 
ryptosystem might be to �nd the

de
ryption key, the plaintext, et
. Knudsen 
lassi�ed the following

four 
ategories of breaking an algorithm [43℄:

total break. An atta
ker �nds the de
ryption key.

global dedu
tion. An atta
ker �nds an algorithm for de
rypting

the 
iphertext without knowing the de
ryption key.

instan
e (or lo
al) dedu
tion. An atta
ker �nds the plaintext of

an inter
epted 
iphertext.

information dedu
tion. An atta
ker gains some information about

the key or plaintext.

Atta
ks 
an be further subdivided into the following 
ategories

a

ording the amount of information an atta
ker has:


iphertext-only atta
k. An atta
ker knows only a 
iphertext

C 2 C.

known plaintext atta
k. An atta
ker is given a plaintext P 2 P

and the 
orresponding 
iphertext C 2 C, C = e

k

e

(P ) or several

plaintext-
iphertext pairs.


hosen plaintext atta
k. An atta
ker 
an 
hoose a set of plain-

texts and obtain the 
orresponding 
iphertexts.

Further details 
on
erning the above mentioned atta
ks, in
lud-

ing some other atta
ks, 
an be found in [78, pp.5�7℄.

It 
annot be said that there is a standard set of atta
ks on a

stream 
ipher as it is for a blo
k 
ipher (di�erential and linear


ryptanalysis, related keys atta
k, et
.). Neither there are no su
h

important results relating the se
urity of a stream 
ipher to some
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of its 
onstru
tion parameters as there is for a blo
k 
ipher (e.g.

the relation between the number of rounds and resistan
e against

di�erential 
ryptanalysis or the notion of provable se
urity against

the di�erential and linear 
ryptanalysis, see e.g. the blo
k 
ipher

MISTY and the papers by M.Matsui). The atta
ks against stream


iphers usually exploit some spe
i�
 weakness of the design.

In the following, we try to point out some general and most 
om-

mon atta
ks against stream 
iphers.

Brute-for
e atta
k

Any relatively se
ure 
ryptosystem is vulnerable to a brute-for
e

atta
k (sometimes also 
alled exhaustive sear
h). The idea behind

this atta
k is simply to try all the keys. For ea
h key a 
iphertext

is de
rypted and the obtained plaintext is 
he
ked whether it is the

"right" one. Usually some assumptions about the plaintext must

be done, e.g. a language it is written in is known, whi
h enables to

sear
h for words, or possibly some stru
ture a plaintext message has

is known, whi
h might be the 
ase of database re
ords. Thus it is

natural to require any 
ryptosystem to have a large keyspa
e and a

�at probability distribution.

Divide-and-
onquer atta
k

The idea of a divide-and-
onquer atta
k is to divide the key into

parts (not ne
essarily disjoint), perform atta
ks to gain these parts,

put them together and 
onquer. Assume a keystream generator that


onsists of several LFSRs. Let the initial loadings of these LFSRs

be the key. The divide-and-
onquer strategy is to perform atta
ks

against the individual LFSRs (see e.g. 
orrelation atta
ks in this

Se
tion hereafter).

This atta
k is usually 
ombined with other atta
ks or te
hniques.

One of them is a guess-and-
he
k te
hnique. It is very 
ommon

in the 
ontext of known (or 
hosen) plaintext atta
k. The idea

is to divide the key into parts, 
hoose some of them, 
al
ulate the

remaining parts of the key and �nally 
he
k the key, e.g. whether the

obtained key produ
es the keystream an atta
ker has. A pra
ti
al

example of this approa
h is the atta
k on the stream 
ipher ORYX

[94℄.
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Time-memory tradeo� atta
k

The time-memory tradeo� on a stream 
ipher is in general an

adaptation of the time-memory tradeo� developed by Hellman for

blo
k 
iphers. Su
h atta
ks 
an be applied to almost any 
ryptosys-

tem, but they are feasible only when the number of internal states

is relatively small. The basi
 idea of the time-memory tradeo� is

to keep a large set A of pre
omputed states on a hard disk, and

to 
onsider the large set B of states through whi
h the algorithm

progresses during the a
tual generation of output bits. Any inter-

se
tion between A and B will enable us to identify an a
tual state

of the algorithm from the stored information [5℄.

Time-memory tradeo� is one of the basi
 ideas of atta
ks [5℄, [6℄,

[28℄ on the stream 
ipher A5/1 whi
h is used in GSM.

Correlation atta
ks

Correlation atta
ks are studied mostly in 
onne
tion to LFSRs.

Let us have a keystream generator, whi
h 
ontains an LFSR as one

of its building blo
ks. Let s = s

0

; s

1

; : : : ; s

N�1

be the (unknown) out-

put of this LFSR. Assume, the keystream bits z = z

0

; z

1

; : : : ; z

N�1

and the value p = Pr(z

i

= s

i

) > 1=2 are known (a textbook exam-

ple is the Ge�e's generator, see Se
tion 3.3). The idea behind the


orrelation atta
ks is to exploit the 
oin
iden
e between the known

keystream and the unknown output of the LFSR to �nd the initial

loading of this LFSR.

Siegenthaler's 
orrelation atta
k

The �rst published 
orrelation atta
k [80℄ is based on an exhaus-

tive sear
h. The output of an atta
ked LFSR is produ
ed for ea
h

of its possible initial loadings. The real 
oin
iden
e between the

known keystream and ea
h of the produ
ed output sequen
es from

the LFSR is determined. The initial loading for whi
h the di�eren
e

between the real and theoreti
al 
oin
iden
e is the smallest one, is

the best 
andidate to be the key. This atta
k is infeasible when a

su�
iently long LFSR (nowadays about 80 bits) is used.
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Meier's-Sta�elba
h's fast 
orrelation atta
ks

Meier's-Sta�elba
h's fast 
orrelation atta
ks (algorithms A and

B) [53℄ rank among the �rst fast 
orrelation atta
ks that are not

based on an exhaustive sear
h in the keyspa
e. (Algorithm A is

mentioned also in [30℄, where the des
ription of several other atta
ks


an be found.)

Re
all that the sequen
e s is a solution to a linear re
urring se-

quen
e given by a left 
hara
teristi
 polynomial a(x), deg a(x) = m.

Let (t + 1) be the number of non-zero 
oe�
ients of a(x). Ea
h

bit s

i

of the sequen
e s (ex
ept several bits at the borders) may be

written in the linear re
urring relation at t + 1 positions. In other

words, t + 1 relations may be written for ea
h bit of s using the

linear re
urring relation. Re
all that a(x)

j

= a(x

j

), i = 0; 1; 2; : : :

holds for j = 2

i

(in �elds of 
hara
teristi
 2). This yields another

relations. All these relations are also 
alled the parity 
he
ks. Let us

substitute the individual bits from the seqeun
e s in parity 
he
ks

by the 
orresponding bits from z. Not ne
essarily all of them will

hold (or will be valid). This leads us to the idea of an iterative


orrelation atta
k, whi
h 
an be informally des
ribed as follows:

1. �nd a set of (linearly independent) parity 
he
ks for ea
h bit

in the sequen
e z,

2. a

ording to the number of parity 
he
ks that hold, de
ide

whether s

i

= z

i

or s

i

6= z

i

,

3. if all the parity 
he
ks hold, stop the algorithm,

4. alter the bits in the sequen
e z for whi
h the de
ision was

s

i

6= z

i

and go to the step 2.

For further analysis we introdu
e a statisti
al model based on the

set of (linearly independent) parity 
he
ks [53℄

S � B

i1

� B

i2

� � � � �B

it

= 0; i = 1; 2; : : : ; o;

where S is a random variable 
orresponding to s

n

, B

ij

are random

variables 
orresponding to those bits from s that appear in the i-th

parity 
he
k for s

n

. The average number of parity 
he
ks o for one

bit will be dis
ussed later.

Similarly for the keystream sequen
e:

L

i

= Z � Y

i1

� Y

i2

� � � � � Y

it

; i = 1; 2; : : : ; o:
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Let us assume that the used random variables are mutually inde-

pendent and uniformly distributed. It follows that

Pr(Z = S) = Pr(B

ij

= Y

ij

) = p;

Pr(

t

M

j=1

Y

ij

=

t

M

j=1

B

ij

) = f(p; t);

f(p; t) = pf(p; t� 1) + (1� p)(1� f(p; t� 1));

f(p; 1) = p:

Sometimes for simpli
ity we write only f instead of f(p; t).

The probability that z

i

= s

i

provided h of o parity 
he
ks hold

(this 
ondition is here denoted as 
ond:) is then

p

�

= Pr(z

i

= s

i

=
ond:) =

=

pf(p;t)

h

(1�f(p;t))

o�h

pf(p;t)

h

(1�f(p;t))

o�h

+(1�p)(1�f(p;t))

h

f(p;t)

o�h

:

An average number of parity 
he
ks o for a single bit is

o = o(N;m; t) � log

2

(N=(2m))(t+ 1):

The probability that at least h of o parity 
he
ks hold for a 
hosen

bit z

i

is given by the following relation:

Q(p; o; h) =

o

X

i=h

�

o

i

�

pf

i

(1� f)

o�i

+ (1� p)(1� f)

i

f

o�i

:

Algorithm B

This algorithm is based on an iterative modi�
ation of the key-

stream sequen
e z, whi
h yields the sequen
e s. The 
onvergen
e

of this pro
ess as well as the 
orre
tness of the solution is not guar-

anteed! However this atta
k works usually �ne even when there are

some linear dependen
ies in the set of the parity 
he
ks [10℄.

The probability that at most h of o parity 
he
ks hold for z

i

is

U(p; o; h) =

h

X

i=0

�

o

i

�

pf

i

(1� f)

o�i

+ (1� p)(1� f)

i

f

o�i

:

Thus U(p; o; h)N is then the average number of bits that will be

altered.
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The probability that z

i

= s

i

and at most h of o parity 
he
ks

hold for z

i

is

V (p; o; h) =

h

X

i=0

�

o

i

�

pf

i

(1� f)

o�i

and the probability that z

i

6= s

i

and at most h of o parity 
he
ks

hold for z

i

is

W (p; o; h) =

h

X

i=0

�

o

i

�

(1� p)(1� f)

i

f

o�i

:

I(p; o; h)N = (W (p; o; h)� V (p; o; h))N is then the in
rease of 
or-

re
tly altered bits.

The algorithm works as follows:

1. Cal
ulate o and �nd the value h (denoted as h

max

) for whi
h

I(p; o; h) is maximal.

2. Cal
ulate the threshold probability p

thr

= (1=2)(p

�

(p; o; h

max

)+

p

�

(p; o; h

max

+ 1)) and the expe
ted number of bits for whi
h

their p

�

< p

thr

using the relationN

thr

= U(p; o; h

max

)N . Choose


 - the maximal number of iterations in one round. (A

ording

to the performed experiments in [10℄, the best 
hoi
e is 
 = 2.)

3. Set the iteration 
ounter; I = 0.

4. Cal
ulate a new p

�

for ea
h bit of the analyzed sequen
e z.

(These probabilities are stored and used in iterations when

I > 0 in the relations for f(p; t) whi
h will be 
hanged into

f(p

�

1

; p

�

2

; : : : ; p

�

t

; t), see [53℄ for details.)

5. The algorithm terminates if all the parity 
he
ks hold. The

obtained modi�ed sequen
e z is the output from the atta
ked

LFSR and its starting bits form its initial loading.

6. Determine N

w

whi
h is the number of bits in z with their p

�

<

p

thr

. If (N

w

� N

thr

or I = 
) then alter those bits z

i

, for whi
h

their p

�

< p

thr

, forget the stored values p

�

for all the bits in z

(i.e. assume again that Pr(z

i

= s

i

) = p) and go to the step 3.

7. I = I + 1. Go to the step 4.
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This atta
k is feasible when a sparse 
hara
teristi
 polynomial is

used, i.e. t � 10. The length of the LFSR 
an be up to 1 000. (The

largest su

esfully atta
ked LFSR known to me was 9 689 bits long,

t = 2, p = 0:75, N = 700 000, see [10℄ for details.) Algorithm B

works also when p is 
lose to 1=2, e.g. for values 0:55.

The following parameters in�uen
e the su

ess of this algorithm:

p, t, N=m. The estimates of 
omplexity of this algorithm based on

the values of the above mentioned parameters 
an be found in [53℄.

Comparison of 
hosen iterative 
orrelation atta
ks

A 
omparison of several iterative 
orrelation atta
ks based on a

number of experimental atta
ks 
an be found in [56℄. A large number

of experimental results on various iterative 
orrelation atta
ks 
an

be found also in [10℄. These atta
ks 
an be subdivided into the

following three 
ategories:

1. alternation of bits in the keystream z is based on the number

of satis�ed parity 
he
ks (e.g. linear syndrome atta
k [95℄, see

also an improved version in [96℄),

2. alternation of bits in the keystream z is based on the esti-

matation of the relevant àposterior probabilities (i.e. Pr(z

i

=

s

i

=
ond:)) obtained by using the average àposterior probability

estimated in the previous iteration as the prior probability (i.e.

Pr(z

i

= s

i

)) in the 
urrent iteration (e.g. simpli�ed algorithm

from [55℄),

3. alternation of bits in the keystream z is based on the esti-

matation of the relevant àposterior probabilities (i.e. Pr(z

i

=

s

i

=
ond:)) obtained by using the àposterior probabilities esti-

mated in the previous iteration as the prior probabilities (i.e.

Pr(z

i

= s

i

)) in the 
urrent iteration (e.g. simpli�ed algorithm

B from [53℄, see also this Se
tion above).

Atta
ks based on these prin
iples were tested on a 10 000-bits

long keystream, produ
ed by an LFSR with asso
iated left 
har-

a
teristi
 polynomial 1 + x

5

+ x

47

, probabilities Pr(z

i

= s

i

) were

p

1

= 0:6, p

2

= 0:575, p

3

= 0:565. Algorithm based on the 1st

prin
iple su

eeded in re
onstru
tion of the output from the LFSR

only for p

1

. Algorithm that worked a

ording to the 2nd prin
iple

was su

essful both for p

1

and p

2

. Finally, the algorithm based on
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the 3rd prin
iple su

eeded in re
onstru
tion of the output from the

LFSR for all studied probabilities.

Based on the results from the experimental analysis of iterative


orrelation atta
ks, the authors in [56℄ suggest to use algorithms,

based on the 1st or on the 2nd prin
iple, for high probabilities

Pr(z

i

= s

i

). The main reasons are the higher speed of the algo-

rithms and lower implementation 
osts. The algorithms based on

the 3rd prin
iple are suitable for probabilities Pr(z

i

= s

i

) 
lose to

1=2. However, it was suggested to perform only �rst few rounds of

this algorithm and then to use algorithms based on the 1st or on

the 2nd prin
iple. Su
h a 
ooperative atta
k strategy was experi-

mentally studied in [10℄.

In order to attain resistan
e against the des
ribed 
orrelation

atta
ks, sparse 
hara
teristi
 polynomials should be avoided and

the probability that s

i

= z

i

should be as 
lose as possible to 1=2.

The impa
t of parity 
he
ks used in iterative 
orrelation atta
ks

was studied in [12℄. Most appropriate ones are the parity 
he
ks

with a small number of elements, preferably 4 or 5.

New 
orrelation atta
ks [35℄, [37℄, [36℄ are appli
able even though

a dense 
hara
teristi
 polynomial is used and the probability of 
o-

in
iden
e is very 
lose to 1=2.

A 
orrelation atta
k against a nonlinearly �ltered LFSR was

studied in [81℄, [77℄. The idea behind this atta
k is to 
onstru
t

an equivalent keystream generator that is in fa
t a polynomial 
om-

bination of several identi
al LFSRs. The atta
k does not require the

knowledge of the �lter fun
tion. However it is based on an exhaus-

tive sear
h through the all initial loadings of the atta
ked LFSR,

whi
h makes it infeasible for a su�
iently large LFSR.

Other atta
ks

There is no known fast 
orrelation atta
k on a 
lo
k-
ontrolled

LFSR. This 
ase is in general very 
ompli
ated. However there

were obtained some results when the de
imation sequen
e has some

spe
ial properties, see e.g. [97℄ (the 
omplexity of this atta
k is

exponential with respe
t to the length of the LFSR).
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The di�erential 
ryptanalysis [15℄ is appli
able on stream 
ip-

hers, too. This atta
k was studied mostly in 
onne
tion to natural

sequen
e generators (see Se
tion 3.3 or [15℄).

In past years there appeared the so 
alled distinguishing atta
ks

(e.g. against the stream 
ipher SEAL). Their obje
tive is to dis-

prove the assumption about the randomness of the keystream by

distinguishing this keystream from a truly random sequen
e. Re
all

that there are also generi
 distinguishing atta
ks on blo
k 
iphers in

OFB and Counter Mode. For a blo
k 
ipher with blo
k size m, 2

m=2

blo
ks of a keystream are su�
ient to distinguish this keystream

from a truly random sequen
e. This is a
hieved by looking for re-

peated o

urren
es of blo
ks, whi
h are not possible when the stream

is generated by a blo
k 
ipher in OFB or Counter Mode (unless the

sequen
e has started to repeat itself) [62℄.

3.6 Hash fun
tions

Hash fun
tions 
ompress a string of an arbitrary length to a string

of a �xed length. They have a large number of appli
ations in 
om-

puter s
ien
e (optimized/fast a

ess to the stored data), and as well

in 
ryptography (integrity prote
tion of stored/transmitted data).

However hash fun
tions used in 
ryptographi
 appli
ations may need

to meet stronger requirements than those for other appli
ations.

Probably the best publi
ation that deals with hash fun
tions is [61℄.

A

ording to the number of inputs one 
an subdivide hash fun
-

tions into two 
lasses [63℄:

� one input (a message to be hashed). These are 
alled Manipu-

lation Dete
tion Codes (MDCs), sometimes also 
ryptographi


hash fun
tions or just only hash fun
tions.

� two inputs (a message to be hashed and a key). If the key is kept

se
ret one 
alls them Message Authenti
ation Codes (MACs).

If the key is publi
 one 
alls them Universal One-Way Hash

Fun
tions (UOWHFs).

Next we give an informal basi
 de�nition of a hash fun
tion and

of a 
ollision resistant hash fun
tion.
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De�nition 3.6.1 ([63℄, informal) A one-way hash fun
tion is a

fun
tion h : f0; 1g

�

! f0; 1g

m

, where f0; 1g

�

is the set of all �nite

binary strings and m is a given integer

2

, satisfying the following


onditions:

1. the hash fun
tion must be one way in the sense that given a y in

the image of h, it is "hard" (i.e. 
omputationally infeasible in

a real time) to �nd a message x su
h that h(x) = y (preimage

resistant);

2. given an x in the domain of h and h(x), it is "hard" to �nd

a message x

0

6= x, su
h that h(x

0

) = h(x) (se
ond preimage

resistant).

De�nition 3.6.2 ([63℄, informal) A 
ollision resistant hash fun
-

tion is a one-way hash fun
tion h : f0; 1g

�

! f0; 1g

m

for whi
h it is

"hard" to �nd two distin
t messages x; x

0

, su
h that h(x) = h(x

0

).

Clearly, both De�nitions given above 
an be extended for any

alphabet Q.

However, only a few known results follow from 
ollision resistan
e

[1℄. One of the most important ones is that this property is preserved

under 
haining [16℄. In order to prove some se
urity results for

pra
ti
al systems, one is usually for
ed to use other de�nitions, e.g.

su
h as Okamoto's 
orrelation free one-way hash fun
tions.

De�nition 3.6.3 ([1℄, informal) A fun
tion h : f0; 1g

�

! f0; 1g

m

is 
orrelation free, if it is 
omputationally infeasible to �nd X; Y 2

f0; 1g

�

, su
h that the Hamming weight of h(X)� h(Y ) is less than

one would expe
t to get from random 
han
e if we 
al
ulated h(M)

for a lot of M 2 f0; 1g

�

.

Intuitively, this de�nition means that as well as having no 
olli-

sions, we get no near misses either.

3.7 Design of hash fun
tions

Most known hash fun
tions are based on a 
ompression fun
tion

with �xed size inputs [63℄. Computation of the hash value 
an be

des
ribed as follows:

2

Nowadays 
ommonly used values for m are 128, 160, 196, 256.
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� A message to be hashed x is divided into blo
ks x

1

; x

2

; : : : ; x

t

of a �xed size. If the last blo
k is shorter, it is padded using a

padding rule to have a proper length.

� The hash value h(x) is 
omputed in an iterative way using the


ompression fun
tion f :

H

0

= IV , H

i

= f(x

i

; H

i�1

), i = 1; 2; : : : ; t,

h(x) = g(H

t

).

Here the IV is a given initial ve
tor and g is the output fun
tion

whi
h is in many 
ases the identity fun
tion.

Both, IV and the padding rule, signi�
antly a�e
t the se
urity

of the hash fun
tion. IV is re
ommended to be a part of the hash

fun
tion des
ription. The padding rule should be designed in su
h

a way that there do not exist two messages that will be padded to

the same padded message.

A general model for MACs is similar to the previously des
ribed

model for MDCs.

A

ording to the 
onstru
tion of a 
ompression fun
tion, hash

fun
tion 
an be subdivided into the following 
ategories:

MDCs based on a blo
k 
ipher. An obvious motivation for su
h

a 
onstru
tion is to adopt the knownledge on blo
k 
iphers due

to the similarities between an iterative hash fun
tion and a

blo
k 
ipher. Moreover, it enables to reuse existing optimized

designs and implementations whi
h yields in the 
ost redu
-

tion of 
ryptographi
 hardware. Blo
k 
iphers are fast enough

to provide su�
ient speed for hashing. However, 
ustom de-

signed hash fun
tions are usually mu
h faster (realize that hash

fun
tions based on blo
k 
iphers require a key 
hange after ev-

ery en
ryption). One might naturally believe that the se
urity

of a blo
k 
ipher will be handed over to the derived hash fun
-

tion. On the other hand, some weaknesses may appear due to

the spe
i�
 usage of a blo
k 
ipher.

Various sub
ategories may be identi�ed a

ording to the rela-

tion among the hash value length, the key size, and the blo
k

size (see [63℄ for a detailed information).

MDCs based on algebrai
 stru
tures and mathemati
al

problems. These hash fun
tions are based on known di�
ult
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mathemati
al problems, usually from number theory. This al-

lows in many 
ases to prove se
urity properties of a 
onstru
ted

hash fun
tion. The another design approa
h is to use opera-

tions from various algebrai
 stru
tures. One of the main rea-

sons for su
h an approa
h is the hardware reusability (e.g. mod-

ular arithmeti
 in RSA), sin
e hash fun
tions are typi
ally used

with signature s
hemes. See [63℄ for more detailed information.

There were some designs also based on quasigroups published

in re
ent years, e.g. [27℄, [50℄, [21℄, [22℄ (
ryptanalysis of the

last two designs 
an be found in Se
tion 4.4). Finally, MAC

based on a quasigroup 
an be found in [2℄.

Custom designed MDCs. This 
ategory 
overs the designs that

are espe
ially oriented on hashing. A 
ommon way is to use the

so-
alled Davies-Meyer approa
h: the 
ompression fun
tion is

a blo
k 
ipher, keyed by the text input x

i

; the plaintext is the

value H

i�1

, whi
h is also added to the 
iphertext (feedforward)

[63℄. It must be said that almost all hash fun
tions used in

pra
ti
e rank into this 
ategory.

Examples of 
ustom designed hash fun
tions are the well known

algorithms su
h as MD4, MD5 designed by Rivest. A pra
ti
al

atta
k against the MD4 
an be found in [20℄. Several problems


on
erning 
ollision resistan
e in MD5 were shown in [8℄, how-

ever they do not represent a real threat (see e.g. the evaluation

of MD5 in the CRYPTREC Proje
t). Many hash fun
tion de-

signs were inspired by the MD4 hash fun
tion. We also speak

about the MDx-family [63℄. Another very popular hash fun
-

tion is SHA-1. It is an improved version of MD4, designed by

NIST [25℄ (a newer version with 256, 384 and 512-bit hash value

length is nowadays prepared). The "European" hash fun
tion,

designed by Dobbertin et al. [19℄, is the RIPEMD-160. It is

based on the design of MD4, too. We re
all that SHA-1 and

RIPEMD-160 are the only re
ommended hash fun
tions in the

Order of the National Se
urity Authority of the Slovak Re-

publi
 pursuant to the Ele
troni
 Signature Law [60℄. A large

number of MDCs and MACs 
an be found also in [78℄, [54℄.

Although almost all the pra
ti
ally used hash fun
tions rank into

the 
ategory of 
ustom designs, a lot of work has been done in

the area of the design of MDCs based on blo
k 
iphers and also
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on mathemati
al problems and algebrai
 stru
tures. The study of

these 
onstru
tions helps us to better understand hash fun
tion as

a 
ryptographi
 primitive.

3.8 Atta
ks on hash fun
tions

In the following we present a taxonomy of atta
ks against MDCs,

as it was des
ribed in [63℄.

Atta
ks independent of the algorithm

These atta
ks depend only on the size of the hash result (m bits)

and do not exploit spe
i�
 features of the hash algorithm.

Random (2nd) preimage atta
k. The atta
ker sele
ts a random

message and hopes that the given hash result will be hit. If

the hash fun
tion has the required "random" behaviour, his

probability of su

ess equals 1=2

m

, where m is the number of

bits of the hash result. In order to guarantee se
urity for the

next 15-20 years

3

, m should be at least 80.

Birthday atta
k. The atta
ker generates r

1

variations on a bogus

message and r

2

variations on a genuine message. The expe
ted

number of 
ollisions equals r

1

r

2

=m. The probability of �nding

a bogus message and a genuine message that hash to the same

result is given by 1� exp(�r

1

r

2

=2

m

), whi
h is about 63% when

r

1

= r

2

= 2

m=2

. Referen
es to several tri
ks that 
an be used

to improve this atta
k in pra
ti
e 
an be found in [63℄.

Atta
ks dependent on the 
haining

Meet-in-the-middle atta
k. This atta
k is a variation on the

birthday atta
k, but instead of 
omparing the hash result, one


ompares intermediate 
haining variables. The atta
k enables

an atta
ker to 
onstru
t a (2nd) preimage, whi
h is not pos-

sible for a simple birthday atta
k. The opponent generates r

1

3

One has to realize that, a

ording to the famous Moore's law, the speed of 
omputers is

multiplied by four every three years
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variations on the �rst part of a bogus message and r

2

varia-

tions on the last part. Starting from the initial value and going

ba
kwards from the hash result, the probability for a mat
hing

intermediate variable is again 1 � exp(�r

1

r

2

=2

m

). The only

restri
tion that applies to the meeting point is that it 
annot

be the �rst or last value of the 
haining variable.

Fixed point atta
k. The idea of this atta
k is to look for an H

i�1

and x

i

su
h that f(x

i

; H

i�1

) = H

i�1

. If the 
haining variable

is equal to H

i�1

, it is possible to insert an arbitrary number

of blo
ks equal to x

i

without modifying the hash result. Of


ourse this atta
k 
an be extended to �xed points that o

ur

after more than one iteration.

3.9 Proje
ts NESSIE and CRYPTREC

NESSIE

New European S
hemes for Signatures, Integrity and En
ryption

(NESSIE) was a 3-year resear
h proje
t within the Information So-


ieties Te
hnology (IST) Programme of the European Commission

under the umbrella of the Fifth Framework Programme (FP5) [68℄,

[64℄.

The main obje
tive of the proje
t was to put forward a portfolio

of strong 
ryptographi
 primitives that had been obtained after an

open 
all and had been evaluated using a transparent and open pro-


ess. The proje
t goal is to widely disseminate the proje
t results

and to build 
onsensus based on these results using the appropri-

ate fora (a proje
t industry board, 5th Framework programme, and

various standardization bodies). A �nal obje
tive is to maintain

the strong position of European resear
h while strengthening the

position of European industry in 
ryptography [68℄.

The proje
t laun
hed an open 
all (Mar
h 2000) for a broad set

of primitives providing 
on�dentiality, data integrity, and authenti-


ation. These primitives in
lude blo
k 
iphers, stream 
iphers, hash

fun
tions, MAC algorithms, digital signature s
hemes, and publi
-

key en
ryption s
hemes. In addition, the NESSIE 
all asked also for

evaluation methodologies for these primitives. The 
all also spe
i�ed
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the main sele
tion 
riteria: long-term se
urity, market requirements,

e�
ien
y and �exibility.

As it 
an be seen, the s
ope of the NESSIE 
all was mu
h wider

than that of the AES 
all laun
hed by NIST [58℄, whi
h was re-

stri
ted to 128-bit blo
k 
iphers. It is 
omparable to that of the

RACE Proje
t RIPE (RACE Integrity Primitives Evaluation, 1988-

1992) [70℄ (
on�dentiality algorithms were ex
luded from RIPE for

politi
al reasons) and that of the Japanese CRYPTREC proje
t

(whi
h also in
ludes key establishment proto
ols and pseudo-random

number generation) [65℄.

Another di�eren
e is that both AES [58℄ and CRYPTREC [65℄

intend to produ
e algorithms for government standards. The re-

sults of NESSIE will not be adopted by any government or by the

European 
ommission. However, the intention is that relevant stan-

dardization bodies will adopt these results.

There were all together 40 submissions to the NESSIE Proje
t.

Of 
ourse, there was an evaluation methodology (both for se
u-

rity and performan
e evaluation) and a software toolbox to support

the evaluation (an improved version of the tools developed by the

RIPE, but it is not publi
ly available) developed within the NESSIE

proje
t.

Due to the s
ope of this dissertation, we will mention only stream


iphers, hash fun
tions and MACs.

The following syn
hronous stream 
iphers were evaluated: BMGL,

Leviathan, LILI�128, SNOW, SOBER-t16, and SOBER-t32.

The portfolio of suggested stream 
iphers was empty!

The NESSIE portfolio of 
ollision-resistant hash fun
tions in-


ludes Whirpool, SHA-256, SHA-384, and SHA-512.

The NESSIE portfolio of MACs in
ludes UMAC, TTMAC, EMAC,

and HMAC.

See materials (e.g. �nal de
ision) in [68℄ for the explanation.

The relevant primitives from the NESSIE portfolia were sug-

gested to be in
orporated into e.g. ISO/IEC JTC 1/SC 27, IS

10118-3, ISO 18033.

A new proje
t ECRYPT - European Network of Ex
ellen
e in

Cryptology started within the Information So
ieties Te
hnology

(IST) Programme of the European Commission under the umbrella

of the Sixth Framework Programme (FP6) only a few months ago

[67℄.
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CRYPTREC

CRYPTREC is a proje
t of the Japanese Information-Te
hnology

Promotion Agen
y (IPA). Its main obje
tive is to prepare a list

of 
ryptographi
 primitives and te
hniques available for use by the

e-Government [65℄. (Japan's e-Government proje
t was set for in-

auguration by �s
al year 2003.)

The proje
t laun
hed an open 
all (June and July 2000) for a

broad set of primitives. The 
ategories were publi
-key 
ryptosys-

tems, symmetri
 
iphers (stream 
iphers, 64- and 128-bit blo
k 
i-

phers), hash fun
tions and pseudo-random number generators. Be-

sides the submitted algorithms also a large number of non-submitted

algorithms were evaluated. Due to the national 
hara
ter of this

proje
t (e-Government), the evaluators were only from Japan.

These stream 
iphers were evaluated in the CRYPTREC proje
t:

MULTI-S01, TOYOCRYPT-HS1, C4-1, FSAngo, MUGI, and RC4.

Among them, MUGI, MULTI-S01, and RC4 were evaluated as "pra
-

ti
ally se
ure" and are the re
ommended ones (see [39℄ for further

details).

The following hash fun
tions were evaluated in the CRYPTREC

proje
t: MD5, RIPEMD-160, SHA-1, and draft SHA-256, 384, 512.

All of them, ex
ept MD5, were evaluated as "pra
ti
ally se
ure" and

are the re
ommended ones (see [39℄ for further details).

The �nal de
ision about other re
ommended 
ryptographi
 prim-

itives 
an be found in [66℄.
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Chapter 4

Results

The following results of the resear
h are presented in this se
tion:

� Cryptographi
 properties of the 
on
atenation of periods of sev-

eral ml-pseudorandom sequen
es are studied in Se
tion 4.1.

This se
tion is based on [87℄, [88℄.

� Se
tion 4.2 deals with 
ryptanalysis of one stream 
ipher based

on the 
on
atenation of transformed runs of two ml-sequen
es.

It is based on [85℄, [86℄.

� Several atta
ks on one stream 
ipher based on a quasigroup

(proposed in [59℄) are des
ribed in Se
tion 4.3. Main results of

this se
tion were published in [90℄, [91℄.

� The properties of one hash fun
tion based on a quasigroup

(proposed in [21℄, [22℄) are studied in Se
tion 4.4. This se
tion

is based on the papers [92℄, [93℄.

4.1 A new 
onstru
tion of a 
ompletely equidis-

tributed sequen
e

In the following we introdu
e ne
essary notions 
on
erning 
om-

pletely equidistributed sequen
es (for more details see [44℄, [45℄).

De�nition 4.1.1 b-ary sequen
eX

1

; X

2

; X

3

; : : : is 
alled k-distribu-

ted, if Pr(X

n+1

= a

1

; X

n+2

= a

2

; : : : ; X

n+k

= a

k

) = 1=b

k

, for all

ordered k-tuples (a

1

; a

2

; : : : ; a

k

), a

i

2 f0; 1; : : : ; b � 1g. A sequen
e

is 
alled 
ompletely equidistributed, if it is k-distributed for all k.
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A simple 
onstru
tion of a k-distributed b-ary sequen
e (k 2 N ,

k � 2) was proposed by Ford [26℄. Choose X

1

= X

2

= � � � = X

k

= 0

and then 
hoose X

n+k

for 0 < n � b

k

a

ording to the following rule:

X

n+k

= 0 if and only if all k-tuples (X

n+1

; X

n+2

; : : : ; X

n+k�1

; j) have

already appeared in the sequen
e for 1 � j < b.

For example, if b = k = 3, and if we 
hoose X

n+k

to be the small-

est value 
onsistent with the above rule, we obtain

00011121101221201021002220200.

Now let A(b; k) be the �nite k-distributed b-ary sequen
e 
onsist-

ing of its �rst b

k

terms, with ea
h term divided by b. Thus, ea
h

element of A(b; k) is a real number in [0; 1). Further, let A(b; k)

n

denote the sequen
e A(b; k) repeated n times.

The �rst 
onstru
tion of a 
ompletely equidistributed sequen
e is

known due to Knuth (see [44℄) and is shown in the following theorem.

Theorem 4.1.2 The sequen
e of real numbers

A(2; 1)

1:2

2

; A(2

2

; 2)

2:2

4

; A(2

3

; 3)

3:2

6

; : : :

is 
ompletely equidistributed.

We found that although Ford's and Knuth's sequen
es have uni-

form distribution of patterns, they posses several weaknesses (see

[87℄ for details). Ford's k-distributed b-ary sequen
e appears to

be vulnerable to di�erential 
ryptanalysis. It has a non-�at dis-

tribution of di�eren
e parameters (see [15℄) with distan
es between

peaks equal to k. Similar weaknesses appear in (a �nite part of)

Knuth's 
ompletely equidistributed sequen
e, too. From a pra
ti-


al point of view both sequen
es are di�
ult to be produ
ed by

a hardware-designed generator whi
h makes them improper for a

usage in real-world appli
ations. The Knuth's 
onstru
tion of a


ompletely equidistributed real-valued sequen
e leads to an in�nite

sequen
e and is based on the 
on
atenation of an in�nite number of

k-distributed b-ary sequen
es.

These ni
e statisti
al properties of 
ompletely equidistributed se-

quen
es motivated us to �nd another (more pra
ti
al) 
onstru
tion

of su
h a sequen
e. Sin
e in 
omputer-world we have to deal with

�nite sequen
es only, we turn our attention to some �nite part of a

newly 
onstru
ted sequen
e.

The new 
onstru
tion of a 
ompletely equidistributed real val-

ued sequen
e is based on the 
on
atenation of ml-sequen
es. ml-
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sequen
es are almost k-distributed, only the all-zero k-tuple is miss-

ing in one period of this sequen
e. Proofs of the next results of this

se
tion are published in [88℄.

Theorem 4.1.3 Let p be a prime, l an integer, and b = p

l

. Further,

let ML

0

(b; k) be a �nite b-ary ml-sequen
e 
onsisting of the �rst

b

k

� 1 terms, generated by some primitive polynomial over GF (b).

Let ML(b; k) be 
onstru
ted from ML

0

(b; k) by dividing ea
h term

by b. Real valued sequen
e

ML(2; 1)

1:2

2

;ML(2

2

; 2)

2:2

4

;ML(2

3

; 3)

3:2

6

; : : :

is 
ompletely equidistributed.

Sket
h of the proof: The proof is similar to the proof of Theorem 3

in [44℄. The missing k-tuple in the ml-sequen
e is ignored just as the

e�e
ts that appear at the borders of the 
on
atenated sequen
es. �

If we 
onsider a deterministi
 hardware produ
tion of su
h a pseu-

dorandom sequen
e we are 
onstrained on building only (ultimately)

periodi
 sequen
es 
onsisting of terms from some �nite set.

Thus we may use only a part of the above de�ned sequen
e.

Moreover, we need to transform the terms of ML

0

(b; k) sequen
es,

e.g. into GF (2).

Be
ause of the pra
ti
al point of view we studied the lo
al prop-

erties, namely the 
on
atenation of two (or more)ml-sequen
es over

GF (2). Our analysis, using extensive 
omputer simulations, showed

that the 
on
atenation of two ml-sequen
es possesses a large linear


omplexity and moderate "out-of-phase" auto
orrelation fun
tion

magnitudes. Moreover, we found the period of su
h a sequen
e.

Theorem 4.1.4 Let u = u

0

; u

1

; : : : ; u

2

deg 


1

(x)

�2

, and v = v

0

; v

1

; : : : ;

v

2

deg 


2

(x)

�2

be one period of a sequen
e produ
ed by primitive polyno-

mial 


1

(x), and 


2

(x) 2 GF (2)[X℄, respe
tively, deg 


1

(x);

deg 


2

(x) > 1, deg 


1

(x) 6= deg 


2

(x), deg 


1

(x) 6= 2 and

deg 


2

(x) 6= 3, and vi
e versa. Then the period of a sequen
e

u; v; u; v; : : : produ
ed by 
on
atenation of sequen
es u and v is equal

to (2

deg 


1

(x)

� 1) + (2

deg 


2

(x)

� 1).

Proof: Assume that the period d of the sequen
e is one of the non-

trivial divisors of (2

deg 


1

(x)

� 1) + (2

deg 


2

(x)

� 1).
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Let MAX = maxfdeg 


1

(x); deg 


2

(x)g. It follows from the pattern

distribution property of a ml-sequen
e that

2

MAX

� 1�MAX < d � (2

deg 


1

(x)

� 1 + 2

deg 


2

(x)

� 1)=2. This in-

equality is a 
ontradi
tion. In the spe
ial 
ase, where deg 


1

(x) = 2,

deg 


2

(x) = 3, the possible periods are d = 5 and d = 10. In all other


ases the period of a sequen
e is d = (2

deg 


1

(x)

� 1) + (2

deg 


2

(x)

� 1).

�

This theorem 
an be generalized as follows:

Theorem 4.1.5 Let u

1

= u

1

0

; u

1

1

; : : : ; u

1

2

deg 


1

(x)

�2

, u

2

= u

2

0

; u

2

1

; : : :

u

2

2

deg 


2

(x)

�2

, : : : , u

n

= u

n

0

; u

n

1

; : : : ; u

n

2

deg 


n

(x)

�2

be one period of a se-

quen
e produ
ed by primitive polynomials 


1

(x); 


2

(x); : : : ;




n

(x) 2 GF (2)[X℄, 3 < deg 


1

(x) < deg 


2

(x) < � � � < deg 


n

(x)

or deg 


1

(x) > deg 


2

(x) > � � � > deg 


n

(x) > 3. Then the period

of a sequen
e u

1

; u

2

; : : : ; u

n

; u

1

; u

2

; : : : ; u

n

; : : : produ
ed by 
on
ate-

nation of sequen
es u

1

; u

2

; : : : ; u

n

is

P

n

i=1

(2

deg 


i

(x)

� 1).

Proof: The inequality used in the proof of the Theorem 4.1.4 must be

slightly modi�ed: 2

MAX

� 1�MAX < d � (

P

n

i=1

(2

deg 


i

(x)

� 1))=w,

where MAX = maxfdeg 


1

(x); deg 


2

(x); : : : ; deg 


n

(x)g, and w = 2

for n even, w = 3 for n odd. The rest of the proof is similar to the

proof of the Theorem 4.1.4. �

Con
lusions

There are 
ryptographi
 properties of some spe
ially 
onstru
ted

sequen
es studied in this se
tion. The period of a sequen
e ob-

tained by periodi
 
on
atenation of two or more ml-sequen
es is

determined. Moreover, a new 
onstru
tion of a 
ompletely equidis-

tributed real valued sequen
e based on the 
on
atenation of ml-

sequen
es is presented.

52



4.2 Con
atenation of runs from two ml-sequen
es

This se
tion deals with the 
ryptanalysis of one running key gener-

ator whi
h 
ombines the outputs of two asyn
hronously 
lo
ked LF-

SRs. Its keystream produ
tion 
ould be 
hara
terized as 
on
atena-

tion of transformed runs of twoml-sequen
es. Computer simulations

show a large linear 
omplexity of the produ
ed keystream sequen
e.

The period of the keystream and several theorems 
on
erning the

number of runs in an ml-sequen
e are proved. Conditions for pass-

ing the Golomb's randomness postulates are proposed. Results of

the performed statisti
al tests (FIPS 140-1, gap test, serial 
orrela-

tion test) are presented. Finally, a known plaintext atta
k against

the studied running key generator is presented.

This se
tion is based on author's papers [85℄ and [86℄.

Des
ription of the running key generator

The generator G 
onsists of two asyn
hronously 
lo
ked (in a

stop-and-go fashion) LFSRs L1 and L2, respe
tively. The key of

the generator is the initial state of the registers L1 and L2. Assume

the polynomials 


1

(x); 


2

(x) 2 GF (2)[X℄ asso
iated to the registers

L1, L2 are primitive. Let ~a = ~a

0

; ~a

1

; : : : , resp.

~

b =

~

b

0

;

~

b

1

; : : : be

the binary sequen
e produ
ed by 
lo
k-
ontrolled (as used in gener-

ator G) registers L1, resp. L2. Moreover, let a = a

0

; a

1

; : : : , resp.

b = b

0

; b

1

; : : : be the binary sequen
e produ
ed by the regularly


lo
ked registers L1, resp. L2.

Algorithm of the generator G:

1. Keystream bit produ
tion: z

t

= L1(t)� L2(t) = ~a

t

�

~

b

t

.

2. Next-state fun
tion: if z

t

= 1, then L1 
lo
ks, otherwise

(z

t

= 0) L2 
lo
ks.

Example 4.2.1 Assume the following realization of the generator

G: 


1

(x) = 1+x+x

2

and 


2

(x) = 1+x+x

3

. Let us look at the 
hanges

of the registers L1 and L2 states during the keystream generation.

(Output bits ~a

t

, resp.

~

b

t

are the underlined bits of the L1, resp. L2

states. The state of a register that 
lo
ks at a given time t is bold

typed. The underlined bits of bold typed states of register L1, resp.

L2 form runs (either blo
ks B

a

i

, resp. B

b

i

or gaps G

a

i

, resp. G

b

i

) of

the sequen
es a, and b, respe
tively.
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t State of L1 State of L2 z

t

Runs of a Runs of b

0 01 001 0 G

b

0

1 01 011 0

2 01 111 1 G

a

0

3 11 111 0 B

b

1

4 11 110 0

5 11 101 0

6 11 010 1 B

a

1

7 10 010 1

8 01 010 0 G

b

2

9 01 100 1 G

a

0

10 11 100 0 B

b

3

11 11 001 1 B

a

1

12 10 001 1

13 01 001 0

Table 4.1: Generation of a keystream of the generator G

Observation 4.2.2 The keystream produ
tion 
ould be 
hara
ter-

ized as joining transformed runs of sequen
es a and b (look at the

relation among underlined bold typed bits, z

t

, and runs of the se-

quen
es a, and b, respe
tively).

Analysis of the keystream

Theorem 4.2.3 Let u be an ml-sequen
e generated by an ml-LFSR

with asso
iated primitive polynomial 
(x), deg 
(x) > 1. Let

u

0

= u

1

= � � � = u

deg 
(x)�2

= 0; u

deg 
(x)�1

= 1. Then the num-

ber of runs in one period of the sequen
e u is even. Moreover, the

number of blo
ks is equal to the number of gaps.

This theorem follows from the fa
t u

2

deg 
(x)

�2

= 1.

Next, we determine the exa
t number of runs in one period of an

ml-sequen
e.

Theorem 4.2.4 Let u be a sequen
e generated by an ml-LFSR with

asso
iated primitive polynomial 
(x) 2 GF (2)[X℄, deg 
(x) > 1.

Assume u

0

= 0; u

1

= 0; : : : ; u

deg 
(x)�2

= 0; u

deg 
(x)�1

= 1. Then the

number of runs in one period of the sequn
e u is 2

deg 
(x)�1

.

Proof: A

ording to the Theorem 4.2.3, it is su�
ient to prove that

the number of blo
ks in one period of u = u

0

; u

1

; : : : ; u

2

deg 
(x)

�2

is
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equal to 2

deg 
(x)�2

. Let us denote B

u

[i℄ the number of blo
ks of

length deg 
(x)� i. It follows from the Theorem 3.3.6, that

B

u

[i℄ = 2

deg 
(x)�(deg 
(x)�i)

�

i�1

X

j=0

B

u

[j℄(i� j + 1):

P

i

j=0

B

u

[j℄ = 2

i�1

, 1 � i < kLk

B

0

= 1

�

Corollary 4.2.5 (of the Theorem 4.2.4). Let u and v be ml-sequen-


es generated by ml-LFSRs L

u

and L

v

with asso
iated primitive

polynomials 


u

(x); 


v

(x) 2 GF (2)[X℄, deg 


u

(x) = deg 


v

(x). Let

u

0

= u

1

= � � � = u

deg 


u

(x)�2

= 0; u

deg 


u

(x)�1

= 1 and

v

0

= v

1

= � � � = v

deg 


v

(x)�2

= 0; v

deg 


v

(x)�1

= 1. Then the se-

quen
es u and v have the same number of blo
ks, and gaps of lengths

1; 2; :::; deg 


u

(x) = deg 


v

(x).

Next, we generalize Theorem 4.2.4 for any non-zero initial state

of the generating register.

Theorem 4.2.6 Let u denote an ml-sequen
e generated by an ml-

LFSR (from a non-zero initial state) with asso
iated primitive poly-

nomial 
(x) 2 GF (2)[X℄, deg 
(x) > 1. Then the number of runs in

one period of the sequen
e u is either 2

deg 
(x)�1

or 2

deg 
(x)�1

+ 1.

Proof: Let us denote a sequen
e u that starts with

u

0

= u

1

= � � � = u

deg 
(x)�2

= 0; u

deg 
(x)�1

= 1 as w. Realize that

any sequen
e u 
an be obtained from the sequen
e w by shifting [4,

pp.350�351℄. Thus the sequen
e w 
an be shifted to the beginning

of a new run, whi
h yields the number of runs equal to 2

deg 
(x)�1

or

somewhere inside a run, whi
h yields the number of runs equal to

2

deg 
(x)�1

+ 1. �

The following theorem 
on
erning the period of the keystream

of the generator G is based on the Observation 4.2.2 and on the

Theorem 4.2.6. (A 
onje
ture was presented in [86℄.)
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Theorem 4.2.7 Assume that the registers L1, resp. L2 with asso
i-

ated primitive polynomials 


1

(x), resp. 


2

(x), deg 


1

(x);

deg 


2

(x) > 1 are loaded with a non-zero initial state. Then the

period of the keystream sequen
e z of the generator G is

(2

maxfdeg 


1

(x);deg 


2

(x)g

�1)+2

jdeg 


1

(x)�deg 


2

(x)j

(2

minfdeg 


1

(x);deg 


2

(x)g

�1):

(4.1)

Proof: First, assume that (4.1) is an integer multiple of the period

of the keystream sequen
e z. There are 16 possibilities a

ording to

the start and end runs of one period of the sequen
es a and b. Look

at one of them (the other possibilities 
an be analyzed in a similar

way).

Assume that a starts with a gap and ends with a blo
k, b starts

and ends with a gap. (The notation of blo
ks and gaps is similar to

that used in Example 4.2.1.)

L1 G

a

0

B

a

1

. . . B

a

2

deg 


1

(x)�1

G

a

0

L2 G

b

0

B

b

1

. . . G

b

2

deg 


2

(x)�1

+1

G

b

0

* * * * . . . * *


 
 
 . . . 
 
 


Table 4.2: Joining of runs during the produ
tion of the keystream

The *-denoted (as well as the 
-denoted, that have the start

and end runs from di�erent registers) runs 
learly form an integer

multiple of the period of the keystream sequen
e s.

Finally realize that the 
-denoted part of the keystream se-

quen
e 
ontains exa
tly one blo
k of length kL1k (if kL1k � kL2k)

or one gap of length kL2k (if kL1k � kL2k). Thus the 
-denoted

part of the keystream must form exa
tly one period.

The next theorem 
hara
terizes the basi
 balan
edness of the

keystream sequen
e.

Theorem 4.2.8 Assume that the registers L1, resp. L2 with asso
i-

ated primitive polynomials 


1

(x), resp. 


2

(x), deg 


1

(x);

deg 


2

(x) > 1 are loaded with a non-zero initial state. Then the

number of ones and zeros in one period of the generated keystream

sequen
e is given as follows:

56



1. if deg 


1

(x) � deg 


2

(x) then

number of ones is 2

deg 


1

(x)

� 1

number of zeros is 2

jdeg 


1

(x)�deg 


2

(x)j

(2

deg 


2

(x)

� 1);

2. if deg 


1

(x) < deg 


2

(x) then

number of ones is 2

jdeg 


1

(x)�deg 


2

(x)j

(2

deg 


1

(x)

� 1)

number of zeros is 2

deg 


2

(x)

� 1.

Proof: Theorem 4.2.8 follows from the proof of the period and from

the produ
tion of the keystream as joining transformed runs from

sequen
es a and b. �

The following theorem about passing the �rst and se
ond Golomb's

postulates follows.

Theorem 4.2.9 Assume that the registers L1, resp. L2 with asso
i-

ated primitive polynomials 


1

(x), resp. 


2

(x), deg 


1

(x);

deg 


2

(x) > 1, j deg 


1

(x) � deg 


2

(x)j � 1 are loaded with a non-

zero initial state. Then the generated keystream sequen
e passes the

�rst Golomb's postulate. Moreover, if deg 


1

(x) = deg 


2

(x) then the

keystream sequen
e passes the se
ond Golomb's postulate, too.

Statisti
al tests - results

Our realization of the generator G was tested for:




1

(x) = 1 + x + x

2

+ x

5

+ x

19

, 


2

(x) = 1 + x

3

+ x

31

. The test

set 
onsisted of 1 000 keystream sequen
es (ea
h 20 000 bits long)

produ
ed by this realization of the generator.

All of the tested sequen
es passed all tests given by FIPS 140-1

[23℄ (at the time of writing the papers [85℄ and [86℄, FIPS 140-2,

whi
h is the su

essor of FIPS 140-1, was not admitted), 95% of

them passed the serial 
orrelation test [45℄ and none of them passed

the gap test [45℄.

Table 4.3 outlines the values of the serial 
orrelation 
oe�
ient,

the statisti
s for the poker test [54, p.182℄, and the number of ones

in a keystream sequen
e for the monobit test [23℄. The last row of

the table shows the expe
ted intervals.
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# Serial 
orrelation test Poker test (for quadruples) Monobit test

0 0.002385 15.5264 9958

1 0.001986 6.08640 9734

2 -0.005419 9.92 10003

3 0.003574 10.8288 9750

4 0.007899 18.5472 9986

5 0.007897 16.6784 10156

6 0.004948 10.5088 10248

7 -0.002401 18.0352 10067

8 -0.000602 15.904 9973

9 -0.000602 16.6464 10224

[-0.00068,0.00068℄ [1.03,57.4℄ [9654,10346℄

Table 4.3: Results of statisti
al tests

# / 1 2 3 4 5 6

run length

0 2459 1302 693 386 187 123

1 2642 1209 713 267 176 160

2 2340 1179 604 245 173 129

3 2400 1167 530 361 155 134

4 2589 1376 587 378 113 149

5 2512 1391 536 276 180 167

6 2680 1268 568 246 99 187

7 2540 1290 633 358 137 181

8 2397 1104 712 369 169 152

9 2645 1176 589 374 138 192

[2267,2733℄ [1079,1421℄ [502,748℄ [223,402℄ [90,223℄ [90,223℄

Table 4.4: Run test - numbers of o

urren
es of runs with 
ertain lengths

A

ording to the results of the Maurer's universal statisti
al test

[52℄ the keystream sequen
e is not signi�
antly 
ompressable (in

Table 4.5, Q denotes the number of initial blo
ks and K denotes the

number of tested blo
ks).

Theorem 4.2.10 The keystream sequen
e produ
ed by the genera-

tor G passes the long run test (FIPS 140-1) if 1 < kL1k; kL2k < 34

(and registers L1, resp. L2 are loaded with a non-zero initial state).

Proof of this theorem follows from the fa
t that the longest run

in the keystream sequen
e has maxfkL1k; kL2kg bits (see Example

4.2.1). �

58



# Q = 2560 Q = 25600

K = 256000 K = 2560000

0 8.003677 8.002048

1 7.999273 8.000793

2 8.002426 7.999964

3 8.000400 8.000941

4 8.001049 7.999997

5 7.999030 8.002516

6 7.998300 8.001611

7 8.000900 8.001506

8 7.999110 7.999905

9 8.002141 8.001281

Table 4.5: Maurer's universal statisti
al test - entropy on the 8-bit blo
k

The 
ryptanalysed generator is based on an alternating 
lo
king

of its registers. Thus the situations when only one register 
lo
ks

should be avoided. This happens when one of the registers produ
es

the sequen
e with period equal to 1. It follows that the use of the

zero initial state and the use of the polynomials of degree equal to

1 should be avoided.

Linear 
omplexity

One of the important properties of the keystream sequen
e is its

linear 
omplexity. Based on the 
omputer simulations (small sample

of them is shown in the Table 4.6) we 
on
lude that the produ
ed

keystream sequen
e has a large linear 
omplexity.

Theorem 4.2.11 puts important restri
tions on the 
hoi
e of the

lengths of registers L1 and L2 (see Expression 4.1).

Theorem 4.2.11 [15, p.52,Theorem 3.4.4℄ Let N be an odd prime

and q be a primitive root modulo N su
h that g
d(N; q) = 1. Then

the linear 
omplexity of any non
onstant sequen
e u of period N

over GF (2) is N or N � 1.

Linear 
omplexity pro�le

A

ording to the performed simulations the linear 
omplexity

pro�le of the keystream sequen
e has no signi�
ant di�eren
es from

the optimum. The small di�eren
es do not weaken the generator.
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L1 polynomial L2 polynomial Linear 
omplexity

x

2

+ x+ 1 x

2

+ x+ 1 7

x

2

+ x+ 1 x

3

+ x+ 1 13

x

2

+ x+ 1 x

4

+ x+ 1 25

x

2

+ x+ 1 x

5

+ x

2

+ 1 55

x

2

+ x+ 1 x

6

+ x+ 1 109

x

2

+ x+ 1 x

7

+ x+ 1 223

x

2

+ x+ 1 x

7

+ x

3

+ 1 223

x

3

+ x+ 1 x

2

+ x+ 1 13

x

3

+ x+ 1 x

3

+ x+ 1 14

x

3

+ x+ 1 x

4

+ x+ 1 28

x

3

+ x+ 1 x

5

+ x

2

+ 1 58

x

3

+ x+ 1 x

6

+ x+ 1 115

x

3

+ x+ 1 x

7

+ x+ 1 238

x

3

+ x+ 1 x

7

+ x

3

+ 1 238

x

4

+ x+ 1 x

2

+ x+ 1 25

x

4

+ x+ 1 x

3

+ x+ 1 29

x

4

+ x+ 1 x

4

+ x+ 1 30

x

4

+ x+ 1 x

5

+ x

2

+ 1 60

x

4

+ x+ 1 x

6

+ x+ 1 120

Table 4.6: Linear 
omplexity of the keystream sequen
e.

Atta
ks

The simplest atta
k against any 
ipher system is the brute-for
e

atta
k. Its 
omplexity depends on the size of the keyspa
e. The


omplexity of the brute-for
e atta
k against the 
ryptanalysed gen-

erator is given by the following formula (the zero initial states are

ex
luded):

(2

kL1k

� 1)(2

kL2k

� 1):

The 
ryptanalysed running key generator is vulnerable to the

known plaintext atta
k. We show how to �nd the key of the gener-

ator.

Assume the plaintext P = p

0

; p

1

; : : : ; p

N�1

, and the 
orrespond-

ing 
iphertext C = 


0

; 


1

; : : : ; 


N�1

are given. Applying the en
ryp-

tion formula for the stream 
ipher systems 


t

= p

t

� z

t

we immedi-

ately 
al
ulate the keystream sequen
e z.

Realize that in one step only one register 
lo
ks. Thus we 
an

build a simple algorithm for the initial state of the L1 and L2 reg-

isters re
onstru
tion.
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Algorithm 4.2.12 (Re
onstru
tion of initial states)

1. if s

0

= 1 then

a

(1)

0

 0; b

(1)

0

 1

a

(2)

0

 1; b

(2)

0

 0

else

a

(1)

0

 0; b

(1)

0

 0

a

(2)

0

 1; b

(2)

0

 1

2. i 0

j  0

t 0

3. if i � kL1k � 1 and j � kL2k � 1 then terminate; the initial

states of L1 and L2 are re
onstru
ted

4. if t = N � 1 then terminate; the initial states of L1 and L2 are

partially re
onstru
ted

5. t t + 1

6. if s

t�1

= 0 then j  j + 1

else i i+ 1

7. solve the equation s

t

= a

i

� b

j

8. go to step 3

The number of found bits of the register L1, resp. L2 is determined

by the number of ones, resp. zeros in the keystream sequen
e z.

There are two possible solutions after the algorithm terminates:

1. a

(1)

= a

(1)

0

; a

1

; : : : ; a

i

b

(1)

= b

(1)

0

; b

1

; : : : ; b

j

2. a

(2)

= a

(2)

0

; a

1

; : : : ; a

i

b

(2)

= b

(2)

0

; b

1

; : : : ; b

j

The 
orre
t solution 
ould be found when keystreams produ
ed

from these two solutions are 
ompared to the keystream z.

The 
omplexity of the initial state re
onstru
tion is of order

O(2N2

m

1

2

m

2

), where m

1

, resp. m

2

denote the number of missing

bits of initial state of the registers L1, resp. L2 . In an optimal 
ase

an (kL1k+ kL2k � 1) bits long keystream sequen
e is su�
ient for

�nding the whole key with the 
omplexity of order O(2N).
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A note on the se
urity of the generator

Assume now that the generator G 
onsists of two subgenerators

G1 and G2, respe
tively.

Using the known plaintext atta
k presented above it is easy to

�nd sequen
es a and b generated by these subgenerators G1 and

G2. Thus the se
urity of the whole generator against the known

plaintext atta
k depends on the se
urity of G1 and G2 against this

kind of an atta
k.

Clearly, when using LFSRs L1 and L2 as the subgenerators G1

and G2, the key of the generator (the initial loading of the registers

L1 and L2) is dire
tly the beginning part of the sequen
es a and b.

Con
lusions

There are several theorems determining the number of runs in an

ml-sequen
e presented in this se
tion. The period of the keystream

sequen
e of the 
ryptanalysed generator is determined as well as its

basi
 statisti
al properties. The keystream sequen
e possesses good


ryptographi
 properties as long period and large linear 
omplexity.

The results of statisti
al tests are outlined. A known plaintext at-

ta
k on the studied running key generator is proposed. The se
urity

of the generator against the known plaintext atta
k is generalized.
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4.3 Atta
ks on one stream 
ipher based on a quasi-

group

There are several atta
ks on a stream 
ipher, that was proposed in

[59℄, presented in this se
tion. Almost the same 
ipher was proposed

also in [49℄. The 
ryptanalysed stream 
ipher is based on a hidden

quasigroup (that represents the key). It works in a self-syn
hronizing

fashion and was suggested for the en
ryption of a �le system. The


ipher has a very large keyspa
e and was 
laimed to be resistant

against any atta
k [59℄.

Main results of this se
tion were published in [90℄ and [91℄.

Self-syn
hronizing stream 
ipher based on a quasigroup

De�nition 4.3.1 [18℄ The stru
ture (Q; �), Q = fq

1

; q

2

; : : : ; q

n

g,

kQk = n is 
alled a �nite quasigroup of order n if, when any two

elements a; b 2 Q are given, the equations a � x = b and y � a = b

ea
h have exa
tly one solution. Thus the Caley table of a �nite

quasigroup of order n is a Latin square, i.e. an n�n array with the

property that ea
h row and ea
h 
olumn 
ontains the permutation of

symbols from Q. The operation n is 
alled the right inverse of � if

it holds that xn(x � y) = y, and x � (xny) = y.

Let (Q; �) be a �nite quasigroup. Let individual plaintext 
hara
-

ters be represented by the elements of Q, i.e. p

1

; p

2

; : : : ; p

k

, p

i

2 Q,

1 � i � k. Similarly let the 
iphertext 
hara
ters 


1

; 


2

; : : : ; 


k

be

represented also by the elements of Q, i.e. 


i

2 Q, 1 � i � k. The

key of the studied stream 
ipher is the de�nition of the operation �

on the set Q, i.e. the Caley table of this operation

1

.

En
ryption:

en
rypt(p

1

; p

2

; : : : ; p

k

) = 


1

; 


2

; : : : ; 


k

.




1

= l � p

1

, where l is a given "initial value".




i+1

= 


i

� p

i+1

, i = 1; 2; : : : ; k � 1:

De
ryption:

de
rypt(


1

; 


2

; : : : ; 


k

) = p

1

; p

2

; : : : ; p

k

.

p

1

= ln


1

.

p

i+1

= 


i

n


i+1

, i = 1; 2; : : : ; k � 1:

1

It is a rather strange design 
on
ept. Nowadays 
iphers do not use operations on sets as

keys. The key is an item in some set, e.g. an element of Q that is kept se
ret.
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Example 4.3.2 Let Q = f0; 1; 2g and let the quasigroups (Q; �),

resp. (Q; n) be de�ned by Table 4.7. Let l 2 Q; l = 0.

* 0 1 2

0 1 2 0

1 2 0 1

2 0 1 2

n 0 1 2

0 2 0 1

1 1 2 0

2 0 1 2

Table 4.7: Caley tables of quasigroups (Q; �) and (Q; n)

en
rypt(1; 2; 0; 0; 0; 1; 1; 2; 0) = 2; 2; 0; 1; 2; 1; 0; 0; 1




1

= l � p

1

= 0 � 1 = 2




2

= 


1

� p

2

= 2 � 2 = 2




3

= 


2

� p

3

= 2 � 0 = 0

.

.

.

de
rypt(2; 2; 0; 1; 2; 1; 0; 0; 1) = 1; 2; 0; 0; 0; 1; 1; 2; 0

p

1

= ln


1

= 0n2 = 1

p

2

= 


1

n


2

= 2n2 = 2

p

3

= 


2

n


3

= 2n0 = 0

.

.

.

There are at least n!(n� 1)!(n� 2)! : : : 2! Latin squares of order

n. If we assume that Q = f0; 1; : : : ; 255g (i.e. ea
h data item is

represented by 8 bits = 1 byte) then there are at least 10

58 000

quasi-

groups. The keyspa
e is enormously large. The 
ipher was 
laimed

to be resistant against any atta
k [59℄ although the authors stud-

ied only resistan
e against brute for
e atta
k and performed some

statisti
al tests on this 
ipher. From a point of view of 
ryptanaly-

sis, a good 
ipher should be resistant against 
iphertext-only atta
k,


hosen/known 
iphertext/plaintext atta
ks, as well. Some possible

atta
ks are shown below.

Chosen 
iphertext atta
k

Let Q = fq

1

; q

2

; : : : ; q

n

g and assume the 
ryptanalyst has a

ess

to the de
ryption devi
e loaded with an unknown key. Then he/she


an 
onstru
t the following 
iphertext:

q

1

; q

1

; q

1

; q

2

; q

1

; q

3

; : : : ; q

1

; q

n

;

q

2

; q

1

; q

2

; q

2

; q

2

; q

3

; : : : ; q

2

; q

n

;
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.

.

.

q

n

; q

1

; q

n

; q

2

; q

n

; q

3

; : : : ; q

n

; q

n

and enter it into the de
ryption devi
e. The de
ryption devi
e gives

the following plaintext:

lnq

1

; q

1

nq

1

; q

1

nq

1

; q

1

nq

2

; q

2

nq

1

; q

1

nq

3

; : : : ; q

1

nq

n

;

.

.

.

q

n

nq

n

; q

n

nq

1

; q

1

nq

n

; q

n

nq

2

; q

2

nq

n

; q

n

nq

3

; : : : ; q

n

nq

n

.

It is easy to see that the Caley table of the operation n de�ned

on Q is 
ompletely found. The 
onstru
tion of the Caley table for

the operation � is straightforward. The 
iphertext used in the at-

ta
k 
onsists of 2n

2


hara
ters. (Of 
ourse a shorter 
iphertext 
an

be 
onstru
ted. The only requirement is that all the pairs of adja-


ent elements will appear in the 
iphertext. The presented atta
k

requires 2n

2

operations n.

One may also use the elementary fa
t that the last 
olumn and

the last row of the Caley table of the operation de�ned on quasi-

group is 
ompletely determined by previous rows, resp. 
olumns.

Generalization of this idea leads to the notion of 
riti
al sets of

Latin squares. Re
all that a partial Latin square of order n is an

n�n array on a symbol set E, kEk = n, su
h that ea
h 
ell is either

empty or 
ontains an element of E, and ea
h element of E o

urs

in ea
h row and in ea
h 
olumn at most on
e. A 
riti
al set C of

order n is a partial Latin square of order n whi
h 
an be 
ompleted

to a Latin square L in a unique way, and removing any element

of C destroys that property. That is, C provides minimal informa-

tion from whi
h L 
an be re
onstru
ted uniquely (see [18℄, [34℄).

Denote the minimum size of a 
riti
al set of order n by M(n). In

[14℄ it has been shown that M(n) �

n

2

4

, whi
h is generally believed

to be asymptoti
ally the 
orre
t order of M(n). The 
losest up to

date lower bound on the size of the 
riti
al set of order n, n � 8 is

M(n) � b

4n�8

3


 (see [34℄).

However, the implementation of the above mentioned fa
ts on


riti
al sets into the des
ribed atta
ks will lead to a problem of

re
onstru
tion of the Latin square from its 
riti
al set.
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Chosen plaintext atta
k

Let Q = fq

1

; q

2

; : : : ; q

n

g and assume the 
ryptanalyst has a

ess

to the en
ryption devi
e loaded with an unknown key. Then he/she


an 
onstru
t the following plaintexts:

q

1

; q

1

;

q

1

; q

2

;

.

.

.

q

1

; q

n

;

q

2

; q

1

;

q

2

; q

2

;

.

.

.

q

2

; q

n

;

.

.

.

q

n

; q

1

;

q

n

; q

2

;

.

.

.

q

n

; q

n

and enter them into the en
ryption devi
e. The following 
iphertexts

will be obtained:

l � q

1

; (l � q

1

) � q

1

;

l � q

1

; (l � q

1

) � q

2

;

.

.

.

l � q

1

; (l � q

1

) � q

n

;

l � q

2

; (l � q

2

) � q

1

;

l � q

2

; (l � q

2

) � q

2

;

.

.

.

l � q

2

; (l � q

2

) � q

n

;

.

.

.

l � q

n

; (l � q

n

) � q

1

;

l � q

n

; (l � q

n

) � q

2

;

.

.

.

l � q

n

; (l � q

n

) � q

n

:

It is easy to see that the key, i.e. the Caley table of the operation
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� de�ned on Q is 
ompletely found. The presented 
hosen plain-

text atta
k requires n

2

messages and ea
h message 
onsists of two


hara
ters. (Of 
ourse a smaller number of messages 
an be used.

See the above des
ribed 
hosen 
iphertext atta
k.) The presented

atta
k requires 2n

2

operations �.

It is also possible to built up a known plaintext atta
k. However

it is not guaranteed that the whole key will be revealed.

Ciphertext-only atta
k

Let us assume that the plaintext message was written in a redun-

dant language, e.g. Slovak, Cze
h, English, et
., i.e. the distribution

of frequen
ies of o

uren
es of individual 
hara
ters is not uniform.

Further let us assume that the language, the plaintext message was

written in, is known and also that the 
ryptanalyst knows the dis-

tribution of frequen
ies of o

uren
es of individual 
hara
ters from

the used language. Assume that ea
h 
hara
ter from the plaintext

message is represented by a single element from the quasigroup.

Further assume that the order n of the quasigroup (Q; �), where

Q = fq

1

; q

2

; : : : ; q

n

g, is known. Let us denote the obtained 
ipher-

text as 


1

; 


2

; : : : ; 


k

, 


i

2 Q, 1 � i � k.

For ea
h i, 1 � i � n, the 
ryptanalyst determines the number

of o

uren
es of pairs of elements q

i

q

j

, 1 � j � n. If the 
ipher-

text is large enough, for ea
h q

i

, 1 � i � n, the obtained number

of o

uren
es of pairs of elements 
an be mat
hed to the known

frequen
ies of o

uren
es of individual 
hara
ters from the used lan-

guage. Thus the 
ryptanalyst is able to 
onstru
t the Caley table of

the quasigroup (Q; n) and de
rypt the message. The re
onstru
tion

of the key, i.e. of the Caley table of the quasigroup (Q; �) from the

quasigroup (Q; n) is straightforward.

However the mat
hing of obtained number of o

uren
es of pairs

of elements to the known frequen
ies of o

uren
es of individual


hara
ters from the used language 
an lead to some errors in the re-


onstru
tion of the quasigroup (Q; n), either due to the short length

of the analyzed 
iphertext or due to the spe
i�
 properties of the

used language. A better approa
h is to mat
h only the obvious pairs

of elements, then partially de
rypt the 
iphertext. From the par-

tially de
rypted message it is possible (or highly probable) to �nd

some other 
ells in the Caley table of the quasigroup (Q; n). This

leads to the iterated de
ryption, resp. iterated 
onstru
tion of the
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Caley table of the quasigroup (Q; n). One 
an also use the known

results on 
riti
al sets, resp. on 
ompleting Latin squares.

The previously des
ribed iterative 
iphertext-only atta
k was su
-


essfully performed on a plaintext written in Slovak language (book

"SLOVENSKO. Európske súvislosti ©udovej kultúry" by Rastislava

Stoli£ná et al., VEDA Bratislava 1997). The plaintext was written

in the enhan
ed telegraph alphabet, i.e. it 
onsisted only of let-

ters A,B, : : : ,Z and "spa
e" and 
ontained 291 041 
hara
ters. The

quasigroup was of order 27.

Con
lusions

There are three kinds of atta
ks against the self-syn
hronizing

stream 
ipher (proposed in [59℄) presented in this se
tion. These at-

ta
ks rank among the standard basi
 
ryptanalyst te
hniques. Ea
h

of these atta
ks is mu
h faster than the brute-for
e atta
k. We


on
lude that the 
ryptanalysed self-syn
hronizing stream 
ipher is

inse
ure due to its vulnerability to the presented atta
ks.
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4.4 Atta
ks on one hash fun
tion based on quasi-

group

There are properties of a hash fun
tion based on a quasigroup (pro-

posed in [21℄, [22℄) studied in this se
tion. An atta
k against this

hash fun
tion for some spe
ial quasigroups is presented. Moreover,

the modi�
ation of the studied hash fun
tion to a keyed hash fun
-

tion � the so 
alled MAC is studied, too.

This se
tion is based on author's papers [92℄, [93℄.

Des
ription of the hash fun
tion based on a quasigroup

Constru
tion 4.4.1 (A new hash fun
tion [21℄, [22℄.) Let (Q; �)

be a �nite quasigroup and Q

�

be the set of all �nite sequen
es of ele-

ments from Q. Let the message be a sequen
e of elements

fm

1

; m

2

; : : : ; m

k

g from the quasigroup Q. For a �xed a 2 Q let

the hash fun
tion H

a

: Q�Q

�

! Q be

H

a

(m

1

; m

2

; : : : ; m

k

) = ((: : : ((a �m

1

) �m

2

) � : : : ) �m

k�1

) �m

k

;

where m

i

2 Q, 1 � i � k.

Example 4.4.2 Let Q = f0; 1; 2; 3g and let the operation * on Q

be de�ned by its Caley table, in Table 4.8.

* 0 1 2 3

0 0 2 1 3

1 2 3 0 1

2 1 0 3 2

3 3 1 2 0

Table 4.8: Caley table of the operation * de�ned on Q

Let a = 2 and let the message to be hashed be en
oded as f0; 0; 1; 3g.

Then the hash 
an be 
omputed as

H

2

(0; 0; 1; 3) = (((2 � 0) � 0) � 1) � 3 = 3:

The usage of a general quasigroup in 
omputation requires to

store its Caley table, i.e. n

2

elements. The storage requirements

are outlined in Table 4.9. (One 
an also take noti
e of a very short
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kQk Hash value length Storage requirements

2

16

16 bits 16:2

16

:2

16

= 64 GB

2

18

18 bits 18:2

18

:2

18

> 1 TB

Table 4.9: Storage requirements for the Caley table a general quasigroup

hash value length. Nowadays the hash value length 
onsidered to

be se
ure is 160 - 256 bits.)

Several tri
ks 
an be used to over
ome the storage requirements

problem. They are 
onne
ted to known results on 
riti
al sets in

Latin squares (see Se
tion 4.3). However, su
h an approa
h would

signi�
antly slow down the speed of 
omputation of the hash value.

A better approa
h is to �nd a spe
ial large quasigroup (Q; �).

The operation � in su
h a quasigroup should be given by some "easy

to evaluate" expression, i.e. a � b = f(a; b), a; b 2 Q. One of the

general se
urity requirements that f(a; b) has to satisfy is that given

the value f(a; b) and the element a, it should be 
omputationally

infeasible to �nd the element b, su
h that a � b = f(a; b). In other

words, it should be 
omputationally infeasible to �nd the Caley table

of the quasigroup (Q; n).

In order to over
ome the storage requirements for the Caley table,

a spe
ial quasigroup, namely the quasigroup of modular subtra
tion,

was proposed in [21℄, [22℄ to be used. The operation * de�ned on Q

is then given as

a � b = a+ (n� b) mod n; n = kQk:

* 0 1 2 3

0 0 3 2 1

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0

Table 4.10: Multipli
ation table in the quasigroup of modular subtra
tion, n = 4

Usage of su
h an "easy to evaluate" expression for the de�nition

of the operation * on quasigroup allows us to use quasigroups with

a very large number of elements. Moreover, the isotopism of quasi-

groups gives us the power to use a large number of isotopi
 quasi-

groups where the 
omputation of a hash value will be done almost

only using the mentioned "easy to evaluate" expression. Later we
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show that it has also a severe impa
t on the se
urity of the studied

hash fun
tion.

De�nition 4.4.3 [18℄ Let (G; :) and (H; �) be two quasigroups. An

ordered triple (�; ';  ) of one-to-one mappings �; ';  of the set

G onto the set H is 
alled an isotopism of (G; :) upon (H; �) if

�(x) � '(y) =  (x:y) for all x; y in G. The quasigroups (G; :) and

(H; �) are then said to be isotopi
.

De�nition 4.4.4 Let (G; :) and (H; �) be two quasigroups. An or-

dered triple (�; ';  ) of mappings �; ';  of the set G to the set H is


alled an homotopism of (G; :) to (H; �) if �(x) � '(y) =  (x:y) for

all x; y in G. The quasigroups (G; :) and (H; �) are then said to be

homotopi
.

Remark 4.4.5 In [21℄, [22℄ the authors used a notion of homo-

topism of quasigroups, however in fa
t they used isotopism of quasi-

groups, be
ause the mappings from one quasigroup to the another

one (here denoted as �; ';  ) were permutations.

Atta
ks against the hash fun
tion

Let a 2 Q be the known parameter of the hash fun
tion and

fm

1

; m

2

; : : :m

k

g, m

i

2 Q, 1 � i � k be a message to be hashed.

Let the hash value be

H

a

(m

1

; m

2

; : : : ; m

k

) = (((a �m

1

) �m

2

) � : : : ) �m

k

= d:

Due to the simple 
onstru
tion of the hash fun
tion one 
an (in

some 
ases easily) 
reate false messages that hash to the same value.

The false message 
an be 
onstru
ted from the original message by

adding pre�x and/or su�x, 
hanging some parts somewhere in the

middle of the message, or it 
an be just a totally new message not

based on the original message.

The false message 
reated from the original one by adding pre�x


an be written as

p

1

; p

2

; : : : ; p

l

; m

1

; m

2

; : : :m

k

; p

i

2 Q; 1 � i � l:

Hen
e it must hold that (((a � p

1

) � p

2

) � : : : ) � p

l

= a.
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The false message 
reated from the original one by adding su�x


an be written as

m

1

; m

2

; : : :m

k

; s

1

; s

2

; :::; s

t

s

i

2 Q; 1 � i � t:

Hen
e it must hold that (((d � s

1

) � s

2

) � : : : ) � s

t

= d.

Remark 4.4.6 Only the last element of the last added, resp. 
hanged

part of the message has to be 
hosen in a proper way. It is important

to mention that su
h an element always exists (be
ause the Caley ta-

ble of a quasigroup is a Latin square). All the other elements 
an be


hosen arbitrarily, i.e. they 
an represent meaningful data.

Due to the ni
e algebrai
 properties of the studied hash fun
tion

it is possible to evaluate exa
tly the number of messages of a given

length that hash to the same value.

Theorem 4.4.7 Let (Q; �) be a �nite quasigroup and H

a

be the hash

fun
tion spe
i�ed by the Constru
tion 4.4.1. Then the number of

messages fm

1

; m

2

; : : :m

k

g, m

i

2 Q, 1 � i � k of length k that hash

to the same value is kQk

k�1

.

This Theorem 
an be prooved easily by indu
tion. A straightfor-

ward 
onsequen
e of this Theorem is the balan
edness of the studied

hash fun
tion.

Altering a part of the message or 
reating a new false message is

similar to previous examples of false messages.

Remark 4.4.8 While thinking about altering some parts of the orig-

inal message one may ask how many elements may/must be 
hanged

in order to get the same hash value as the original message. It 
an

be easily seen that 
hanging a single element leads always to a di�er-

ent hash value from the hash value of the original message. Further

it 
an be seen that 
hanging more than one element in the original

message always allows to rea
h the same hash value as the original

message. Note that only the last element has to be 
hosen properly

(see below).

Remark 4.4.9 Sket
h of the proof of the preimage resistan
e of the

studied hash fu
ntion was given in [22℄. The problem of se
ond

preimage resistan
e and of 
ollision resistan
e is in general of 
om-

plexity at most kQk (see the 
onstru
tion of a false message given

above, and also Remark 4.4.6).
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The question is how to �nd the last element of the last added/


hanged/
reated part of the false message? In other words, if we

want to produ
e a false message by adding pre�x to the original mes-

sage, how to �nd p

l

su
h that the following will hold

(((a � p

1

) � p

2

) � : : : ) � p

l

= a?

For small instan
es of quasigroups with a "storable" Caley table

it is possible to perform brute for
e atta
k (see Table 4.9). It is

widely a

epted that problems of 
omplexity up to 2

64

are nowadays

solvable by exhaustive sear
h. Thus the table implementation of the

studied hash fun
tion is not se
ure.

In order to over
ome the storage requirements for the Caley table,

a spe
ial quasigroup, namely the quasigroup of modular subtra
tion,

was proposed in [21℄, [22℄ to be used.

Lemma 4.4.10 Quasigroup of modular subtra
tion 
ontains a right

unit 0.

Corollary 4.4.11 To 
onstru
t a false message (if quasigroup of

modular subtra
tion is used) one 
an insert an arbitrary number of

0s anywhere into the original message.

Corollary 4.4.11 shows a trivial 
onstru
tion of false messages

based on the insertion of a right unit. However, one 
an do mu
h

more.

Let we try to 
reate a totally new message x

1

; x

2

; : : : ; x

v

, x

i

2 Q,

1 � i � v that will hash to the value d. The elements x

1

; x

2

; : : : ; x

v�1


an be 
hosen arbitrary. Let d

0

= (((a�x

1

)�x

2

) : : : )�x

v�1

. It remains

to �nd su
h a x

v

that d

0

� x

v

= d, whi
h yields

x

v

= d

0

+ (n� d) mod n:

Theorem 4.4.12 Hash fun
tion H

a

with the quasigroup of modu-

lar subtra
tion is neither 
ollision resistant, nor se
ond preimage

resistant.

The atta
k may be
ome mu
h more di�
ult when a quasigroup

isotopi
 to the quasigroup of modular subtra
tion is used for the

hash fun
tion.

Example 4.4.13 Let (Q; �), kQk = 4 be the quasigroup of modular

subtra
tion with the Caley table given in Table 4.10. Let
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. 0 1 2 3

0 0 2 1 3

1 2 1 3 0

2 1 3 0 2

3 3 0 2 1

Table 4.11: Multipli
ation table of the quasigroup (Q; :)

� = [1; 2; 3; 0℄, ' = [3; 2; 1; 0℄ and  = [2; 0; 3; 1℄. The Caley ta-

ble of the quasigroup (Q; :) that is isotopi
 to the (Q; �) is shown in

Table 4.11.

For a �xed a 2 Q the hash value of a message fm

1

; m

2

; : : : ; m

k

g,

m

i

2 Q, 1 � i � k will now

2

be 
omputed as H

a

(m

1

; m

2

; : : : ; m

k

) =

((: : : ((a:m

1

):m

2

): : : : ):m

k�1

):m

k

.

A ni
e tri
k is that the quasigroup operation in (Q; :) may also

be written as

a:b =  

�1

(�(a) + (n� '(b)) mod n);

where n = kQk, and  ; �; ' are the mappings that de�ne the iso-

topism between the quasigroups (Q; :) and (Q; �).

In the previously des
ribed atta
ks, when a quasigroup of modu-

lar subtra
tion was used, the atta
ker was for
ed to solve the equa-

tion a � b = d in a given quasigroup, where a and d are known, b is

unknown. Formally, the solution 
an be written as b = and, where

n is the right inverse of �. For a quasigroup of modular subtra
tion

one 
an write b = and = a � d. When a quasigroup, isotopi
 to

the quasigroup of modular subtra
tion, is used the atta
k leads to

the equation d = a:b =  

�1

(�(a) + (n � '(b)) mod n) for a given

quasigroup, where a and d are known, and b is unknown. Hen
e, the

se
urity of the studied hash fun
tion, when a quasigroup isotopi
 to

a quasigroup of modular subtra
tion is used, severely depends on

the di�
ulty of inverting the mappings ' and  

�1

. The mapping �

has no impa
t on the se
urity of the studied hash fun
tion be
ause

in the previously des
ribed atta
ks the argument of this mapping is

known.

Remark 4.4.14 Note that any Latin square of prime power order

is polynomial [31℄. It is an open question if the results on polynomial

2

a quasigroup (Q; :) isotopi
 to the quasigroup of modular subtra
tion (Q; �) is used for

the hash fun
tion
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Latin squares or polynomial approximations of Latin squares 
an be

used in atta
ks against the studied hash fun
tion.

There might be also another se
urity problem. Let (G; :) and

(H; �) be two isotopi
 quasigroups, i.e. there exist one-to-one map-

pings �; ';  of the set G onto the set H, su
h that �(x) � '(y) =

 (x:y) for all x; y in G. However, there might exist other one-

to-one mappings �

0

; '

0

;  

0

of the set G onto the set H, su
h that

�

0

(x) � '

0

(y) =  

0

(x:y) for all x; y in G. For example, another

triplet of mappings (�; ';  ) that de�ne isotopism between the quasi-

groups used in Example 4.4.13 is � = [1; 2; 3; 0℄, ' = [2; 1; 0; 3℄ and

 = [3; 1; 0; 2℄. It might happen that even though the mappings

' and  

�1

were "hard to invert", the mappings '

0

and  

0

�1

were

"easy to invert". However, �nding su
h mappings �

0

; '

0

;  

0

may be

di�
ult. Moreover, we tried to treat these mappings at a general

level, i.e. we have not 
hosen any de�nite mappings. Neither in [21℄,

[22℄ was the 
hoi
e of the mappings �; ';  

�1

studied.

We also performed exhaustive sear
h experiments (for kQk =

3; 4; 5, and 6) where we studied the number of one-to-one mappings

�; ';  that de�ne isotopism between the quasigroup of modular sub-

tra
tion (Q;�) and any quasigroup (Q; :) isotopi
 to this quasigroup

of modular subtra
tion. In all the experiments the number of one-

to-one mappings �; ';  was 2kQk

2

.

Modi�
ation to a keyed hash fun
tion � MAC

Assume, a in the H

a

hash fun
tion is a se
ret key. H

a

is then an

MAC. Further assume that the quasigroup of modular subtra
tion

was used. In the following we show how to 
reate false messages,

that will hash to the same value.

Let m

1

; m

2

; : : :m

k

, m

i

2 Q, 1 � i � k be a message to be hashed.

The hash value is then 
omputed as follows:

H

a

(m

1

; m

2

; : : : ; m

k

) = (((a �m

1

) �m

2

) � : : : ) �m

k

= d:

We 
an add su�x and 
onstru
t su
h a message

fm

1

; m

2

; : : : ; m

k

; s

1

; s

2

; : : : ; s

u

g, s

i

2 Q, 1 � i � u that will hash

to the same result as the original message. Again the elements

s

1

; s

2

; : : : ; s

u�1


an be arbitrary (i.e. they 
an represent meaningful

data), only s

u

has to be 
al
ulated in a proper way. For the quasi-

group of modular subtra
tion it is easy to do (see above presented


onstru
tion of false messages).
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It is possible to 
reate the following false messages that will hash

to the same value as the original message: take a new message, add

su�x to the original message, or 
hange some parts of the message.

Adding only a pre�x to the original message seems to be impossible

due to the se
ret key a. However it is possible to add both a pre�x

and a su�x, or add a pre�x and 
hange some part of the original

message.

Theorem 4.4.15 Hash fun
tion H

a

with the quasigroup of modular

subtra
tion when used as MAC, with the se
ret key a, is neither


ollision resistant, nor se
ond preimage resistant.

A stronger result on the se
urity of this MAC is as follows.

Theorem 4.4.16 Constru
tion of false messages for the hash fun
-

tion H

a

when used as MAC, with the se
ret key a, is only as di�
ult

as the 
onstru
tion of a false messages for the hash fun
tion H

a

itself

(a is publi
).

Con
lusions

There were some possible atta
ks against the hash fun
tion, pro-

posed in [21℄,[22℄ shown in this se
tion. Atta
ks were studied in a

setting when a general (storable, i.e. small) quasigroup was used

and also when a spe
ial (large) quasigroup, namely the quasigroup

of modular subtra
tion was used. The se
urity of the 
onstru
tion of

a hash fun
tions was studied both in the MDC and also in the MAC

s
enario. In all the 
ases it was possible to 
reate false messages.

In order to make su
h a hash fun
tion useful in 
ryptology a very

spe
ial quasigroup (Q; �) has to be found. The multipli
ation in su
h

a quasigroup should be given by some "easy to evaluate" expression

f(a; b), i.e. a � b = f(a; b), a; b 2 Q. Thus a "large" quasigroup


ould be used (without storing its multipli
ation table). Moreover,

given a, resp. b and f(a; b) it must be "di�
ult" (
omputationally

infeasible) to �nd b, resp. a.

One of the ways how to a
hieve this is to use isotopi
 quasigroup

to the quasigroup of modular subtra
tion, as it was proposed in

[21℄, [22℄. The se
urity of the studied hash fun
tion then depends

on the "di�
ulty" (i.e. 
omputational infeasibility) of inverting the

mappings ' and  

�1

used in the isotopy, and is a topi
 for further

resear
h.
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Chapter 5

Con
lusion

We are 
onvin
ed that the resear
h targets assigned at the beginning

of this dissertation were a

omplished.

The state of the art in stream 
iphers and hash fu
tions is given

in Se
tion 3.

The results of the resear
h are presented in Se
tion 4. This se
-

tion is based on the author's papers [85℄, [86℄, [87℄, [88℄, [89℄, [90℄,

[91℄, [92℄ and [93℄.

Cryptographi
 properties of the 
on
atenation of periods of sev-

eral ml-pseudorandom sequen
es are studied in Se
tion 4.1. The

length of the period of a sequen
e obtained by periodi
 
on
atena-

tion of two or more ml-sequen
es is determined. Moreover, a new


onstru
tion of a 
ompletely equidistributed real valued sequen
e

based on 
on
atenation of ml-sequen
es is presented.

Se
tion 4.2 deals with 
ryptanalysis of one stream 
ipher based on

the 
on
atenation of transformed runs of two ml-sequen
es. There

are several theorems determining the number of runs in an ml-

sequen
e presented in this se
tion. The period of the keystream

sequen
e of the 
ryptanalysed generator is determined as well as

its basi
 statisti
al properties. The keystream sequen
e possesses

good 
ryptographi
 properties su
h as long period and large linear


omplexity. The results of statisti
al tests are outlined. A known

plaintext atta
k on the studied running key generator is proposed.

The se
urity of the generator against the known plaintext atta
k is

generalized.

There are three su

essful atta
ks, namely 
hosen 
iphertext, 
ho-

sen plaintext and 
iphertext-only atta
ks, against the self-syn
hro-
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nizing stream 
ipher (proposed in [59℄) presented in Se
tion 4.3.

These atta
ks rank among the standard basi
 
ryptanalyst te
h-

niques. Ea
h of these atta
ks is mu
h faster than the brute-for
e at-

ta
k. We 
on
lude that the 
ryptanalysed self-syn
hronizing stream


ipher is inse
ure due to its vulnerability to the presented atta
ks.

The properties of one hash fun
tion based on a quasigroup (pro-

posed in [21℄, [22℄) are studied in Se
tion 4.4. Some possible atta
ks

against this hash fun
tion are presented. Atta
ks are studied in a

setting when a general (storable, i.e. small) quasigroup is used and

also when a spe
ial (large) quasigroup, namely the quasigroup of

modular subtra
tion is used. The se
urity of the 
onstru
tion of a

hash fun
tions is studied both in the MDC and also in the MAC

s
enario. In all the 
ases it was possible to 
reate false messages.

It was demostrated whi
h mappings play an important role in the

se
urity of the studied hash fun
tion when a quasigroup isotopi
 to

the quasigroup of modular subtra
tion is used. A possible weakness

of isotopi
 mappings was found.
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ations in Banking X., FEI-STU 2003, Le
ture Notes, 123

pages.

Grants, Te
hni
al Reports, and Resear
h Proje
ts

� Co-resear
her of the grant "Methods and resour
es of obtain-

ing, representing, presenting and sear
hing of information and

knowledge", VEGA 1/7611/20, Prin
ipal resear
her: Professor

Ing. Vladimír Vojtek, PhD. (years 2001 � 2002).
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� Co-resear
her of the grant "Information pro
essing in the dis-

tributed environment of intelligent mobile agents", VEGA

1/0161/03, Prin
ipal resear
her: Professor Ing. Vladimír Voj-

tek, PhD. (sin
e 2003).

� Co-resear
her of 9 resear
h proje
ts and 
o-author of 9 te
hni-


al reports for the National Se
urity Authority of the Slovak

Republi
 (sin
e 2001).

Conferen
e Presentations and Seminar Le
tures

� Cryptanalysis of a Clo
k-Controlled Running Key Generator,

talk at SCAM 1999, Bratislava, Slovak Republi
.

� Enhan
ed Cryptanalysis of a Clo
k-Controlled Running Key

Generator, talk at SCAM 2000, FEI STU, Bratislava, Slovak

Republi
.

� Some Properties of Uniformly Distributed Sequen
es, joint work

with M.�imov
ová, talk at ELITECH 2000, Bratislava, Slovak

Republi
.

� De
ision Tree Atta
k, talk at the CRYPTO seminar, june 2000,

FEI-STU, Bratislava, Slovak Republi
.

� Some Properties of Uniformly Distributed Sequen
es, talk at

the CRYPTO seminar, o
tober 2000, FEI-STU, Bratislava, Slo-

vak Republi
.

� 2-adi
 Numbers and Sequen
es, 3 talks at the CRYPTO semi-

nar, november 2000, FEI-STU, Bratislava, Slovak Republi
.

� On Con
atenating Pseudorandom Sequen
es, joint work with

M.�imov
ová, talk at SCAM 2001, Bratislava, Slovak Republi
.

� Stream Ciphers, 4 talks at the CRYPTO seminar, april 2001,

FEI-STU, Bratislava, Slovak Republi
.

� Mobile Communi
ations and Se
urity, talk at TATRACRYPT

2001, Liptovský Ján, Slovak Republi
.

� Se
urity in E�Business, talk at the BEST summer 
ourse, Au-

gust 15, 2001, FEI STU, Bratislava, Slovak Republi
.
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� A Probabilisti
 Approa
h to Weight Complexity of Binary Se-

quen
es, talk at Elite
h 2001, Bratislava, Slovak Republi
.

� Identi�
ation Proto
ols Se
ure Against Reset Atta
ks, talk at

the seminar "CRYPTOLOGY: The Elements and Appli
ations

in Banking VIII.", 2001, FEI-STU, Bratislava, Slovak Republi
.

� Does En
ryption With Redundan
y Ensure Authenti
ity, talk

at the seminar "CRYPTOLOGY: The Elements and Appli-


ations in Banking VIII.", 2001, FEI-STU, Bratislava, Slovak

Republi
.

� Cryptanalysis of the MD4 Hash Fun
tion, talk at the CRYPTO

seminar, Mar
h 13, 2002, FEI-STU, Bratislava, Slovak Repub-

li
.

� Some Problems Con
erning Latin Squares and Their Crypto-

graphi
 Appli
ations, talk at HAJDUCRYPT 2002,Debre
en,

Hungary.

� Cryptanalysis of the Self-Shrinking Generator, talk at SCAM

2002, Bratislava, Slovak Republi
.

� Digital Signatures, talk for the Lazar Consulting Company, O
-

tober 2002, BCPB, Bratislava, Slovak Republi
.

� Order of the National Se
urity Authority of the Slovak Re-

publi
 pursuant to the Ele
troni
 Signature Law, talk at the

CRYPTO seminar, O
tober 9, 2002, FEI-STU, Bratislava, Slo-

vak Republi
.

� New Stream Ciphers, talk at the seminar "CRYPTOLOGY:

The Elements and Appli
ations in Banking IX.", 2002, FEI-

STU, Bratislava, Slovak Republi
.

� Atta
ks on the A5 Stream Cipher, talk at the seminar "CRYP-

TOLOGY: The Elements and Appli
ations in Banking IX.",

2002, FEI-STU, Bratislava, Slovak Republi
.

� Cryptanalysis of a File En
oding System Based on Quasigroup,

talk at ISCAM 2003, Bratislava, Slovak Republi
.

� Cryptanalysis of One Hash Fun
tion Based on Quasigroup, talk

at TATRACRYPT 2003, Bratislava, Slovak Republi
.
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� New Approa
hes to Digital Eviden
e, talk at the CRYPTO

seminar, O
tober 22, 2003, FEI-STU, Bratislava, Slovak Re-

publi
.

� Atta
ks on a File En
ryption System Based on Quasigroup,

talk at Elite
h 2003, Bratislava, Slovak Republi
.

� Using Hard Arti�
ial Intelligen
e Problems in Se
urity, 2 talks

at the CRYPTO seminar, November 26, 2003, and De
ember

3, 2003, FEI-STU, Bratislava, Slovak Republi
.

� On One Hash Fun
tion Based on Quasigroup, talk at the Con-

feren
e "Mikulá²ská kryptobesídka", Prague, Cze
h Republi
.

� New Approa
h to Timestamping, talk at the seminar "CRYP-

TOLOGY: The Elements and Appli
ations in Banking X.",

2003, FEI-STU, Bratislava, Slovak Republi
.

Supervised theses and proje
ts

� Jurenka, M.: Stream 
iphers for software appli
ations, Diploma

thesis (2003/04), diploma proje
t (2002-2003).

� Bálik, M.: Atta
ks on A5 algorithm, Diploma proje
t (2003/04).

� Klenovi£, L.: New atta
ks on stream 
iphers, Diploma proje
t

(2003/04).

� Balvan, R.: Se
urity of mobile agents, Diploma proje
t (2002-

03), Diploma thesis (2003).

� Bu£ka, A.: Atta
ks on stream 
iphers, Diploma thesis (2003).

� Trgala, �.: Usage of additive generators in 
ryptography, Ba
h-

elor's proje
t (2002/03).

� Klenovi£, L.: Se
urity me
hanisms in UMTS, Ba
helor's proje
t

(2002/03).

� Zeman, J.: A note on row-
omplete latin squares, Students'

s
ienti�
 proje
t - �VO� (2001/02).

� Vadovi£, P.: Cryptanalysis of the parity generator based on

LFSRs and FCSRs, Diploma proje
t (2000/01), Diploma thesis

(2001).
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� Rep£ík, P.: Cryptanalysis of the treshold generator based on

LFSRs and FCSRs, Diploma proje
t (2000/01), Diploma thesis

(2001).
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