SLOVAK UNIVERSITY OF TECHNOLOGY

FACULTY OF ELECTRICAL ENGINEERING
AND INFORMATION TECHNOLOGY

Department, of Mathematics

[lkovicova 3, 812 19 Bratislava 1

Milan Vojvoda

STREAM CIPHERS AND HASH FUNCTIONS —
ANALYSIS OF SOME NEW DESIGN APPROACHES

dissertation

Supervisor: Professor RNDr. Otokar Grosek, PhD.

Degree Course: 11-14-9 Applied Mathematics

July 2004
Bratislava

Statement

Hereby I state that this dissertation is the result of my own work
and does not contain results, nor partial results, of other people
unless it is explicitely stated. I state that I used only the literature
listed in bibliography of this dissertation.

Bratislava, July 16, 2004 Milan Vojvoda

Acknowledgements

I would like to thank Professor Otokar Grosek for all the com-
ments and suggestions on improving this thesis. Also I wish to
thank all the staff of the Department of Mathematics of Faculty of
Electrical Engineering and Information Technology for the friendly
atmosphere they provided to work in.

Contents

1 List of symbols 5
2 Introduction 6
2.1 Motivation L 6
2.2 Research targets. 8
3 Stream ciphers and hash functions — state of the art 10
3.1 Stream ciphers 10
3.2 Statistical tests of pseudorandom sequences 18
3.3 Design of stream ciphers 20
3.4 Examples of stream ciphers 30
3.5 Attacks on stream ciphers 32
3.6 Hash functions 41
3.7 Design of hash functions 42
3.8 Attacks on hash functions 45
3.9 Projects NESSIE and CRYPTREC 46
4 Results 49
4.1 A new construction of a completely equidistributed
SEQUENCE . .« . v v e e e e e e e e e e e 49
4.2 Concatenation of runs from two ml-sequences 53
4.3 Attacks on one stream cipher based on a quasigroup . 63
4.4 Attacks on one hash function based on quasigroup . . 69
5 Conclusion 77
6 List of author’s publications, presentations, and other

related activities 79

Chapter 1

List of symbols

the ring of integers

the set of integers {1,2,3,...}

the ring of integers reduced modulo m

the n-dimensional vector space over Z,,

the finite field of order ¢

the algebra of polynomials over GF'(q)

(in indeterminate X)

Shannon’s entropy

the amount of mutual information between X and Y
greatest common divisor

least common multiple

the least significant bit of a binary representation of X
Pseudo-Random Bit Generator

Linear Feedback Shift Register

Feedback with Carry Shift Register

Natural Sequence Generator

Chapter 2

Introduction

2.1 Motivation

Cryptography is nowadays an inseparable part of a large number
of business processes and our everyday activities although in many
cases we have no idea about it. Internet, bank transfers, mobile
phones are common examples of the usage of cryptography.

The main goals of cryptography are to achieve privacy, data in-
tegrity, authenticity, and non-repudiation [54].

In this dissertation we will deal with some aspects of

e stream ciphers — encryption algorithms, used to ensure privacy,
and

e hash functions — algorithms used to ensure data integrity.

A significant milestone in the area of stream ciphers was the year
1917 when G.Vernam invented his one-time pad. It was the first un-
conditionally secure cipher (according to the Shannon’s definition)
against the ciphertext-only attack. Stream ciphers are popular due
to their high encryption/decryption speed. Their simple and cheap
hardware design is often preferred in real-world applications. Prob-
ably the most widely used application of stream ciphers are mobile
phones (GSM, UMTS).

Especially after the publication of the final report of the project
NESSIE [68] one can get the feeling that stream ciphers are less
secure than block ciphers since no stream cipher was recommended
from the project proposals. That is probably not true but the design
of block ciphers seems to be more sophisticated in the present time.

6

However there are still many open questions in the "classical" design
of stream ciphers and new design trends (inspired by the design of
block ciphers) appeared in recent years [71], [33], [13].

At the same time this was a new call for random and pseudoran-
dom sequences which lasts up to these days. Modelling, simulation,
and cryptography are probably the most important of them. The
so-called truly random sequences are usually obtained from physical
sources or processes with random behaviour. Emitters, and noise
samplers in electrical circuits are common examples. However, slow
speed of a truly random sequence production is a severe problem.
Moreover a sample we get is finite and hence some other require-
ments are needed. This leads to an intensive research in the area
of pseudorandom sequences. In spite of their deterministic produc-
tion they possess (statistical) properties common to truly random
sequences. Moreover they can be produced very fast, efficiently,
and are reproducible when some initial seeds are known - what is
an important feature in some applications.

In the area of cryptography pseudorandom sequences are of tre-
mendous interest. Many items in cryptographic protocols (e.g. chal-
lenges), signature schemes and of course the keys for cryptosystems
must be generated in a random fashion. Moreover pseudorandom
sequences are the core of stream ciphers. Pseudorandom genera-
tors suitable for use in cryptographic applications may need to meet
stronger requirements than those for other applications. In particu-
lar, their outputs must be unpredictable in the absence of knowledge
of the inputs.

It can be simply said that hash functions "compress" (in a lossy
manner) a string of an arbitrary length (a message) to a string of a
fixed length (a message digest or hash value). The main goal is not
to compress the message but to produce a message digest that in
some sense represents this message. (An analogous example is the
fingerprint of a human being.)

Hash functions have a large number of applications in computer
science (optimized access to the stored data) and in cryptography
(integrity protection of stored/transmitted data) as well. The uni-
form distribution of message digests is usually the most important
requirement in computer science applications. However hash func-
tions used in cryptographic applications may need to meet stronger
requirements. First of all they must be one-way, i.e. given a message

7

digest it must be "difficult" (computationally infeasible) to find a
message that would hash to this given message digest. Moreover,
given a message it must be "difficult" to produce another message
such that these two messages have the same message digest.

Hash functions are used almost in all practical digital signature
schemes. (Digital signature schemes are rather slow which makes
it impractical to sign large messages. A common approach is to
produce a message digest and then to sign it.)

Clearly, integrity protection via hash functions differs from the in-
tegrity protection via the well-known cyclic redundancy codes (CRCs)
that enable the detection of errors that occur due the noise in the
transmission channel. Analogy in hash functions is a message au-
thentication code (MAC) that is a hash function with a secret key.

2.2 Research targets

In this dissertation there are properties of some specifically con-

structed pseudorandom sequences studied both from the point of

view of cryptography and cryptanalysis. This dissertation deals

also with a relatively new direction in cryptography — the usage

of quasigroups in the design of stream ciphers and hash functions.
The research targets can be formulated as follows:

1. to introduce necessary basic notions concerning pseudorandom
generators and hash functions in cryptography;

2. to study cryptographic properties of the concatenation of peri-
ods of several ml-pseudorandom sequences;

3. to cryptanalyse stream ciphers that are based on the concate-
nation of transformed runs of two mi-sequences;

4. to cryptanalyse one stream cipher based on a quasigroup, which
was proposed in [59],

5. to study the security of a hash function based on a quasigroup,
which was proposed in [21], [22].

The structure of this dissertation is as follows. Section 3 deals
with the state of the art in stream ciphers and hash functions. Basic
notions concerning stream ciphers are outlined in Section 3.1. Sta-
tistical tests of randomness of sequences are mentioned in Section

8

3.2. Design approaches for stream ciphers are described in Sec-
tion 3.3 including several examples in Section 3.4. Basic attacks on
stream ciphers are described in Section 3.5. Basic notions concern-
ing hash functions are outlined in Section 3.6. Design approaches for
hash functions are described in Section 3.7. Basic attacks on hash
functions are described in Section 3.8. Finally, a short information
about the projects NESSIE and CRYPTREC is given in Section
3.9 including the recommended stream ciphers and hash functions.
The results of our research are presented in Section 4. This section
is based on the author’s papers [85], [86], [87], [88], [89], [90], [91],
[92] and [93]. Cryptographic properties of the concatenation of pe-
riods of several ml-pseudorandom sequences are studied in Section
4.1. Section 4.2 deals with cryptanalysis of a stream cipher based
on the concatenation of transformed runs of two ml-sequences. Sev-
eral attacks on a stream cipher based on a quasigroup (proposed in
[59]) are described in Section 4.3. The properties of a hash function
based on a quasigroup (proposed in [21], [22]) are studied in Section
4.4. Conclusions are given in Section 5. A complete list of author’s
papers, conference presentations, and other related activities can be
found in Section 6. Finally, Bibliography is to be found at the end
of this dissertation.

Chapter 3

Stream ciphers and hash
functions — state of the art

3.1 Stream ciphers

Stream ciphers form an important class of symmetric (classical,
secret-key) cryptosystems.

Definition 3.1.1 [32/, [83] A cryptosystem is formally a 5-tuple
(P,C,K,E,D), where:

o P is a finite set of plaintexts,
e C is a finite set of ciphertexts,
e K is a finite set of keys,

o £ is a finite set of encryption transformations ey, : P — C,
where the key k. € K is the parameter of the encryption trans-
formation,

e D is a finite set of decryption transformations dy, : C — P,
where the key kq € IC is the parameter of the decryption trans-
formation. The following must hold: dy,(ex, (P)) = P, VP € P.

Cryptosystems can be roughly subdivided into the following
two groups according to the relation between the encryption and
decryption keys:

symmetric (classical). Encryption key can be easily computed
from the decryption key and vice versa. Since these keys are

10

usually (specularly) identical, they are not considered sepa-
rately. Security of symmetric cryptosystems is based on the
secrecy of the key.

asymmetric (public). Different keys are used for encryption and
decryption. Encryption (public) key can be made public. De-
cryption (private) key must be kept secret (the parameters used
to calculate the decryption key must be kept secret, too). It is
required that it is not possible to compute (in a real-time) the
decryption key from the encryption key.

According to the encryption transformation cryptosystems can
be subdivided as follows [72]:

block ciphers. They transform a plaintext block using a fixed en-
cryption transformation, i.e. a plaintext block is substituted
with another block. It is required that the block is large
enough, to make the dictionary attack impossible. Typical
block size nowadays is 128 or 256 bits. However in some appli-
cations the 64-bit block is still favourable.

stream ciphers. Individual blocks of plaintext (also called sym-
bols, because they are much shorter than blocks used within
block ciphers) are transformed using a time-varying encryp-
tion transformation that is dependent on the inner state of the
stream cipher.

High encryption/decryption speed and simple hardware imple-
mentation are common and most favourable properties of stream
ciphers. Moreover, their properties are usually analyzable and prov-
able using algebraic techniques.

Stream ciphers can be subdivided into [72, pp.6-7]:

synchronous. The next inner state of the stream cipher depends
only on its previous inner state and not on plaintext,

self-synchronizing. The next inner state of the stream cipher de-
pends on its previous inner state and on a fixed number of
previously encrypted symbols.

The description of its advantages, disadvantages and resistance
against several kinds of attacks can be found in |78, pp.197-199,
202-203|, |54, pp.193-195|, [72, pp.14-15].

11

Remark 3.1.2 One may construct a stream cipher also from a block
cipher [78, pp.189-211]. Running a block cipher in the so called
output feedback (OFB) mode or in the cipher feedback (CFB) mode,
respectively we obtain a synchronous or a self-synchronizing stream
cipher, respectively.

An important position among the stream ciphers has the so-called
binary additive stream cipher.

Definition 3.1.3 Let P = (po,p1,---,pn_1) denote the bits of the
plaintext, C = (co,¢1,...,cn_1) denote the ciphertext bits, and
z = (20,21,---,2n-1) denote the keystream bits. Binary additive
stream cipher is a synchronous stream cipher. Its encryption trans-
formation is given as:

C; = p; D z;, 2:0,1,,N—1

The symbol & denotes the addition modulo 2 or in other words it is
the XOR operation. Decryption transformation is then:

pi:ciEBzi, iZO,l,...,N—l.

If the keystream z is also the key k of the cryptosystem, this ci-
pher is also known as the Vernam cipher. If the individual
bits of the keystream z were produced randomly and independently,
the Vernam cipher is absolutely secure (according to the Shan-
non’s definition, see Section 3.5) against the ciphertext-only at-
tack. Let H be the Shannon’s entropy. Hence the following holds:
H(P/C) = H(P), i.e. the uncertainty about the plaintext if the ci-
phertext is known is the same as the uncertainty about the plaintext
itself.

Shannon has proved, that the necessary condition to consider a
symmetric cryptosystem as an absolutely secure one is
H(k) > H(P) (i.e. uncertainty about the key of the cryptosys-
tem may not be smaller than the uncertainty about the plaintext).
If the bits of the key were produced randomly and independently,
then H(k) = ||k||, where ||k|| denotes the number of bits in the key
k. Thus ||k|| > H(P). As it can be seen, the Vernam cipher is the
optimal solution from the point of view of the key length.

Two important problems arise when the Vernam cipher is used
in real-world applications:

12

key generation. One of the basic security principles is that the
key can be used only once. Thus a new key is needed for each
message to be encrypted. Moreover the key must be as long
as the message and the key bits must be generated randomly
and independently. It can be done using a physical true ran-
dom number generator. However such generators are very slow
which makes them impossible to use when a heavy traffic must
be encrypted.

key distribution. Both, a sender and a receiver must agree on
a key. The key must be transmitted from the sender to the
receiver. Thus a trusted and secure channel is necessary to be
shared between the sender and receiver.

These were the reasons that has brought the pseudorandom bit
generators into the centre of interest in the area of stream ciphers.

Definition 3.1.4 /83, Chapter 12/, [54, Chapter 5] Let ||k||, ||z|| be
positive integers such that ||z]| > ||kl + 1. A (||k]|, ||z]])-pseudo-
random bit generator (more briefly, a (||k|,||z||)-PRBG) is a de-
terministic algorithm (running in polynomial time as a function of
|k||) which, given a truly random binary sequence k of length ||k||,
outputs a binary sequence z of length ||z|| which "appears" to be
random. The input to the PRBG 1is called the seed, while the out-
put of the PRBG is called a pseudorandom bit sequence. (PRBGs
used in stream ciphers to produce keystreams are often referred to
as keystream or running-key generators.)

The design goal in stream ciphers is to efficiently produce pseu-
dorandom sequences - keystreams, i.e. sequences that possess prop-
erties common to truly random sequences, that are unpredictable
and in some sense "indistinguishable" from these sequences.

Definition 3.1.5 /83, Chapter 12| Suppose py and p; are two prob-
ability distributions on the set Z|2|ZH of bit-strings of length ||z||. Let
A Z|2|ZH — {0, 1} be a probabilistic algorithm that runs in polyno-
mial time (as a function of ||z||). Let € > 0. For j = 0,1, define

Ex(pj) =
= > Pi(21s - Zpe)P(A(21, - - 21) = 1 (21, -5 2)120)-

(#1502 EZY

13

We say that A is an e-distinguisher of py and py provided that
|Ea(po) — Ea(p1)]| > €, and we say that py and py are e-distinguish-
able if there exists an e-distinguisher A of po and p;.

Definition 3.1.6 [5/, Chapter 5, p.171] A PRBG is said to pass
all polynomial-time statistical tests if no polynomial-time algorithm
can correctly distinguish between an output sequence of the generator
and a truly random sequence of the same length with probability
significantly greater than 1/2.

Definition 3.1.7 /83, Chapter 12] Let p; be the probability distri-
bution on the set Z‘J'z” of bit-strings of length ||z|| induced by the
(II]l, lIzIl)-PRBG. Then the probabilistic algorithm B;, 1 < i < ||z|
is an e-next bit predictor for (||k||, ||l||)-PRBG if and only if

1
Z pi(z1, . zim)p(zi = Bil (21,05 2im1)) 2 5 te

(Zl,...,zi_l)EZ;_l

See [83, Chapter 12| for the connections between distinguishers
and next-bit predictors.

Definition 3.1.8 /[5/, Chapter 5, p.171] A PRBG is said to pass
the next-bit test if there is no polynomial-time algorithm which, on
mput of the first [bits of an output sequence z, can predict the
(I 4 1)% bit of z with probability significantly greater than 1/2.

The importance of the next-bit predictors is expressed in the
following Theorem.

Theorem 3.1.9 /5], Chapter 5, p.171] A PRBG passes the next-bit
test if and only if it passes all polynomial-time statistical tests.

Studying properties and security of almost all practical designs of
stream ciphers using the previously stated notions of unpredictabil-
ity and indistinguishability is almost impossible. That is why other
(weaker) measures are used in real world.

Notation 3.1.10 Let an infinite sequence z of elements from a

symbol set S be denoted as z = zy,21,22,..., 2z € S, i > 0.
Further let the N-couple beginning of this sequence be denoted as
N _

2 = 20,”1,%2y -y AN—1-

14

There are usually binary sequences used in cryptographic appli-
cations, i.e. S = {0,1}. Since many of the used sequences are
produced by some finite automata, it is natural to define the period
of the sequence.

Definition 3.1.11 Let z = 2y, 21, 29, ... be an infinite sequence. If
there exist r,q € N, ¢ > 0,r > 0, such that z, = 24y,
Zg+1 = Zgtr+1, - - -, then the sequence z is called ultimately periodic.
If ¢ = 0, the sequence z is referred to as periodic. The smallest
integer v for which the previous statements hold is called the period
of the sequence z.

Grouping identical adjacent elements in a sequence together leads
to the notion of a run.

Definition 3.1.12 Let 2V = 2y, 21, 29, ..., 2n_1 be an N-couple se-
quence. Then a subsequence z;, Ziy1,. .., Zirqg—1, 0 < 1 < N — 1,
1 <d< N —1iscalled a run of length d, if z; = 2,41 = -+ = Ziya1

provided z; 1 # z; (if i >0) and zi1q 1 # 2zira (if i+d < N). If the
sequence 2V is binary then a run consisting of ones, resp. zeros is
called a block, resp. a gap.

Definition 3.1.13 /4] Relation

aopS; +a18;_1+ -+ amSi—m = 0, (31)
a;,s; € GF(q),a9 # 0, a,, # 0,

t=m,m+1,m+2,...

is called the mth-order linear recurring relation. Sequence g, S1,
S9, ... satisfying this relation is called the mth-order linear recurring
sequence (or the solution of the linear recurring relation). Elements
50551, .-, Sm_1 are referred to as the initial values.

Definition 3.1.14 [}/ There are two important polynomials con-
nected to the linear recurring relation (3.1):

the left characteristic polynomial: a(z) = ag+a;z+- - -+apz™,

the right characteristic polynomial: @(z) = aoz™ + a;z™ ' +
+ [P _|_ Ay, -

It holds that a(x) = x™a(1/x).

15

If there are "many" coefficients a; of the (left or right, respec-
tively) characteristic polynomial equal to zero, the polynomial is
said to be "sparse". Otherwise the polynomial is referred to as the
"dense" one.

Definition 3.1.15 [57] Polynomial of the smallest degree, which is
characteristic polynomial of the sequence Sg, $1, Sa,... 18 called the
minimal polynomial of this sequence.

Definition 3.1.16 /57/ Linear complexity of a sequence is the de-
gree of the minimal polynomial of this sequence.

Definition 3.1.17 Let us denote s = Sg,81,...,Sny-1 aS {s; Z-A;Bl.

Let us define the following set of sequences constructed from the
sequence s: J = {{si}}_y, i =0,1,..., N=1}. The linear complezity
profile is a function J — N, which assigns to each sequence from .J
its linear complezity. (Note that the linear complexity profile is a
nondecreasing function.)

Any sequence produced by some generator must possess the fol-
lowing features in order to be useful in cryptography as a keystream
sequence:

e long period, since only its part can be used as a keystream
for encryption. Moreover long period is a basic condition for
unpredictability of a sequence. Another important fact is that
the period of a sequence represents an upper bound for its linear
complexity.

e large linear complexity. It is well known that a sequence with
linear complexity m can be completely reconstructed from
its 2m consecutive bits. More precisely, it is possible to find
the minimal polynomial of this sequence using the Berlekamp-
Massey algorithm [51]. The complexity of this algorithm is
roughly the square of the sequence length. If m is small and a
ciphertext is given, only a short plaintext is required to calcu-
late the corresponding part of the keystream and then to find
the minimal polynomial of the keystream which yields in the
break of the cipher. (If the short plaintext is not known, the at-
tacker may try to guess probable words in the plaintext.) The
complexities of higher orders (quadratic [11], cubic, etc.) can
be defined too. However there is no known efficient algorithm

16

to calculate them. In past years also the 2-adic complexity
was studied with the connection to feedback with carry shift
registers (FCSRs) [15], [41], [42]. However for most current
designs of stream ciphers (or keystream generators) it is im-
possible to give useful estimates of the 2-adic complexity of
their keystreams.

e linear complexity profile, that is only a little bit different from
the ideal one, which is represented by the n/2 line. Moreover
the differences should be irregular. If a linear complexity is
constant on a large segment under the n/2 line it is possible to
approximate the keystream (or a part of it) using a linear recur-
ring relation of a smaller order. A nice example is the sequence
0,0,...,0,1. Tts linear complexity is maximal, i.e. equal to the
number of bits in this sequence. However this sequence can be
very well approximated by the all-zero sequence.

e proper statistical properties. As it was said a (pseudorandom)
keystream should possess features common to truly random se-
quences. How random a keystream appears can be checked
when statistical tests are applied on it (see Section 3.2 for fur-
ther details).

A commonly used approach in the keystream generator evalua-
tion is a combination of theoretic and experimental approach. The
period and linear complexity (or their lower and upper bounds)
of keystreams produced by the studied generator are determined
using algebraic techniques. Some basic statistical properties such
as number of ones, frequency of pairs of bits, number of runs of a
given length, etc. in a period of a keystream are sometimes studied
analytically, too. However these results do not express statistical
properties of a keystream in a sufficient manner. Then a battery of
statistical tests (see [45], [23], [24], [76]) is applied on a number of
keystreams. (One should realize that it is not possible to test all the
keystreams and moreover only a small, negligible part of the period
of the keystream is tested.) Finally the resistance of the keystream
generator against the known attacks is studied.

17

3.2 Statistical tests of pseudorandom sequences

Any sequence must possess common features expected in random
sequences in order to be considered pseudorandom.

Golomb was the first one who formulated necessary (but not suf-
ficient) conditions a pseudorandom sequence has to satisfy in order
to be considered random.

Let 2V = zy,21,...,2v_1 be a binary sequence (for a periodic
sequence let N be its period). Golomb’s randomness postulates
state:

P1: The number of ones and zeros in z" differs at most by 1.

P2: In the sequence 2", one half of runs has length 1, one fourth has
length 2, one eighth has length 3, etc. Moreover, the number
of blocks and the number of gaps of a given length is roughly

equal in z%.

P3: Autocorrelation function C(t) is two-valued, i.e. there exists
such a number K € Z, that the following holds:

N-1 N, ift=0
NCMW =2 (25 -DCuu—1D=1 g i1 <<yt

i=0 ’

However, these postulates are too strict for a practical evaluation
of a keystream generator.

Let Hyp be the hypothesis that the studied sequence possesses
features common to a random sequence. Alternative hypothesis (the
studied sequence does not possess features common to a random
sequence), is denoted H;. Which one of these hypotheses will be
accepted we decide after performing a statistical test. If we reject
Hj although it was correct, we make the Type-I of error. Probability
of this type of an error is referred to as the size of the test and is
denoted as a. A typical choice of the test size is 0.001 < a < 0.05.
If we accept Hy although H; is valid, we make the Type-II of error.
Probability of this error is denoted as 3. The number 1— /3 is referred
to as the power of the test. It is necessary to consider the length of
the sequence during the choice of parameters o or 3. It is important
to realize that power of the test is more important than its size since
acceptance of a "bad" sequence (or a "bad" keystream generator)

18

can cause a security incident whereas rejection of a "good" sequence
can cause "only" inefficiency.

There are various statistical tests (theoretical or empirical) to
be applied to check whether the studied sequence possesses some
feature common to a random sequence. Usually a two-sided test is
applied. A large number of statistical tests can be found e.g. in
[45], however not all of them are meaningful to be applied to binary
sequences.

FIPS 140-2

This standard for nonclassified data suggests 4 statistical tests
a sequence should pass to be considered pseudorandom. Required
number of bits in a sample of a sequence is 20 000. FIPS 140-2 ([24])
is the successor of FIPS 140-1 ([23]). A very important change has
been done: the test size was set to & = 10™*, whereas in FIPS 140-1
it was & = 107%. These tests are based on the law of large numbers
and the y>2-test.

1. Monobit test
The number of occurences of element 1 in the sample (denoted
as ny) should pass the inequality 9725 < ny; < 10275.

2. The poker test (equidistribution of quadruples)
The studied sample is divided into 5000 consecutive non-over-
lapping quadruples. The number of occurences of individual
quadruples, denoted as o0;,7 =0, ..., 15, is determined and the
following value is calculated.

A sample passes this test if it holds that 2.16 < V' < 46.17.

3. Run test
Let us denote B;, resp. G; the number of blocks, resp. gaps
of length 7 in the sample. (Runs longer than 6 are counted
together with runs of length 6.) The values B;, resp. G; should
occur in intervals specified in the following table.

19

| Length of run | Interval |

1 2343 - 2657
2 1135 - 1365
3 542 — 708
4 251 - 373
) 111 - 201
6 111 - 201

Table 3.1: FIPS 140-2: Required number of runs

4. Long run test
A sample passes this test if it does not contain runs of length
26 or longer.

Probably the only publication dealing with statistical tests (and
containing a mathematical background) of pseudorandom sequences
used in cryptography is [76] (see also corrections in [40]). There are
16 tests described (mathematical background as well as the imple-
mentation) in this book. Source codes for Linux are to be found at
http://csrc.nist.gov/rng/rng2.html. Other software packages
for statistical testing of pseudorandom sequences are e.g. DIEHARD
or Crypt-X.

3.3 Design of stream ciphers

There are four different approaches to the design of stream ciphers
according to Rueppel [74], [75]:

System-theoretic. A new keystream generator is designed using
the best known design principles. Next the accomplishment of
basic criteria (period, linear complexity, statistical properties,
etc.) on keystream generators is checked. Finally, it is studied
whether the new keystream generator is a difficult and unknown
problem (from the point of view of possible attacks) for an
attacker.

Information-theoretic. The idea is to keep the cryptanalyst in
the dark about the plaintext. No matter how much work the
cryptanalyst invests, he will never get a unique solution.

20

Complexity-theoretic. The goal is to base the cryptosystem on,
or make it equivalent to, some known and difficult problem such
as factoring or calculating discrete logarithms.

Randomized. The keystream generator designed using this ap-
proach is based on a large number of transformations. The
idea is to force the cryptanalyst to examine lots of useless data
in his attempts at cryptanalysis. (Note: Complexity and a
number of transformations do not guarantee security. An ex-
ample of a "super-random" generator can be found in [45, p.4,
Algorithm K].)

The most commonly used design approach is the system-theoretic
one. Almost all the designs based on linear feedback shift regis-
ters rank among this category (for further details see this Section
hereafter). However, there are also several stream ciphers designed
according to the complexity-theoretic approach (e.g. BBS).

Next we introduce several basic building blocks of stream ciphers.
Several designs of stream ciphers are included as examples.

Linear congruential generator

One of the common ways of producing pseudorandom sequences
(mostly used in modelling and simulation) is the linear congruential
generator [45]. Tt is based on the recurring relation

z; = (a.z;_1 + b) mod m,

where a,b,m are chosen constants (integers), an integer
2o € {0,1,...,(m — 1)} is called the seed, or the initial loading
of the generator (secret key). A proper choice of the constants en-
sures the maximal period of the produced keystream (e.g. when b
and m are relatively prime). It is well known (see e.g. [45]) that
linear congruential generator passes many standard statistical tests.
However, there are also tests [9], [47] that this generator fails.

The output of the linear congruential generator is easily pre-
dictable, thus it is not suitable for cryptographic applications.

It was suggested to extract a given number of most significant
bits from each item of the sequence z. However, this transformation
does not improve the security of this generator significantly [46].

21

It is possible to generalize the concept of a linear congruential
generator to a polynomial one. Also these generators are not con-
sidered secure [47].

Linear feedback shift register (LFSR)

Linear feedback shift register L (see Fig. 3.1) represents a tech-
nical (hardware) implementation of a solution of a linear recurring
relation (3.1). It is a common basic building block of keystream
generators.

e e e

Fi] Fia Fi

Figure 3.1: Linear feedback shift register

Below we show several possible representations of elements of a
linear recurring sequence. Linear recurring sequences are studied

e.g. in [38], [48], [57].

Theorem 3.3.1 [57] Let s, s1, Sa, ... be a solution of the linear re-
curring relation (3.1) in the field GF(q) with a left characteristic
polynomial a(x). If ay,an, ..., an are mutually different roots of
the polynomial a(x), then s; = Z;”Zl ﬂjoz;-, fori=20,1,2,..., where
B1, B2y ..., Bm are the elements of the extension field to the GF(q)

for the a(x) polynomial, that are uniquely determined by the initial
values sg, S1, ..., Sm—1-

Definition 3.3.2 [57] Let a be an element from F = GF(¢™), that
is an m-th order extension to the field K = GF(q). Then the trace
of the element o is defined as Trp k(o) = atal+a” 4 4al"

22

The trace Trp/k () is a linear function from the field F' onto
the field K, provided both fields are understood as a linear (vector)
spaces over the field K.

Theorem 3.3.3 [57] Let so, s1, S2, ... be a solution to the linear re-
curring relation (3.1) in K = GF(q) with a left characteristic poly-
nomial a(x), that is irreducible over K. Let « be a root of a(x) in the
extension field F = GF(q™) of the field K. Then s; = Trp/(6a’),
foriv =0,1,2,..., where 6 is a uniquely determined element from
F.

This representation of elements of linear recurring relations is
of particular importance for the analysis of combination of several
linear recurring relations.

As it was said before, the period of a keystream is a very impor-
tant feature. Thus it is natural to ask how to construct an LFSR
to obtain the maximal possible period of the produced keystream.
It is quite easy to see that an m-bit long LFSR can produce only
sequences with period at most 2™ — 1.

Definition 3.3.4 [}/ A polynomial a(x) € GF(2)[X], dega(x) = m
is said to be primitive, if it holds that a(z) divides 2" 1 — 1 and
does not divide any polynomial ' — 1, where t < 2™ — 1.

Theorem 3.3.5 [/, p.350, Theorem 9] If the left characteristic poly-
nomial a(x) € GF(2)[X], dega(x) = m associated with an LFSR
1s primative, then any sequence this LFSR produces from a non-zero
inital loading has period 2™ — 1. An LFSR with associated prim-
itive polynomial is also called mI-LFSR and sequences it produces
are called ml-sequences.

ml-sequences are well known due to their nice statistical prop-
erties and they also pass the Golomb randomness postulates (see
Section 3.2). The distribution of patterns in an ml-sequence is ex-
pressed in the following theorem.

Theorem 3.3.6 [5/, p.197,Fact 6.1/] Let u be an ml-sequence gen-
erated by an ml-LFSR L, that is ||L|| bits long. Let k be an integer,
1 <k <||L||, and let @ be any subsequence of u of length 21" +k—2.
Then each non-zero sequence of length k appers exactly 211=% times
as a subsequence of w. Furthermore, the zero sequence of length k
appears exactly 21M1=F — 1 times as a subsequence of 1.

23

It is also possible to associate a formal power series s(z) =
S0+ 517 + 5022 + ... to a binary sequence s = sg, S, S2,... as
its generating function. According to [4, p.340, Consequence of the
Theorem 5| each solution to the linear recurring relation (3.1) has in
GF(2)[X] a generating function s(z) = Zgg, h(x),a(x) € GF(2)[X],
deg h(z) < dega(x) and a(x) is the left characteristic polynomial of
the linear recurring relation.

An LFSR cannot be used itself as a keystream generator. Its
security weakness is the small linear complexity of the produced
keystream.

J.L.Massey in [51] proved that Berlekamp algorithm for decoding
BCH codes is a general solution to the problem of synthesis of the
shortest LESR that generates a given sequence. Let s = sq, s1, S9, . ..
be a binary sequence and m be its linear complexity. Then it is pos-
sible to find uniquely the shortest LFSR that generates the sequence
s using the Berlekamp-Massey algorithm from 2m consecutive bits
of the sequence s. The complexity of this algorithm is roughly the
square of the sequence length.

We will describe several modifications of an LFSR that enlarge
the linear complexity of a produced sequence. These designs can be
found in a large number of classical stream ciphers.

Filtered LFSR

Linear feedback shift register is in fact a finite automat. One of
its possible modifications is to change the output function. Whereas
the output of a "classical" LFSR is a single bit of its loading in the
given time, the output of a filtered LFSR is a value of a Boolean
function that takes as input all the bits of the LFSR loading in the
given time. Properties of filtered LFSRs are studied in [72].

Let a sequence sg, sy, S2,... be a solution to a linear recurring
relation (3.1) in GF(2) with a left characteristic polynomial a(z).
Further let n < m of the LFSR bits be an input to a filter function
[+ ZY — Zs. The filter function must be nonlinear, otherwise it
makes no sense to use it. Let 0 < 71 < jo < ...J, < m be the
indices of these bits. The output of this filtered LFSR in time ¢ is
Zi = f(S’i+j17 Sitjas - Si+jn)'

The next two Theorems characterize the important properties -
period and linear complexity of a filtered LFSR.

24

i
Fim "t Siia | Fia

Zim | | | |
-+ Ff0® —{0,1}

Figure 3.2: Filtered LFSR

Theorem 3.3.7 [82] Let a(x) be a left characteristic polynomial of
a filtered LFSR with a non-zero initial loading. If the filter func-
tion f is balanced or (248%™ — 1 is a prime number and f is

not a constant function), then the period of this filtered LFSR is
9deg a(z) _ 1.

Theorem 3.3.8 [72] Let a(x) be a primitive left characteristic poly-
nomial of a filtered LFSR. Let [: 7% — Zs be the filter function.
Then the linear complexity of the output sequence z, denoted as A(z),
can be upperbounded by:

A@)§§i< hg¢x)>_

i=1
Clock-controlled LFSR

Let a sequence s = g, S, Sg, ... be a solution to a linear recurring
relation (3.1) in the field GF(2) with a left characteristic polynomial
a(z). Let z = 2y,21, 22, ... be the output sequence from a clock-
controlled LFSR.

One of the methods for increasing the linear complexity of a
sequence z is to change the clocking of the register. Note, that in
general it will be s; # z;. The change of the clocking of an LFSR
also increases the resistance against the so-called correlation attacks
(see Section 3.5 for further details).

The clock control of an LFSR can be in general understood as
a selection of elements from its output sequence s driven by the so-
called (periodic) decimation sequence d = dy,dy,dy,...,
0<d; <2degal®) _92 7=0,1,2,..

")

25

20 = S0,

Zj = Syni-1 1=1,2,....

j=0d;’
LFSR with constant clocking

The simplest case is the selection of each ¢-th element,
i.e. z; = s;. The next Theorem characterizes the important prop-
erties of an LFSR with a constant clocking, namely its period, and
linear complexity.

Theorem 3.3.9 [72] Let s be a linear recurring sequence over GF(q)
with period T and characteristic polynomial a(z), deg a(z) = m, that
is irreducible over GF(q). Let o be a root of a(x). Then the sequence
z; = S; has the following properties:

e its characteristic polynomial is the minimal polynomaial for the
element o,

e its period T* = m,

e its linear complexity is equal to the multiplicative order of q in
Zre.

Moreover for allt € {k,kq, kq?, ... (mod T)} is the output sequence
z the same for a proper choice of the initial loading.

Self clock-controlled LFSR

Rueppel in 73] proposed a linear feedback shift register which is
self clock-controlled.

Let a sequence s = sq, S1, Sg, ... be a solution to a linear recurring
relation (3.1) in GF(2) with a(x) being the left characteristic poly-
nomial. Let z = zg, 21, 29,... be the output sequence from the self
clock-controlled LFSR. The clock-control works as follows:

® 2o = So,

e if z; = 0 then the register is clocked I-times (in other words if
i = 8j then Zitl1l = S]‘_H),

e if z; = 1 then the register is clocked k-times,

26

where [, k € N are arbitrarily chosen constants. The output sequence
z is also called an [l, k| self-decimated sequence.

If the polynomial a(z) is primitive and the constants [,k are
properly chosen, it is possible for the sequence z to achieve uni-
form distribution of patterns and also a maximal period equal to
1(2/3) % (29°89(*) — 1)|. Performed exhaustive search experiments
show also a large linear complexity and an almost flat autocorrela-
tion function.

If the constants [and £ are known to the attacker, it is possible
to find the initial loading of the register from the sequence z — it
suffices to solve a system of linear equations. Thus a self clock-
controlled LFSR is not resistant against the known plaintext attack
(see Section 3.5). Hence a self clock-controlled LFSR should not be
itself a keystream generator. Anyway it can be used as a building
block for keystream generator.

The clock-control of an LFSR using the output of another LFSR
is studied in [3]. The generalization of this idea, the so-called cascade
of LFSRs, is studied in [29].

Other registers

Up to now we have discussed a linear feedback shift register and
several of its modifications. It is also possible to build a shift reg-
ister with a nonlinear feedback. However they are not favoured as
building blocks for keystream generators. The main reason is the
insufficient knowledge about their properties. On the other hand
the not well developed mathematical methods concerning analysis
of nonlinear feedback shift registers make the cryptanalysis much
harder. However the designers of keystream generators favour well
known and analyzed building blocks.

Feedback with carry shift register (FCSR) is another kind of reg-
ister [41], [42], [15]. Tt is based on the theory of 2-adic numbers. It
is known that for any periodic sequence there exists an FCSR that
generates it. The mutual relation between LFSR and FCSR is un-
known up to now [15]. An upper bound on the period of sequences
produced by an FCSR has been determined. It is also known how to
choose the parameters of an FCSR to obtain sequences with maxi-
mal period. The problem is that a sequence with maximal period is

27

not obtained for all the initial loadings of an FCSR (with properly
chosen parameters to obtain sequences with maximal period) |78,
[15].

The only published keystream generators (known to me) based
on FCSRs can be found in [78]. These generators are simple modifi-
cations of the well known keystream generators (usually one or more
LFSRs are substituted by FCSRs). However their security is often
an open problem. Cryptanalysis of two such designs - the parity
and the threshold keystream generators was done in [84], [69].

Combination of LFSRs

One of the classical methods of building a keystream generator
is to use several LFSRs and to combine their outputs using a (non-
linear) combination function. The most simple case is the XOR of
two linear recurring sequences. We define also a special operation -
the bitwise multiplication of sequences.

Definition 3.3.10 /57] Let s, s1, S2,... and s'o, 81,52, ... be two
linear recurring sequences over GF(2) with associated left charac-
teristic polynomials a(x) and a'(x). We define the sum of these
sequences s + s' to be the sequence sy + s'y,s1 + s'1,50 + 8’9, ..,
where + denotes the addition in GF(2) (in other words XOR). Next
we define the (bitwise) product of these sequences s.s' to be the se-

quence sg.8'g, 51.8'1, 82.8'2, ..., where . denotes the multiplication in
GF(2) (in other words AND).

The set of all linear recurring sequences, generated by a primi-
tive polynomial a(x), is closed with respect to the sum [4, p.351].
Moreover it is closed also with respect to the shift and scalar multi-
plication.

Linear complexity of a sequence produced as a polynomial com-
bination of several (special) linear recurring sequences is determined
in the following Theorem.

Theorem 3.3.11 [57] Let F be a nonlinear function over GF(2),

F(sMW 5@ sN)) =
= Up _|_ Zuzs(l) _|_ ZU’US(Z)S(]) + . . + U12...NS(1)3(2) - S(N),

where w;, Uij, ... ua.ny € GF(2). Let s, 52 .. 5™ be linear
recurring sequences over GF(2) with minimal polynomials mgu (z),

28

degmyi(x) = M;. Let us assume that each polynomial mgi) has
only simple roots in GF(2M) \ GF(2) and none of the roots is
a scalar multiple of another root. Let us further assume that the
degrees of the minimal polynomials are pairwise relatively prime.
Then a sequence z = F (s, s®) ... s(N) has a minimal polyno-
mial m,(z) of degree M = F'(My, My, ..., My). The polynomial F’
is given by the same expression as the polynomial F, with (integer)
coefficients u';, u'y;, ..., u'19. N, that are equal to 0 or 1, respectively
whenever w;, U, ..., u12..N are equal or non-equal to zero, respec-
tively. The polynomial F' is evaluated in integers and not in the
field GF(2). All the roots of the minimal polynomial m,(x) are sim-
ple and are from GF(2™)\ GF(2), where m = [[, M;.

Besides the nonlinearity of a combination function F' (see e.g.
[72], [57]), an important role plays also its correlation immunity (see
e.g. [72], [79]). The correlation immunity characterizes the relation
between the output of a function and its inputs.

Definition 3.3.12 [72], [30] A function f : ZY — Zy is said to be
k-th order correlation immune, 1 < k < n, if I(f(X),Y) =0 for
each k-dimensional subvector Y of a vector X, where I(U,V) =
H(U) — H(U/V) is the so-called amount of mutual information be-
tween U and V.

The relation among the order of correlation immunity, algebraic
order and number of variables of a Boolean function is determined
in the next Theorem.

Theorem 3.3.13 [79] If a function f : 7% — Zs is k-th order
correlation tmmune, 1 < k < n, then each term in its algebraic
normal form must have less than n — k + 1 variables.

Construction of sequences with a given correlation immunity is
studied in [79].

NSG: natural sequence generator

A special class of keystream generators - the so-called natural
sequence generators (NSGs) is studied in [15]. From a design point
of view there is an obvious similarity with a filtered LFSR. NSG
is based on a counter and on an output (filter) function. The i-th

29

keystream bit z; is produced according to the rule
2 = f(i+ k mod N), where f : Zy — Zs is the output function, N
is the period of the keystream and k € Zy is a secret key.

A quite special design of an NSG allows the application of many
number theoretic results. It can be easily seen that the output func-
tion plays an important role in the security of the NSG. There are
several constructions of the output function studied in [15]. It is
important that under the proper choice of the NSG parameters one
may obtain a keystream generator with high nonlinearity, linear,
weight and sphere complexity. It is also resistant against the differ-
ential cryptanalysis. It is interesting that one of the parameters is
the period of the keystream, which is usually chosen to be a prime
number (sometimes a special form is required).

Although NSGs may possess many nice properties, they are very
slow (about 4 kB per second) both in hardware and software. It
is mostly due to the operations that NSGs use: multiplication and
exponentiation are the common ones. Thus the practical usage of
NSGs is rather restricted. One of the possible areas is the key gen-
eration.

Other designs

Some recent stream ciphers have been designed for efficient soft-
ware implementation, and are not based on LFSRs [62]. Examples
include the stream ciphers RC4, SEAL, Scream and the NESSIE
submission LEVIATHAN. These ciphers are build upon the block
cipher design ideas. In some cases, they are in fact a block cipher in
a special mode of operation (e.g. the BMGL stream cipher, which
is one of the submissions to NESSIE).

3.4 Examples of stream ciphers
There are several chosen stream ciphers presented in this Section.

Geffe’s generator

Geffe’s generator is based on a polynomial combination of out-
puts from three LFSRs L1, L2 and L3. Let Li(t), i = 1,2,3 be
the output from the LFSR L: in time ¢. The output of the gen-
erator in time ¢ is then 2z, = (L1(¢) @ 1).L2(t) @ L1(t).L3(t). The

30

period of the keystream is the least common multiple of periods
of sequences produced by the individual LFSRs. The linear com-
plexity of the keystream (under a proper choice of LFSR polyno-
mials) can be determined due to the Theorem 3.3.11. Note that
Pr(z; = L2(t)) = Pr(z; = L3(t)) = 0.75, thus a correlation attack
is possible to be performed. Hence the Geffe’s generator is insecure.
However it is a nice design for demonstrating divide-and-conquer
and correlation attacks (see Section 3.5).

Generator LILTI-128

LILI-128 [17] is one of the keystream generators submitted to the
NESSIE project. Its design combines two principles - filter function
and clock control. LILI-128 consists of two nonlinearly filtered LF-
SRs. The output the first register controls the clocking of the second
register. The output of the keystream generator is the output from
the second register. The produced keystream has a large period and
also a large linear complexity. However there is an attack faster than
exhaustive search against this generator and that was the reason why
it was not included in the NESSIE portfolio of recommended stream
ciphers.

BBS: Blum, Blum, Shub generator

BBS is a "number-theoretic" keystream generator designed ac-
cording to the complexity-theoretic approach [7]. Tts security is
based on the problem of factoring integers. An important fact is
that the keystream is unpredictable (neither to the left, nor to the
right).

Algorithm of the BBS keystream generator:
1. Choose primes p and ¢ such that p # ¢, p = 3 mod 4,
g = 3 mod 4. Calculate n = pq.

2. Choose a random w € [1,n — 1], such that ged(w,n) = 1.
Calculate 7y < w? mod n.

3. Keystream 21, 2o, ..., 2y is produced as follows:
r; + 2, mod n.
Z; LSB(J?Z) for i = 1,2,...,N.
LSB(x;) is the least significant bit of a binary representation of
ZTi.

31

Due to the operations the BBS uses, it ranks among the slow gen-
erators. Thus its practical usage as a keystream generator is limited
to applications, where the encryption speed does not play much a
role or which require high security. For example, it can be used as
a generator of random values (e.g. keys) for other cryptographic
primitives.

A large number of keystream generators can be found e.g. in 78],
[54].

3.5 Attacks on stream ciphers

The natural requirement on any cryptosystem is its security. There
are also other important properties of cryptosystems, such as e.g.
error propagation, key size, etc. (see Kerckhoffs’s and Shannon’s
requirements on cryptosystems in [32, pp.40-41]).

A well known requirement, formulated by Kerckhoffs in the 19-th
century, is that the security of any cryptosystem should be based on
keeping the key secret and not on keeping the entire cryptosystem
secret.

The famous notions of perfect and relative secrecy of cryptosys-
tems were introduced by Shannon. A perfectly secure cryptosystem
must have the following property: the amount of information about
the plaintext and the key does not increase when a new ciphertext
is obtained.

More formally, H(P,K/C) = H(P,K), where P € P, C € C,
K € K and H is the entropy function (see e.g. |32, pp.81-82|). As-
suming the mutual independency between the key and the plaintext
one can write H(P,K) = H(P) + H(K). Cryptosystems that are
not perfectly secure can be only relatively secure.

A cryptosystem is said to be computationally secure, if it is not
possible to perform an attack against it in a real time with really
available computing power (number of processors, amount of mem-
ory and disc storage, etc.).

Moreover, Shannon introduced also the notion of ideal secrecy !.
When the unicity distance is infinite, one speaks about ideal secrecy.
The unicity distance determines the amount of a ciphertext needed

L An ideally secure cryptosystem does not have to be perfectly secure!

32

for finding the corresponding plaintext uniquely (see |78, pp.235—
236]).

Basic assumptions for cryptanalysis were formulated by Kerck-
hoffs in the 19-th century. According to them a cryptanalyst has
detailed knowledge about the cryptosystem, including all the details
about the algorithm and also about its technical implementation. If
the cryptanalyst, having this knowledge, is not able to break the
cryptosystem, it is reasonable to assume that an attacker will not
be able to break this cryptosystem without this knowledge.

The goal of an attack on a cryptosystem might be to find the
decryption key, the plaintext, etc. Knudsen classified the following
four categories of breaking an algorithm [43]:

total break. An attacker finds the decryption key.

global deduction. An attacker finds an algorithm for decrypting
the ciphertext without knowing the decryption key.

instance (or local) deduction. An attacker finds the plaintext of
an intercepted ciphertext.

information deduction. An attacker gains some information about
the key or plaintext.

Attacks can be further subdivided into the following categories
according the amount of information an attacker has:

ciphertext-only attack. An attacker knows only a ciphertext
CelcC.

known plaintext attack. An attacker is given a plaintext P € P
and the corresponding ciphertext C' € C, C' = ¢, (P) or several
plaintext-ciphertext pairs.

chosen plaintext attack. An attacker can choose a set of plain-
texts and obtain the corresponding ciphertexts.

Further details concerning the above mentioned attacks, includ-
ing some other attacks, can be found in [78, pp.5-7].

It cannot be said that there is a standard set of attacks on a
stream cipher as it is for a block cipher (differential and linear
cryptanalysis, related keys attack, etc.). Neither there are no such
important results relating the security of a stream cipher to some

33

of its construction parameters as there is for a block cipher (e.g.
the relation between the number of rounds and resistance against
differential cryptanalysis or the notion of provable security against
the differential and linear cryptanalysis, see e.g. the block cipher
MISTY and the papers by M.Matsui). The attacks against stream
ciphers usually exploit some specific weakness of the design.

In the following, we try to point out some general and most com-
mon attacks against stream ciphers.

Brute-force attack

Any relatively secure cryptosystem is vulnerable to a brute-force
attack (sometimes also called exhaustive search). The idea behind
this attack is simply to try all the keys. For each key a ciphertext
is decrypted and the obtained plaintext is checked whether it is the
"right" one. Usually some assumptions about the plaintext must
be done, e.g. a language it is written in is known, which enables to
search for words, or possibly some structure a plaintext message has
is known, which might be the case of database records. Thus it is
natural to require any cryptosystem to have a large keyspace and a
flat probability distribution.

Divide-and-conquer attack

The idea of a divide-and-conquer attack is to divide the key into
parts (not necessarily disjoint), perform attacks to gain these parts,
put them together and conquer. Assume a keystream generator that
consists of several LFSRs. Let the initial loadings of these LFSRs
be the key. The divide-and-conquer strategy is to perform attacks
against the individual LFSRs (see e.g. correlation attacks in this
Section hereafter).

This attack is usually combined with other attacks or techniques.
One of them is a guess-and-check technique. It is very common
in the context of known (or chosen) plaintext attack. The idea
is to divide the key into parts, choose some of them, calculate the
remaining parts of the key and finally check the key, e.g. whether the
obtained key produces the keystream an attacker has. A practical
example of this approach is the attack on the stream cipher ORYX
[94].

34

Time-memory tradeoff attack

The time-memory tradeoff on a stream cipher is in general an
adaptation of the time-memory tradeoff developed by Hellman for
block ciphers. Such attacks can be applied to almost any cryptosys-
tem, but they are feasible only when the number of internal states
is relatively small. The basic idea of the time-memory tradeoff is
to keep a large set A of precomputed states on a hard disk, and
to consider the large set B of states through which the algorithm
progresses during the actual generation of output bits. Any inter-
section between A and B will enable us to identify an actual state
of the algorithm from the stored information [5].

Time-memory tradeoff is one of the basic ideas of attacks [5], [6],
[28] on the stream cipher A5/1 which is used in GSM.

Correlation attacks

Correlation attacks are studied mostly in connection to LEFSRs.
Let us have a keystream generator, which contains an LFSR as one
of its building blocks. Let s = s¢, $1, ..., sy_1 be the (unknown) out-
put of this LFSR. Assume, the keystream bits z = 2g, 21,...,2y_1
and the value p = Pr(z; = s;) > 1/2 are known (a textbook exam-
ple is the Geffe’s generator, see Section 3.3). The idea behind the
correlation attacks is to exploit the coincidence between the known
keystream and the unknown output of the LFSR to find the initial
loading of this LFSR.

Siegenthaler’s correlation attack

The first published correlation attack [80] is based on an exhaus-
tive search. The output of an attacked LFSR. is produced for each
of its possible initial loadings. The real coincidence between the
known keystream and each of the produced output sequences from
the LFSR is determined. The initial loading for which the difference
between the real and theoretical coincidence is the smallest one, is
the best candidate to be the key. This attack is infeasible when a
sufficiently long LFSR, (nowadays about 80 bits) is used.

35

Meier’s-Staffelbach’s fast correlation attacks

Meier’s-Staffelbach’s fast correlation attacks (algorithms A and
B) [53] rank among the first fast correlation attacks that are not
based on an exhaustive search in the keyspace. (Algorithm A is
mentioned also in [30], where the description of several other attacks
can be found.)

Recall that the sequence s is a solution to a linear recurring se-
quence given by a left characteristic polynomial a(z), dega(z) = m.
Let (¢t + 1) be the number of non-zero coefficients of a(z). Each
bit s; of the sequence s (except several bits at the borders) may be
written in the linear recurring relation at ¢t 4+ 1 positions. In other
words, t + 1 relations may be written for each bit of s using the
linear recurring relation. Recall that a(z)’ = a(z7), i = 0,1,2,...
holds for j = 2' (in fields of characteristic 2). This yields another
relations. All these relations are also called the parity checks. Let us
substitute the individual bits from the seqeunce s in parity checks
by the corresponding bits from z. Not necessarily all of them will
hold (or will be valid). This leads us to the idea of an iterative
correlation attack, which can be informally described as follows:

1. find a set of (linearly independent) parity checks for each bit
in the sequence z,

2. according to the number of parity checks that hold, decide
whether s; = z; or s; # z;,

3. if all the parity checks hold, stop the algorithm,

4. alter the bits in the sequence z for which the decision was
s; # z; and go to the step 2.

For further analysis we introduce a statistical model based on the
set of (linearly independent) parity checks [53|

S®B1®Bip®---®B;=0, 1=1,2...,0,

where S is a random variable corresponding to s,, B;; are random
variables corresponding to those bits from s that appear in the i-th
parity check for s,. The average number of parity checks o for one
bit will be discussed later.

Similarly for the keystream sequence:

LZZZEBKIEBY;2EBEBKD 1=1,2,...,0.

36

Let us assume that the used random variables are mutually inde-
pendent and uniformly distributed. It follows that

Pr(Z = S) = Pr(By; =Y;) = p,

j=1 j=1

fp,t) =pflp,t =1+ (1 —p)(1 - f(p,t = 1)),
f(p,1) =p.

Sometimes for simplicity we write only f instead of f(p,).
The probability that z; = s; provided h of o parity checks hold
(this condition is here denoted as cond.) is then

p* = Pr(z; = s;/cond.) =
pf(pat)h(lff(pat))()ih
pf(p’t)h(I,f(p’t))o—h+(1,p)(1,f(p’t))hf(p’t)o—h ’

An average number of parity checks o for a single bit is
0= o(N,m,t) = log,(N/(2m))(t + 1).
The probability that at least h of o parity checks hold for a chosen

bit z; is given by the following relation:

o

Qo) =3 (¢) o= 0= pO=

i=h

Algorithm B

This algorithm is based on an iterative modification of the key-
stream sequence z, which yields the sequence s. The convergence
of this process as well as the correctness of the solution is not guar-
anteed! However this attack works usually fine even when there are
some linear dependencies in the set of the parity checks [10].

The probability that at most h of o parity checks hold for z; is

h

Do) =3 (9) o=+ =p =

1=0

Thus U(p,0,h)N is then the average number of bits that will be
altered.

37

The probability that z; = s; and at most h of o parity checks
hold for z; is

V(p,o,h) :i()pf (1—f)

=0

and the probability that z; # s; and at most h of o parity checks
hold for z; is

W (p,o0,h) = z: < ?) (1=p)(1—f)f

I(p,0,h)N = (W(p,o0,h) — V(p,0,h))N is then the increase of cor-
rectly altered bits.
The algorithm works as follows:

1. Calculate o and find the value h (denoted as hy,,) for which
I(p,0,h) is maximal.

2. Calculate the threshold probability py, = (1/2)(p*(p, 0, hmas)+
P*(p, 0, hymaz + 1)) and the expected number of bits for which
their p* < py, using the relation Ny, = U(p, 0, hpaz) N. Choose
7 - the maximal number of iterations in one round. (According
to the performed experiments in [10], the best choice is v = 2.)

3. Set the iteration counter; I = 0.

4. Calculate a new p* for each bit of the analyzed sequence z.
(These probabilities are stored and used in iterations when
I > 0 in the relations for f(p,t) which will be changed into
f(py,p5, ... i, t), see [53] for details.)

5. The algorithm terminates if all the parity checks hold. The
obtained modified sequence z is the output from the attacked
LFSR and its starting bits form its initial loading.

6. Determine N,, which is the number of bits in z with their p* <
Pinr- If (Ny > Ny or I = 7) then alter those bits z;, for which
their p* < pyp,, forget the stored values p* for all the bits in z
(i.e. assume again that Pr(z; = s;) = p) and go to the step 3.

7. 1 =1+ 1. Go to the step 4.

38

This attack is feasible when a sparse characteristic polynomial is
used, i.e. t < 10. The length of the LFSR can be up to 1000. (The
largest succesfully attacked LFSR known to me was 9689 bits long,
t =2, p=0.75 N = 700000, see [10] for details.) Algorithm B
works also when p is close to 1/2, e.g. for values 0.55.

The following parameters influence the success of this algorithm:
p, t, N/m. The estimates of complexity of this algorithm based on
the values of the above mentioned parameters can be found in [53].

Comparison of chosen iterative correlation attacks

A comparison of several iterative correlation attacks based on a
number of experimental attacks can be found in [56]. A large number
of experimental results on various iterative correlation attacks can
be found also in [10]. These attacks can be subdivided into the
following three categories:

1. alternation of bits in the keystream 2z is based on the number
of satisfied parity checks (e.g. linear syndrome attack [95], see
also an improved version in [96]),

2. alternation of bits in the keystream z is based on the esti-
matation of the relevant aposterior probabilities (i.e. Pr(z; =
s;/cond.)) obtained by using the average aposterior probability
estimated in the previous iteration as the prior probability (i.e.
Pr(z; = s;)) in the current iteration (e.g. simplified algorithm
from [55]),

3. alternation of bits in the keystream z is based on the esti-
matation of the relevant aposterior probabilities (i.e. Pr(z; =
s;/cond.)) obtained by using the aposterior probabilities esti-
mated in the previous iteration as the prior probabilities (i.e.
Pr(z; = s;)) in the current iteration (e.g. simplified algorithm
B from [53], see also this Section above).

Attacks based on these principles were tested on a 10 000-bits
long keystream, produced by an LFSR with associated left char-
acteristic polynomial 1 + 2% + 27, probabilities Pr(z; = s;) were
p1 = 0.6, po = 0.575, p3 = 0.565. Algorithm based on the 1st
principle succeeded in reconstruction of the output from the LFSR
only for p;. Algorithm that worked according to the 2nd principle
was successful both for p; and p,. Finally, the algorithm based on

39

the 3rd principle succeeded in reconstruction of the output from the
LFSR for all studied probabilities.

Based on the results from the experimental analysis of iterative
correlation attacks, the authors in [56] suggest to use algorithms,
based on the 1st or on the 2nd principle, for high probabilities
Pr(z; = s;). The main reasons are the higher speed of the algo-
rithms and lower implementation costs. The algorithms based on
the 3rd principle are suitable for probabilities Pr(z; = s;) close to
1/2. However, it was suggested to perform only first few rounds of
this algorithm and then to use algorithms based on the 1st or on
the 2nd principle. Such a cooperative attack strategy was experi-
mentally studied in [10].

In order to attain resistance against the described correlation
attacks, sparse characteristic polynomials should be avoided and
the probability that s; = z; should be as close as possible to 1/2.

The impact of parity checks used in iterative correlation attacks
was studied in [12]. Most appropriate ones are the parity checks
with a small number of elements, preferably 4 or 5.

New correlation attacks [35], [37], [36] are applicable even though
a dense characteristic polynomial is used and the probability of co-
incidence is very close to 1/2.

A correlation attack against a nonlinearly filtered LFSR was
studied in [81], [77]. The idea behind this attack is to construct
an equivalent keystream generator that is in fact a polynomial com-
bination of several identical LEFSRs. The attack does not require the
knowledge of the filter function. However it is based on an exhaus-
tive search through the all initial loadings of the attacked LFSR,
which makes it infeasible for a sufficiently large LFSR.

Other attacks

There is no known fast correlation attack on a clock-controlled
LFSR. This case is in general very complicated. However there
were obtained some results when the decimation sequence has some
special properties, see e.g. [97] (the complexity of this attack is
exponential with respect to the length of the LFSR).

40

The differential cryptanalysis [15] is applicable on stream cip-
hers, too. This attack was studied mostly in connection to natural
sequence generators (see Section 3.3 or [15]).

In past years there appeared the so called distinguishing attacks
(e.g. against the stream cipher SEAL). Their objective is to dis-
prove the assumption about the randomness of the keystream by
distinguishing this keystream from a truly random sequence. Recall
that there are also generic distinguishing attacks on block ciphers in
OFB and Counter Mode. For a block cipher with block size m, 2™/2
blocks of a keystream are sufficient to distinguish this keystream
from a truly random sequence. This is achieved by looking for re-
peated occurrences of blocks, which are not possible when the stream
is generated by a block cipher in OFB or Counter Mode (unless the
sequence has started to repeat itself) [62].

3.6 Hash functions

Hash functions compress a string of an arbitrary length to a string
of a fixed length. They have a large number of applications in com-
puter science (optimized /fast access to the stored data), and as well
in cryptography (integrity protection of stored/transmitted data).
However hash functions used in cryptographic applications may need
to meet stronger requirements than those for other applications.
Probably the best publication that deals with hash functions is [61].

According to the number of inputs one can subdivide hash func-
tions into two classes [63]:

e one input (a message to be hashed). These are called Manipu-
lation Detection Codes (MDCs), sometimes also cryptographic
hash functions or just only hash functions.

e two inputs (a message to be hashed and a key). If the key is kept
secret one calls them Message Authentication Codes (MACs).
If the key is public one calls them Universal One-Way Hash
Functions (UOWHFs).

Next we give an informal basic definition of a hash function and
of a collision resistant hash function.

41

Definition 3.6.1 (/63], informal) A one-way hash function is a
function h : {0,1}* — {0,1}™, where {0,1}* is the set of all finite
binary strings and m is a given integer®, satisfying the following
conditions:

1. the hash function must be one way in the sense that given a y in
the image of h, it is "hard" (i.e. computationally infeasible in
a real time) to find a message x such that h(x) =y (preimage
resistant);

2. given an x in the domain of h and h(x), it is "hard" to find
a message x' # x, such that h(z') = h(z) (second preimage
resistant).

Definition 3.6.2 ([63/, informal) A collision resistant hash func-
tion is a one-way hash function h : {0,1}* — {0,1}™ for which it is
"hard" to find two distinct messages x,z', such that h(zx) = h(z').

Clearly, both Definitions given above can be extended for any
alphabet Q).

However, only a few known results follow from collision resistance
[1]. One of the most important ones is that this property is preserved
under chaining [16]. In order to prove some security results for
practical systems, one is usually forced to use other definitions, e.g.
such as Okamoto’s correlation free one-way hash functions.

Definition 3.6.3 ([1/, informal) A function h : {0,1}* — {0,1}™
is correlation free, if it is computationally infeasible to find X,Y €
{0,1}*, such that the Hamming weight of h(X) @ h(Y) is less than
one would expect to get from random chance if we calculated h(M)

for a lot of M € {0,1}*.

Intuitively, this definition means that as well as having no colli-
sions, we get no near misses either.
3.7 Design of hash functions

Most. known hash functions are based on a compression function
with fixed size inputs [63]. Computation of the hash value can be
described as follows:

2Nowadays commonly used values for m are 128, 160, 196, 256.

42

e A message to be hashed z is divided into blocks xq, xs, ..., z;
of a fixed size. If the last block is shorter, it is padded using a
padding rule to have a proper length.

e The hash value h(x) is computed in an iterative way using the
compression function f:
HOZIV, Hi:f(xi;Hi—l)a i:1,2,...,t,
h(z) = g(Hy).
Here the IV is a given initial vector and g is the output function
which is in many cases the identity function.

Both, IV and the padding rule, significantly affect the security
of the hash function. IV is recommended to be a part of the hash
function description. The padding rule should be designed in such
a way that there do not exist two messages that will be padded to
the same padded message.

A general model for MACs is similar to the previously described
model for MDCs.

According to the construction of a compression function, hash
function can be subdivided into the following categories:

MDCs based on a block cipher. An obvious motivation for such
a construction is to adopt the knownledge on block ciphers due
to the similarities between an iterative hash function and a
block cipher. Moreover, it enables to reuse existing optimized
designs and implementations which yields in the cost reduc-
tion of cryptographic hardware. Block ciphers are fast enough
to provide sufficient speed for hashing. However, custom de-
signed hash functions are usually much faster (realize that hash
functions based on block ciphers require a key change after ev-
ery encryption). One might naturally believe that the security
of a block cipher will be handed over to the derived hash func-
tion. On the other hand, some weaknesses may appear due to
the specific usage of a block cipher.

Various subcategories may be identified according to the rela-
tion among the hash value length, the key size, and the block
size (see [63] for a detailed information).

MDCs based on algebraic structures and mathematical
problems. These hash functions are based on known difficult

43

mathematical problems, usually from number theory. This al-
lows in many cases to prove security properties of a constructed
hash function. The another design approach is to use opera-
tions from various algebraic structures. One of the main rea-
sons for such an approach is the hardware reusability (e.g. mod-
ular arithmetic in RSA), since hash functions are typically used
with signature schemes. See [63] for more detailed information.
There were some designs also based on quasigroups published
in recent years, e.g. [27], [50], [21], [22] (cryptanalysis of the
last two designs can be found in Section 4.4). Finally, MAC
based on a quasigroup can be found in [2].

Custom designed MDCs. This category covers the designs that
are especially oriented on hashing. A common way is to use the
so-called Davies-Meyer approach: the compression function is
a block cipher, keyed by the text input z;; the plaintext is the
value H;_1, which is also added to the ciphertext (feedforward)
[63]. It must be said that almost all hash functions used in
practice rank into this category.

Examples of custom designed hash functions are the well known
algorithms such as MD4, MD5 designed by Rivest. A practical
attack against the MD4 can be found in [20]. Several problems
concerning collision resistance in MD5 were shown in [8], how-
ever they do not represent a real threat (see e.g. the evaluation
of MD5 in the CRYPTREC Project). Many hash function de-
signs were inspired by the MD4 hash function. We also speak
about the MDx-family [63]. Another very popular hash func-
tion is SHA-1. It is an improved version of MD4, designed by
NIST [25] (a newer version with 256, 384 and 512-bit hash value
length is nowadays prepared). The "European" hash function,
designed by Dobbertin et al. [19], is the RIPEMD-160. It is
based on the design of MD4, too. We recall that SHA-1 and
RIPEMD-160 are the only recommended hash functions in the
Order of the National Security Authority of the Slovak Re-
public pursuant to the Electronic Signature Law [60]. A large
number of MDCs and MACs can be found also in [78], [54].

Although almost all the practically used hash functions rank into
the category of custom designs, a lot of work has been done in
the area of the design of MDCs based on block ciphers and also

44

on mathematical problems and algebraic structures. The study of
these constructions helps us to better understand hash function as
a cryptographic primitive.

3.8 Attacks on hash functions

In the following we present a taxonomy of attacks against MDCs,
as it was described in [63].

Attacks independent of the algorithm

These attacks depend only on the size of the hash result (m bits)
and do not exploit specific features of the hash algorithm.

Random (2nd) preimage attack. The attacker selects a random
message and hopes that the given hash result will be hit. If
the hash function has the required "random" behaviour, his
probability of success equals 1/2™, where m is the number of
bits of the hash result. In order to guarantee security for the
next 15-20 years®, m should be at least 80.

Birthday attack. The attacker generates r; variations on a bogus
message and ry variations on a genuine message. The expected
number of collisions equals r172/m. The probability of finding
a bogus message and a genuine message that hash to the same
result is given by 1 —exp(—r17r9/2™), which is about 63% when
r = 1y = 2™/2. References to several tricks that can be used
to improve this attack in practice can be found in [63].

Attacks dependent on the chaining

Meet-in-the-middle attack. This attack is a variation on the
birthday attack, but instead of comparing the hash result, one
compares intermediate chaining variables. The attack enables
an attacker to construct a (2nd) preimage, which is not pos-
sible for a simple birthday attack. The opponent generates ry

30ne has to realize that, according to the famous Moore’s law, the speed of computers is
multiplied by four every three years

45

variations on the first part of a bogus message and r, varia-
tions on the last part. Starting from the initial value and going
backwards from the hash result, the probability for a matching
intermediate variable is again 1 — exp(—r;7ry/2™). The only
restriction that applies to the meeting point is that it cannot
be the first or last value of the chaining variable.

Fixed point attack. The idea of this attack is to look for an H;_;
and x; such that f(x;, H;_1) = H;_;. If the chaining variable
is equal to H; 4, it is possible to insert an arbitrary number
of blocks equal to z; without modifying the hash result. Of
course this attack can be extended to fixed points that occur
after more than one iteration.

3.9 Projects NESSIE and CRYPTREC

NESSIE

New European Schemes for Signatures, Integrity and Encryption
(NESSIE) was a 3-year research project within the Information So-
cieties Technology (IST) Programme of the European Commission
under the umbrella of the Fifth Framework Programme (FP5) [68],
[64].

The main objective of the project was to put forward a portfolio
of strong cryptographic primitives that had been obtained after an
open call and had been evaluated using a transparent and open pro-
cess. The project goal is to widely disseminate the project results
and to build consensus based on these results using the appropri-
ate fora (a project industry board, 5th Framework programme, and
various standardization bodies). A final objective is to maintain
the strong position of European research while strengthening the
position of European industry in cryptography [68].

The project launched an open call (March 2000) for a broad set
of primitives providing confidentiality, data integrity, and authenti-
cation. These primitives include block ciphers, stream ciphers, hash
functions, MAC algorithms, digital signature schemes, and public-
key encryption schemes. In addition, the NESSTE call asked also for
evaluation methodologies for these primitives. The call also specified

46

the main selection criteria: long-term security, market requirements,
efficiency and flexibility.

As it can be seen, the scope of the NESSIE call was much wider
than that of the AES call launched by NIST [58|, which was re-
stricted to 128-bit block ciphers. It is comparable to that of the
RACE Project RIPE (RACE Integrity Primitives Evaluation, 1988-
1992) [70] (confidentiality algorithms were excluded from RIPE for
political reasons) and that of the Japanese CRYPTREC project
(which also includes key establishment protocols and pseudo-random
number generation) [65].

Another difference is that both AES [58] and CRYPTREC [65]
intend to produce algorithms for government standards. The re-
sults of NESSIE will not be adopted by any government or by the
European commission. However, the intention is that relevant stan-
dardization bodies will adopt these results.

There were all together 40 submissions to the NESSIE Project.
Of course, there was an evaluation methodology (both for secu-
rity and performance evaluation) and a software toolbox to support
the evaluation (an improved version of the tools developed by the
RIPE, but it is not publicly available) developed within the NESSIE
project.

Due to the scope of this dissertation, we will mention only stream
ciphers, hash functions and MACs.

The following synchronous stream ciphers were evaluated: BMGL,
Leviathan, LILI-128, SNOW, SOBER-t16, and SOBER-t32.

The portfolio of suggested stream ciphers was empty!

The NESSIE portfolio of collision-resistant hash functions in-
cludes Whirpool, SHA-256, SHA-384, and SHA-512.

The NESSIE portfolio of MACs includes UMAC, TTMAC, EMAC,
and HMAC.

See materials (e.g. final decision) in [68] for the explanation.

The relevant primitives from the NESSIE portfolia were sug-
gested to be incorporated into e.g. ISO/IEC JTC 1/SC 27, IS
10118-3, ISO 18033.

A new project ECRYPT - European Network of Excellence in
Cryptology started within the Information Societies Technology
(IST) Programme of the European Commission under the umbrella
of the Sixth Framework Programme (FP6) only a few months ago
[67].

47

CRYPTREC

CRYPTREC is a project of the Japanese Information-Technology
Promotion Agency (IPA). Its main objective is to prepare a list
of cryptographic primitives and techniques available for use by the
e-Government [65]. (Japan’s e-Government project was set for in-
auguration by fiscal year 2003.)

The project launched an open call (June and July 2000) for a
broad set of primitives. The categories were public-key cryptosys-
tems, symmetric ciphers (stream ciphers, 64- and 128-bit block ci-
phers), hash functions and pseudo-random number generators. Be-
sides the submitted algorithms also a large number of non-submitted
algorithms were evaluated. Due to the national character of this
project (e-Government), the evaluators were only from Japan.

These stream ciphers were evaluated in the CRYPTREC project:
MULTI-S01, TOYOCRYPT-HS1, C4-1, FSAngo, MUGI, and RC4.
Among them, MUGI, MULTI-S01, and RC4 were evaluated as "prac-
tically secure" and are the recommended ones (see [39] for further
details).

The following hash functions were evaluated in the CRYPTREC
project: MD5, RIPEMD-160, SHA-1, and draft SHA-256, 384, 512.
All of them, except MD5, were evaluated as "practically secure" and
are the recommended ones (see [39] for further details).

The final decision about other recommended cryptographic prim-
itives can be found in [66].

48

Chapter 4

Results

The following results of the research are presented in this section:

e Cryptographic properties of the concatenation of periods of sev-
eral ml-pseudorandom sequences are studied in Section 4.1.
This section is based on [87], [88].

e Section 4.2 deals with cryptanalysis of one stream cipher based
on the concatenation of transformed runs of two mil-sequences.
It is based on [85], [86].

e Several attacks on one stream cipher based on a quasigroup
(proposed in [59]) are described in Section 4.3. Main results of
this section were published in [90], [91].

e The properties of one hash function based on a quasigroup
(proposed in [21], [22]) are studied in Section 4.4. This section
is based on the papers [92], [93].

4.1 A new construction of a completely equidis-
tributed sequence

In the following we introduce necessary notions concerning com-
pletely equidistributed sequences (for more details see [44], [45]).

Definition 4.1.1 b-ary sequence X1, Xo, X3,... is called k-distribu-
ted, if Pr(Xp41 = a1, Xpgo = Qoy..., Xpnor = ag) = 1/bF, for all
ordered k-tuples (ay,as9,...,ax), a; € {0,1,...,0—1}. A sequence
is called completely equidistributed, if it is k-distributed for all k.

49

A simple construction of a k-distributed b-ary sequence (k € N,
k > 2) was proposed by Ford [26]. Choose X1 = Xy =---=X; =0
and then choose X, for 0 < n < b* according to the following rule:
X,k = 0if and only if all k-tuples (X, 11, Xpio, ..., Xnik_1,7) have
already appeared in the sequence for 1 < j < b.

For example, if b = k = 3, and if we choose X, to be the small-
est value consistent with the above rule, we obtain
00011121101221201021002220200.

Now let A(b, k) be the finite k-distributed b-ary sequence consist-
ing of its first b¥ terms, with each term divided by b. Thus, each
element of A(b, k) is a real number in [0,1). Further, let A(b, k)"
denote the sequence A(b, k) repeated n times.

The first construction of a completely equidistributed sequence is
known due to Knuth (see [44]) and is shown in the following theorem.

Theorem 4.1.2 The sequence of real numbers
A2, 1)1 A(22,2)2% A(28,3)%°, ..
s completely equidistributed.

We found that although Ford’s and Knuth’s sequences have uni-
form distribution of patterns, they posses several weaknesses (see
[87] for details). Ford’s k-distributed b-ary sequence appears to
be vulnerable to differential cryptanalysis. It has a non-flat dis-
tribution of difference parameters (see [15]) with distances between
peaks equal to k. Similar weaknesses appear in (a finite part of)
Knuth’s completely equidistributed sequence, too. From a practi-
cal point of view both sequences are difficult to be produced by
a hardware-designed generator which makes them improper for a
usage in real-world applications. The Knuth’s construction of a
completely equidistributed real-valued sequence leads to an infinite
sequence and is based on the concatenation of an infinite number of
k-distributed b-ary sequences.

These nice statistical properties of completely equidistributed se-
quences motivated us to find another (more practical) construction
of such a sequence. Since in computer-world we have to deal with
finite sequences only, we turn our attention to some finite part of a
newly constructed sequence.

The new construction of a completely equidistributed real val-
ued sequence is based on the concatenation of ml-sequences. ml-

50

sequences are almost k-distributed, only the all-zero k-tuple is miss-
ing in one period of this sequence. Proofs of the next results of this
section are published in [88].

Theorem 4.1.3 Let p be a prime, | an integer, and b = p'. Further,
let ML'(b,k) be a finite b-ary ml-sequence consisting of the first
V¥ — 1 terms, generated by some primitive polynomial over GF(b).
Let ML(b, k) be constructed from ML'(b,k) by dividing each term
by b. Real valued sequence

ML(2,1)%, ML(22,2)**", ML(2%,3)*%, ...
s completely equidistributed.

Sketch of the proof: The proof is similar to the proof of Theorem 3
in [44]. The missing k-tuple in the mi-sequence is ignored just as the
effects that appear at the borders of the concatenated sequences. [

If we consider a deterministic hardware production of such a pseu-
dorandom sequence we are constrained on building only (ultimately)
periodic sequences consisting of terms from some finite set.

Thus we may use only a part of the above defined sequence.
Moreover, we need to transform the terms of ML'(b, k) sequences,
e.g. into GF(2).

Because of the practical point of view we studied the local prop-
erties, namely the concatenation of two (or more) ml-sequences over
GF(2). Our analysis, using extensive computer simulations, showed
that the concatenation of two mil-sequences possesses a large linear
complexity and moderate "out-of-phase" autocorrelation function
magnitudes. Moreover, we found the period of such a sequence.

Theorem 4.1.4 Let v = ug, Uy, . . ., Ugdeger () _o, ANA UV = Vg, V1, ...,
Ugdegen(z)_o D€ ONE period of a sequence produced by primitive polyno-
mial ¢ (x), and co(z) € GF(2)[X], respectively, degc(x),
degeo(z) > 1, degei(z) # degeo(x), degei(x) # 2 and
deges(x) # 3, and vice versa. Then the period of a sequence
u,v,u, v, ... produced by concatenation of sequences u and v is equal
to (2degcl(x) _ 1) + (2deg02(x) _ 1)

Proof: Assume that the period d of the sequence is one of the non-
trivial ~ divisors of (2dsal® 1) 4 (2dsel 1),

o1

Let MAX = max{degc;(x),degcy(z)}. Tt follows from the pattern
distribution property of a ml- sequence that
IMAX _ 1 _ MAX < d < (2d8er(@) — 1 4 2degea(@) _ 1) /2 This in-
equality is a contradiction. In the special case, Where degei(z) =2,
deg co(x) = 3, the possible periods are d = 5 and d = 10. In all other
cases the period of a sequence is d = (29°8¢1(®) — 1) 4 (2dege2(@) _ 1),
O
This theorem can be generalized as follows:

Theorem 4.1.5 Let u' = ug,uj, ..., Ubwego) o U = UG, U7, ...
2 n o __ ,n ,n n :
Udiegey(e) o5 ++ -3 W' = UG UL, ooy Uhieye, (o) o DE OME peTiOd Of @ SE-

quence produced by primitive polynomials ¢ (x),ca(x), ...,
cn(z) € GF(2)[X], 3 < degeq(x) < degeg(z) < -+ < degey,(x)
or deg ci(z) > deg 02() > .- > degey(x) > 3. Then the period
of a sequence u',u?,. u cub u?, o produced by concate-

nation of sequences u',u?, ..., u" is Z (2degcz —1).

Proof: The inequality used in the proof of the Theorem 4.1.4 must be
slightly modified: 2M4%X —1 — MAX < d < (31, (24¢<@ — 1)) /w,
where M AX = max{deg ¢ (z),degcy(x),...,degcy(x)}, and w =2
for n even, w = 3 for n odd. The rest of the proof is similar to the
proof of the Theorem 4.1.4. [

Conclusions

There are cryptographic properties of some specially constructed
sequences studied in this section. The period of a sequence ob-
tained by periodic concatenation of two or more ml-sequences is
determined. Moreover, a new construction of a completely equidis-
tributed real valued sequence based on the concatenation of ml-
sequences is presented.

52

4.2 Concatenation of runs from two ml-sequences

This section deals with the cryptanalysis of one running key gener-
ator which combines the outputs of two asynchronously clocked LF-
SRs. Its keystream production could be characterized as concatena-
tion of transformed runs of two mi-sequences. Computer simulations
show a large linear complexity of the produced keystream sequence.
The period of the keystream and several theorems concerning the
number of runs in an mi-sequence are proved. Conditions for pass-
ing the Golomb’s randomness postulates are proposed. Results of
the performed statistical tests (FIPS 140-1, gap test, serial correla-
tion test) are presented. Finally, a known plaintext attack against
the studied running key generator is presented.
This section is based on author’s papers [85] and [86].

Description of the running key generator

The generator G consists of two asynchronously clocked (in a
stop-and-go fashion) LFSRs L1 and L2, respectively. The key of
the generator is the initial state of the registers L1 and L2. Assume
the polynomials ¢; (), ca(x) € GF(2)[X] associated to the registers

L1, L2 are primitive. Let a = ag,ay,..., resp. b = by, by,... be
the binary sequence produced by clock-controlled (as used in gener-
ator () registers L1, resp. L2. Moreover, let a = ag, ay, ..., resp.

b = by,by,... be the binary sequence produced by the regularly
clocked registers L1, resp. L2.

Algorithm of the generator G-
1. Keystream bit production: z, = L1(t) & L2(t) = a, & b,.

2. Next-state function: if z; = 1, then L1 clocks, otherwise
(2 = 0) L2 clocks.

Example 4.2.1 Assume the following realization of the generator
G: c1(z) = 14+a+a? and co(x) = 1+a+a>. Let us look at the changes
of the registers L1 and L2 states during the keystream generation.
(Output bits a;, resp. by are the underlined bits of the L1, resp. L2
states. The state of a register that clocks at a given time t is bold
typed. The underlined bits of bold typed states of register L1, resp.
L2 form runs (either blocks BY, resp. BY or gaps G¢, resp. G°) of
the sequences a, and b, respectively.

93

| t | State of L1 | State of L2 | | Runs of a | Runs of b |

w
&

0 01 001 0 [e3
1 01 011 0

2 01 111 1 Ge

3 11 111 0 B}
4 11 110 0

5 11 101 0

6 11 010 1 Bf

7 10 010 1

8 01 010 0 G5
9 01 100 1 G

10 11 100 0 B}
11 11 001 1 Bf

12 10 001 1

(3] ot [oot [o] | |

Table 4.1: Generation of a keystream of the generator G

Observation 4.2.2 The keystream production could be character-
ized as joining transformed runs of sequences a and b (look at the
relation among underlined bold typed bits, z;, and runs of the se-
quences a, and b, respectively).

Analysis of the keystream

Theorem 4.2.3 Let u be an ml-sequence generated by an ml-LFSR
with associated primitive polynomial c(z), dege(x) > 1. Let
Uy = Up = - = Udege(r)—2 = 0, Udege(e)—1 = 1. Then the num-
ber of runs in one period of the sequence u is even. Moreover, the
number of blocks is equal to the number of gaps.

This theorem follows from the fact tqdege=) o = 1.
Next, we determine the exact number of runs in one period of an
ml-sequence.

Theorem 4.2.4 Let u be a sequence generated by an ml-LFSR with
associated primitive polynomial c¢(x) € GF(2)[X], dege(x) > 1.
Assume ug = 0,u; = 0,. .., Udegce(@)—2 = 0, Udege(z)—1 = 1. Then the
number of runs in one period of the sequnce u is 29¢8¢@) -1,

Proof: According to the Theorem 4.2.3, it is sufficient to prove that
the number of blocks in one period of u = wg, uy,. .., Usdege)_o 1S

54

equal to 298¢(*)=2 Let us denote B[i] the number of blocks of
length degc(x) — i. It follows from the Theorem 3.3.6, that

i—1
Bu[l] — 2degc(x)—(degc(x)—i) _ ZBu[j](Z _] + 1)
=0

Yo Bl =27 1< <L
BO =1

OJ

Corollary 4.2.5 (of the Theorem /.2.4). Letu and v be ml-sequen-
ces generated by ml-LFSRs L, and L, with associated primitive
polynomials c¢,(x),c,(r) € GF(2)[X], degc,(x) = dege,(x). Let
Up = U1 = -+ = Udegey(z)-2 — O;Udegcu(x)—l = 1 and
Vo = VI = *+* = VUdegey(a)—2 = 0,Vdege,(@)—1 = 1. Then the se-
quences u. and v have the same number of blocks, and gaps of lengths
1,2,...,degc,(x) = deg c,(x).

Next, we generalize Theorem 4.2.4 for any non-zero initial state
of the generating register.

Theorem 4.2.6 Let u denote an ml-sequence generated by an mi-
LFSR (from a non-zero initial state) with associated primitive poly-
nomial c¢(x) € GF(2)[X], dege(x) > 1. Then the number of runs in
one period of the sequence u is either 23€8¢(@) =1 oy gdege(z)—=1 4 1

Proof: Let wus denote a sequence wu that starts with
Uy = Uy =+ = Udege(r)—2 = 0, Udege(z)—1 = 1 as w. Realize that
any sequence u can be obtained from the sequence w by shifting [4,
pp-350-351]. Thus the sequence w can be shifted to the beginning
of a new run, which yields the number of runs equal to 24¢8¢@)=1 op
somewhere inside a run, which yields the number of runs equal to
2degc(z)71 +1. O

The following theorem concerning the period of the keystream
of the generator G is based on the Observation 4.2.2 and on the
Theorem 4.2.6. (A conjecture was presented in [86].)

35

Theorem 4.2.7 Assume that the registers L1, resp. L2 with associ-
ated primitive polynomials ci(x), resp. co(x), dege(z),
degea(x) > 1 are loaded with a non-zero initial state. Then the
period of the keystream sequence z of the generator G is

(2max{deg ci(z),degea(z)} 1)+2\ deg c1(z)—deg c2(x)| (2min{deg ci(x),degea(z)} 1))
(4.1)

Proof: First, assume that (4.1) is an integer multiple of the period
of the keystream sequence z. There are 16 possibilities according to
the start and end runs of one period of the sequences a and b. Look
at one of them (the other possibilities can be analyzed in a similar
way).

Assume that a starts with a gap and ends with a block, b starts
and ends with a gap. (The notation of blocks and gaps is similar to
that used in Example 4.2.1.)

L1 G§ B | ... | Blacgeia)—1 G§
L2 Gg B{’ - ngeg ea(®) =111 Gg
O]lO1O |- O O O

Table 4.2: Joining of runs during the production of the keystream

The *-denoted (as well as the (O)-denoted, that have the start
and end runs from different registers) runs clearly form an integer
multiple of the period of the keystream sequence s.

Finally realize that the ()-denoted part of the keystream se-
quence contains exactly one block of length ||L1|| (if ||L1]| > ||L2||)
or one gap of length [|L2|| (if ||L1|| < ||L2||). Thus the ()-denoted
part of the keystream must form exactly one period.

The next theorem characterizes the basic balancedness of the
keystream sequence.

Theorem 4.2.8 Assume that the registers L1, resp. L2 with associ-
ated primitive polynomials ci(x), resp. ca(x), dege(x),
degeo(z) > 1 are loaded with a non-zero initial state. Then the
number of ones and zeros in one period of the generated keystream
sequence is given as follows:

296

1. if degci(x) > degco(x) then
number of ones is 2% (®) _ 1
number of zeros is 2/degci(z)—degea(@)] (gdegea(z) _ 1),

2. if degci(x) < degeo(z) then
number of ones is 2148 cLl@)=degea(@)] (pdeger(@) _ 1)

number of zeros is 2382 — 1.

Proof: Theorem 4.2.8 follows from the proof of the period and from
the production of the keystream as joining transformed runs from
sequences a and b. O

The following theorem about passing the first and second Golomb’s
postulates follows.

Theorem 4.2.9 Assume that the registers L1, resp. L2 with associ-
ated primitive polynomials ci(x), resp. ca(x), dege(x),
degeo(z) > 1, |degei(z) — degeo()| < 1 are loaded with a non-
zero initial state. Then the generated keystream sequence passes the
first Golomb’s postulate. Moreover, if degci(x) = degca(x) then the
keystream sequence passes the second Golomb’s postulate, too.

Statistical tests - results

Our realization of the generator G was tested for:
ci(r) = 1+z+22+2°+ 29 co(x) = 1+ 23 + 23, The test
set consisted of 1000 keystream sequences (each 20000 bits long)
produced by this realization of the generator.

All of the tested sequences passed all tests given by FIPS 140-1
[23] (at the time of writing the papers [85] and [86], FIPS 140-2,
which is the successor of FIPS 140-1, was not admitted), 95% of
them passed the serial correlation test [45] and none of them passed
the gap test [45].

Table 4.3 outlines the values of the serial correlation coefficient,
the statistics for the poker test [54, p.182], and the number of ones
in a keystream sequence for the monobit test [23]. The last row of
the table shows the expected intervals.

57

| # || Serial correlation test || Poker test (for quadruples) || Monobit test |
0 0.002385 15.5264 9958
1 0.001986 6.08640 9734
2 -0.005419 9.92 10003
3 0.003574 10.8288 9750
4 0.007899 18.5472 9986
5 0.007897 16.6784 10156
6 0.004948 10.5088 10248
7 -0.002401 18.0352 10067
8 -0.000602 15.904 9973
9 -0.000602 16.6464 10224
| || [-0.00068,0.00068] || [1.03,57.4] || [9654,10346] |

Table 4.3: Results of statistical tests

#/ 1 2 3 4 5 6
run length
0 2459 1302 693 386 187 123
1 2642 1209 713 267 176 160
2 2340 1179 604 245 173 129
3 2400 1167 530 361 155 134
4 2589 1376 587 378 113 149
5 2512 1391 536 276 180 167
6 2680 1268 568 246 99 187
7 2540 1290 633 358 137 181
8 2397 1104 712 369 169 152
9 2645 1176 589 374 138 192

| [[2267,2733] | [1079,1421] | [502,748] | [223,402] | [90,223] | [90,223] |

Table 4.4: Run test - numbers of occurrences of runs with certain lengths

According to the results of the Maurer’s universal statistical test
[52] the keystream sequence is not significantly compressable (in
Table 4.5, () denotes the number of initial blocks and K denotes the
number of tested blocks).

Theorem 4.2.10 The keystream sequence produced by the genera-
tor G passes the long run test (FIPS 140-1) if 1 < ||L1]|, ||L2]] < 34
(and registers L1, resp. L2 are loaded with a non-zero initial state).

Proof of this theorem follows from the fact that the longest run
in the keystream sequence has max{||L1||, [|L2]|} bits (see Example
4.2.1). O

o8

Z 1 Q=2560 | Q= 25600
K = 256000 | K = 2560000
0 | 8.003677 8.002048
1| 7.999273 8.000793
2 | 8.002426 7.999964
3| 8.000400 8.000941
4| 8001049 7.999997
5 | 7.999030 8.002516
6 | 7.998300 8.001611
7 | 8.000900 8.001506
8 | 7.999110 7.999905
9 | 8.002141 8.001281

Table 4.5: Maurer’s universal statistical test - entropy on the 8-bit block

The cryptanalysed generator is based on an alternating clocking
of its registers. Thus the situations when only one register clocks
should be avoided. This happens when one of the registers produces
the sequence with period equal to 1. It follows that the use of the
zero initial state and the use of the polynomials of degree equal to
1 should be avoided.

Linear complexity

One of the important properties of the keystream sequence is its
linear complexity. Based on the computer simulations (small sample
of them is shown in the Table 4.6) we conclude that the produced
keystream sequence has a large linear complexity.

Theorem 4.2.11 puts important restrictions on the choice of the
lengths of registers L1 and L2 (see Expression 4.1).

Theorem 4.2.11 [15, p.52, Theorem 3.4.4] Let N be an odd prime
and q be a primitive root modulo N such that gcd(N,q) = 1. Then
the linear complexity of any nonconstant sequence u of period N
over GF(2) is N or N — 1.

Linear complexity profile

According to the performed simulations the linear complexity
profile of the keystream sequence has no significant differences from
the optimum. The small differences do not weaken the generator.

99

| L1 polynomial | L2 polynomial | Linear complexity |

22+ +1 22+ +1 7
224+ +1 2 +z+1 13
22+ +1 41 25
?+r+1 o+ 2% +1 55
22+ +1 241 109
224+ +1 2 +z+1 223
2 4+r+1 2+ 1 223
4z +1 2 +z+1 13
2 4+r+1 2 4+r+1 14
4z +1 '+ +1 28
2 4+r+1 ° +r?+1 58
2 +r+1 2 +z+1 115
2 +r+1 2 +r+1 238
P +r+1 r+ 2%+ 1 238
2 +r+1 22+ +1 25
2+ +1 2 +z+1 29
itz +1 itz +1 30
ot +r+1 o+ 2% +1 60
2 +r+1 241 120

Table 4.6: Linear complexity of the keystream sequence.

Attacks

The simplest attack against any cipher system is the brute-force
attack. Its complexity depends on the size of the keyspace. The
complexity of the brute-force attack against the cryptanalysed gen-
erator is given by the following formula (the zero initial states are
excluded):

(2||L1|| _ 1)(2||L2|| —1).

The cryptanalysed running key generator is vulnerable to the
known plaintext attack. We show how to find the key of the gener-
ator.

Assume the plaintext P = pg, p1,...,pn_1, and the correspond-
ing ciphertext C' = ¢y, ¢, ...,cy_1 are given. Applying the encryp-
tion formula for the stream cipher systems ¢; = p; @ z; we immedi-
ately calculate the keystream sequence z.

Realize that in one step only one register clocks. Thus we can
build a simple algorithm for the initial state of the L1 and L2 reg-
isters reconstruction.

60

Algorithm 4.2.12 (Reconstruction of initial states)

1. if s =1 then
af)l) + 0, b(()l) +—1
a((f) — 1,b(()2) +—0
else
af)l) 0, b(()l) —0
o 1,02 1

2.1+ 0
710
t<0

3.if ¢ > ||L1]| — 1 and j > ||L2|| — 1 then terminate; the initial
states of L1 and L2 are reconstructed

4. if t = N — 1 then terminate; the initial states of L1 and L2 are
partially reconstructed

b t+—t+1

6.if s, 1 =0then j <+ j+1
else 1+ 71+ 1

7. solve the equation s; = a; @ b;

8. go to step 3

The number of found bits of the register L1, resp. L2 is determined
by the number of ones, resp. zeros in the keystream sequence z.
There are two possible solutions after the algorithm terminates:

1. o) = aél),al, L a p() = b(()l),bl,...,bj
2. a? = agQ),al, ey b = b(()Q)abla"'abj

The correct solution could be found when keystreams produced
from these two solutions are compared to the keystream z.

The complexity of the initial state reconstruction is of order
O(2N2™2™2) where my, resp. my denote the number of missing
bits of initial state of the registers L1, resp. L2 . In an optimal case
an (||L1|| + ||L2]] — 1) bits long keystream sequence is sufficient for
finding the whole key with the complexity of order O(2N).

61

A note on the security of the generator

Assume now that the generator G consists of two subgenerators
G1 and G2, respectively.

Using the known plaintext attack presented above it is easy to
find sequences a and b generated by these subgenerators G1 and
GG2. Thus the security of the whole generator against the known
plaintext attack depends on the security of G1 and G2 against this
kind of an attack.

Clearly, when using LFSRs L1 and L2 as the subgenerators G'1
and G2, the key of the generator (the initial loading of the registers
L1 and L2) is directly the beginning part of the sequences a and b.

Conclusions

There are several theorems determining the number of runs in an
ml-sequence presented in this section. The period of the keystream
sequence of the cryptanalysed generator is determined as well as its
basic statistical properties. The keystream sequence possesses good
cryptographic properties as long period and large linear complexity.
The results of statistical tests are outlined. A known plaintext at-
tack on the studied running key generator is proposed. The security
of the generator against the known plaintext attack is generalized.

62

4.3 Attacks on one stream cipher based on a quasi-
group

There are several attacks on a stream cipher, that was proposed in
[59], presented in this section. Almost the same cipher was proposed
also in [49]. The cryptanalysed stream cipher is based on a hidden
quasigroup (that represents the key). It works in a self-synchronizing
fashion and was suggested for the encryption of a file system. The
cipher has a very large keyspace and was claimed to be resistant
against any attack [59].
Main results of this section were published in [90] and [91].

Self-synchronizing stream cipher based on a quasigroup

Definition 4.3.1 [18] The structure (Q,*), Q@ = {q1,q2,---,Gn},
|Q|| = n is called a finite quasigroup of order n if, when any two
elements a,b € Q) are given, the equations a xx = b and y*a = b
each have ezxactly one solution. Thus the Caley table of a finite
quasigroup of order n is a Latin square, i.e. an n Xn array with the
property that each row and each column contains the permutation of
symbols from Q. The operation \ is called the right inverse of * if
it holds that z\(x *y) =y, and x x (x\y) = y.

Let (@, *) be a finite quasigroup. Let individual plaintext charac-
ters be represented by the elements of @), i.e. p1,pa,...,pk, Pi € Q,
1 < i < k. Similarly let the ciphertext characters ¢, cs,...,c; be
represented also by the elements of @, i.e. ¢; € QQ, 1 < i < k. The
key of the studied stream cipher is the definition of the operation x
on the set @, i.e. the Caley table of this operation!.

Encryption:

encrypt(plap% s 7pk) =C1,C ..., Ck.
¢y = [* p;, where [is a given "initial value".

Ci+1 :Ci*pz'—l—lai:].,2,...,:16—]_.
Decryption:

decrypt(ci, ez, ..., Ck) = P1, P2y - - -, Di-

p1=1I\ci.

Pit1 = ci\ci+17 L= 1727"'Jk_ L.

Tt is a rather strange design concept. Nowadays ciphers do not use operations on sets as
keys. The key is an item in some set, e.g. an element of @Q that is kept secret.

63

Example 4.3.2 Let Q = {0,1,2} and let the quasigroups (Q,),
resp. (Q,\) be defined by Table 4.7. Let | € Q,1 = 0.

N = O

O = NO
— N O

2
1
0
2
Table 4.7: Caley tables of quasigroups (@, *) and (@, \)

encrypt(1,2,0,0,0,1,1,2,0) =2,2,0,1,2,1,0,0,1
ci=1lxp=0%x1=2
Co=CL*pp=2%2=2
cg=cCoxp3=2%x0=0

decrypt(2,2,0,1,2,1,0,0,1) =1,2,0,0,0,1,1,2,0
P1 = l\Cl = 0\2 =1

P2 = 61\62 = 2\2 =2

P3 = 62\63 = 2\0 =0

There are at least n!(n — 1)!(n — 2)!...2! Latin squares of order
n. If we assume that @ = {0,1,...,255} (i.e. each data item is
represented by 8 bits = 1 byte) then there are at least 10°4°%° quasi-
groups. The keyspace is enormously large. The cipher was claimed
to be resistant against any attack [59] although the authors stud-
ied only resistance against brute force attack and performed some
statistical tests on this cipher. From a point of view of cryptanaly-
sis, a good cipher should be resistant against ciphertext-only attack,
chosen /known ciphertext/plaintext attacks, as well. Some possible
attacks are shown below.

Chosen ciphertext attack

Let @ = {q1,¢,...,q,} and assume the cryptanalyst has access
to the decryption device loaded with an unknown key. Then he/she
can construct the following ciphertext:

q1,41,491,492,41,43, - - -, 41, qn,
q2,41,492,42,42,43, . . ., 42, qn,

64

qnyq159n,92,9n,43, - - -y 4n, 4n

and enter it into the decryption device. The decryption device gives
the following plaintext:

l\Ql, CI1\Q1, Q1\Q1, Ch\QQ, QQ\Ql, CI1\CI3, cees Ch\Qn,

QTL\QTH QH\QD QI\Qm qn\Q2a q2\‘]m %1\‘]37 ety Qn\Qn

It is easy to see that the Caley table of the operation \ defined
on () is completely found. The construction of the Caley table for
the operation * is straightforward. The ciphertext used in the at-
tack consists of 2n? characters. (Of course a shorter ciphertext can
be constructed. The only requirement is that all the pairs of adja-
cent elements will appear in the ciphertext. The presented attack
requires 2n? operations \.

One may also use the elementary fact that the last column and
the last row of the Caley table of the operation defined on quasi-
group is completely determined by previous rows, resp. columns.
Generalization of this idea leads to the notion of critical sets of
Latin squares. Recall that a partial Latin square of order n is an
n x n array on a symbol set E, ||E|| = n, such that each cell is either
empty or contains an element of E, and each element of E occurs
in each row and in each column at most once. A critical set C' of
order n is a partial Latin square of order n which can be completed
to a Latin square L in a unique way, and removing any element
of C destroys that property. That is, C' provides minimal informa-
tion from which L can be reconstructed uniquely (see [18], [34]).
Denote the minimum size of a critical set of order n by M(n). In
[14] it has been shown that M(n) < ”;, which is generally believed
to be asymptotically the correct order of M(n). The closest up to
date lower bound on the size of the critical set of order n, n > 8 is
M(n) > [#5] (see [34]).

However, the implementation of the above mentioned facts on
critical sets into the described attacks will lead to a problem of
reconstruction of the Latin square from its critical set.

65

Chosen plaintext attack

Let @ = {q1,¢,--.,q,} and assume the cryptanalyst has access
to the encryption device loaded with an unknown key. Then he/she
can construct the following plaintexts:

q1, 1,
q1, 42,

q1, dn,
q2, 41,
q2, 42,

q2, dn,

qn, 1,
Gn, 42,

4n; 4n

and enter them into the encryption device. The following ciphertexts
will be obtained:

l*‘]la(l*th)*tha
l*‘]la(l*th)*tha

l*qla(l*QI)*Qm
l*‘]2a(l*Q2)*¢ha
l*‘ha(l*%) * g2,

l*q2a(l*Q2) *Qn,

Z*Qna(l*%) * (1,
Z*Qna(l*%) * {2,

l*Qna(l*qn) * Qn-

It is easy to see that the key, i.e. the Caley table of the operation

66

x defined on) is completely found. The presented chosen plain-
text attack requires n? messages and each message consists of two
characters. (Of course a smaller number of messages can be used.
See the above described chosen ciphertext attack.) The presented
attack requires 2n? operations .

It is also possible to built up a known plaintext attack. However
it is not guaranteed that the whole key will be revealed.

Ciphertext-only attack

Let us assume that the plaintext message was written in a redun-
dant language, e.g. Slovak, Czech, English, etc., i.e. the distribution
of frequencies of occurences of individual characters is not uniform.
Further let us assume that the language, the plaintext message was
written in, is known and also that the cryptanalyst knows the dis-
tribution of frequencies of occurences of individual characters from
the used language. Assume that each character from the plaintext
message is represented by a single element from the quasigroup.
Further assume that the order n of the quasigroup (Q,x*), where
Q ={q1,9,.--,qn}, is known. Let us denote the obtained cipher-
text as ¢y, Co, ..., 0 € Q, 1 <i<k.

For each 7, 1 < i < n, the cryptanalyst determines the number
of occurences of pairs of elements g;q;, 1 < j < n. If the cipher-
text is large enough, for each ¢;, 1 < ¢ < n, the obtained number
of occurences of pairs of elements can be matched to the known
frequencies of occurences of individual characters from the used lan-
guage. Thus the cryptanalyst is able to construct the Caley table of
the quasigroup (@, \) and decrypt the message. The reconstruction
of the key, i.e. of the Caley table of the quasigroup (@, *) from the
quasigroup (@, \) is straightforward.

However the matching of obtained number of occurences of pairs
of elements to the known frequencies of occurences of individual
characters from the used language can lead to some errors in the re-
construction of the quasigroup (@, \), either due to the short length
of the analyzed ciphertext or due to the specific properties of the
used language. A better approach is to match only the obvious pairs
of elements, then partially decrypt the ciphertext. From the par-
tially decrypted message it is possible (or highly probable) to find
some other cells in the Caley table of the quasigroup (@,)\). This
leads to the iterated decryption, resp. iterated construction of the

67

Caley table of the quasigroup (@,\). One can also use the known
results on critical sets, resp. on completing Latin squares.

The previously described iterative ciphertext-only attack was suc-
cessfully performed on a plaintext written in Slovak language (book
"SLOVENSKO. Europske suvislosti Iudovej kultary" by Rastislava
Stoli¢né et al., VEDA Bratislava 1997). The plaintext was written
in the enhanced telegraph alphabet, i.e. it consisted only of let-
ters A,B, ...,Z and "space" and contained 291 041 characters. The
quasigroup was of order 27.

Conclusions

There are three kinds of attacks against the self-synchronizing
stream cipher (proposed in [59]) presented in this section. These at-
tacks rank among the standard basic cryptanalyst techniques. Each
of these attacks is much faster than the brute-force attack. We
conclude that the cryptanalysed self-synchronizing stream cipher is
insecure due to its vulnerability to the presented attacks.

68

4.4 Attacks on one hash function based on quasi-
group

There are properties of a hash function based on a quasigroup (pro-
posed in [21], [22]) studied in this section. An attack against this
hash function for some special quasigroups is presented. Moreover,
the modification of the studied hash function to a keyed hash func-
tion — the so called MAC is studied, too.

This section is based on author’s papers [92], [93].

Description of the hash function based on a quasigroup

Construction 4.4.1 (A new hash function [21], [22].) Let (Q,*)
be a finite quasigroup and Q* be the set of all finite sequences of ele-
ments from Q. Let the message be a sequence of elements
{my,ma,...,my} from the quasigroup Q. For a fired a € Q let

the hash function H, : QQ X Q* — @ be
Hy(my,ma, . ..omy) = ((.. ((@xmq) xmg) % ...) «my_1) * my,
where m; € Q, 1 <1 < k.

Example 4.4.2 Let) = {0,1,2,3} and let the operation * on Q
be defined by its Caley table, in Table 4.8.

(Floft[2[3]
0[[0[2]1]3

12301
2(1]10]3]2
33120

Table 4.8: Caley table of the operation * defined on @

Let a = 2 and let the message to be hashed be encoded as {0,0, 1, 3}.
Then the hash can be computed as

H5(0,0,1,3) = (((2%0)*0) % 1) 3 = 3.

The usage of a general quasigroup in computation requires to
store its Caley table, i.e. n? elements. The storage requirements
are outlined in Table 4.9. (One can also take notice of a very short

69

| |Q]] | Hash value length | Storage requirements |
[21° | 16 bits [16.2°.2° =64 GB |
[27 | 18 bits [182F2F>11B |

Table 4.9: Storage requirements for the Caley table a general quasigroup

hash value length. Nowadays the hash value length considered to
be secure is 160 - 256 bits.)

Several tricks can be used to overcome the storage requirements
problem. They are connected to known results on critical sets in
Latin squares (see Section 4.3). However, such an approach would
significantly slow down the speed of computation of the hash value.

A better approach is to find a special large quasigroup (@), *).
The operation * in such a quasigroup should be given by some "easy
to evaluate" expression, i.e. axb = f(a,b), a,b € Q. One of the
general security requirements that f(a, b) has to satisfy is that given
the value f(a,b) and the element a, it should be computationally
infeasible to find the element b, such that a b = f(a,b). In other
words, it should be computationally infeasible to find the Caley table
of the quasigroup (@, \).

In order to overcome the storage requirements for the Caley table,
a special quasigroup, namely the quasigroup of modular subtraction,
was proposed in [21], [22] to be used. The operation * defined on @
is then given as

axb=a+ (n—>) modn, n=|Q|

Floft[2]3]
0[[0[3]2]1

1110312
212|103
3(3]2(1]0

Table 4.10: Multiplication table in the quasigroup of modular subtraction, n = 4

Usage of such an "easy to evaluate" expression for the definition
of the operation * on quasigroup allows us to use quasigroups with
a very large number of elements. Moreover, the isotopism of quasi-
groups gives us the power to use a large number of isotopic quasi-
groups where the computation of a hash value will be done almost
only using the mentioned "easy to evaluate" expression. Later we

70

show that it has also a severe impact on the security of the studied
hash function.

Definition 4.4.3 [18] Let (G,.) and (H,*) be two quasigroups. An
ordered triple (6, p,1) of one-to-one mappings 0, ¢, of the set
G onto the set H is called an isotopism of (G,.) upon (H,x*) if
O(x) x p(y) = Y(x.y) for all z,y in G. The quasigroups (G,.) and
(H, *) are then said to be isotopic.

Definition 4.4.4 Let (G,.) and (H, x) be two quasigroups. An or-
dered triple (0, p, V) of mappings 0, v, of the set G to the set H is
called an homotopism of (G,.) to (H,x) if 0(x) x p(y) = Y(x.y) for
all z,y in G. The quasigroups (G,.) and (H,x*) are then said to be
homotopic.

Remark 4.4.5 In [21], [22] the authors used a notion of homo-
topism of quasigroups, however in fact they used isotopism of quasi-
groups, because the mappings from one quasigroup to the another
one (here denoted as 0, , 1)) were permutations.

Attacks against the hash function

Let a € be the known parameter of the hash function and
{my,ma,...mg}, m; € @Q, 1 < i < k be a message to be hashed.
Let the hash value be

Hy(my,ma,...,myg) = (((a*xmq) xmg) *...) *my =d.

Due to the simple construction of the hash function one can (in
some cases easily) create false messages that hash to the same value.
The false message can be constructed from the original message by
adding prefix and/or suffix, changing some parts somewhere in the
middle of the message, or it can be just a totally new message not
based on the original message.

The false message created from the original one by adding prefix
can be written as

P1,D2,---, D1, M1, M2, ... Mk, pzeQalélgl

Hence it must hold that (((a % py) *p2) *...) *x p, = a.

71

The false message created from the original one by adding suffix
can be written as

My, Ma, ... Mk, S1, 52, ..., St s; €Q,1<i<t.
Hence it must hold that (((d* s1) * s3) *...) * s, = d.

Remark 4.4.6 Only the last element of the last added, resp. changed
part of the message has to be chosen in a proper way. It is important

to mention that such an element always exists (because the Caley ta-

ble of a quasigroup is a Latin square). All the other elements can be

chosen arbitrarily, i.e. they can represent meaningful data.

Due to the nice algebraic properties of the studied hash function
it is possible to evaluate exactly the number of messages of a given
length that hash to the same value.

Theorem 4.4.7 Let (Q, x) be a finite quasigroup and H, be the hash
function specified by the Construction 4.4.1. Then the number of
messages {my,ma,...my}, m; € Q, 1 <i <k of length k that hash
to the same value is |Q||*~.

This Theorem can be prooved easily by induction. A straightfor-
ward consequence of this Theorem is the balancedness of the studied
hash function.

Altering a part of the message or creating a new false message is
similar to previous examples of false messages.

Remark 4.4.8 While thinking about altering some parts of the orig-
inal message one may ask how many elements may/must be changed
in order to get the same hash value as the original message. It can
be easily seen that changing a single element leads always to a differ-
ent hash value from the hash value of the original message. Further
it can be seen that changing more than one element in the original
message always allows to reach the same hash value as the original

message. Note that only the last element has to be chosen properly
(see below).

Remark 4.4.9 Sketch of the proof of the preimage resistance of the
studied hash fucention was given in [22]. The problem of second
preimage resistance and of collision resistance is in general of com-
plezity at most ||Q|| (see the construction of a false message given
above, and also Remark 4.4.6).

72

The question is how to find the last element of the last added/
changed/created part of the false message? In other words, if we
want to produce a false message by adding prefix to the original mes-
sage, how to find p; such that the following will hold
(((@*xpy) xpo) *...) %k p =a?

For small instances of quasigroups with a "storable" Caley table
it is possible to perform brute force attack (see Table 4.9). It is
widely accepted that problems of complexity up to 2% are nowadays
solvable by exhaustive search. Thus the table implementation of the
studied hash function is not secure.

In order to overcome the storage requirements for the Caley table,
a special quasigroup, namely the quasigroup of modular subtraction,
was proposed in [21], [22] to be used.

Lemma 4.4.10 Quasigroup of modular subtraction contains a right
unit 0.

Corollary 4.4.11 To construct a false message (if quasigroup of
modular subtraction is used) one can insert an arbitrary number of
0s anywhere into the original message.

Corollary 4.4.11 shows a trivial construction of false messages
based on the insertion of a right unit. However, one can do much
more.

Let we try to create a totally new message z1, 2o, ..., Ty, T; € @,
1 <4 < v that will hash to the value d. The elements x1, zo, ..., Z,_1
can be chosen arbitrary. Let d' = (((axxy)*xs) ...)%z, 1. It remains
to find such a z, that d’' * x, = d, which yields

z, =d + (n —d) mod n.

Theorem 4.4.12 Hash function H, with the quasigroup of modu-
lar subtraction is neither collision resistant, nor second preimage
resistant.

The attack may become much more difficult when a quasigroup
isotopic to the quasigroup of modular subtraction is used for the
hash function.

Example 4.4.13 Let (Q, %), ||Q|| = 4 be the quasigroup of modular
subtraction with the Caley table given in Table 4.10. Let

73

- [oft[2]3]
0[2]1]3

WIN| = O

2111360
1131072
310211

Table 4.11: Multiplication table of the quasigroup (@, .)

6 =[1,2,3,0], ¢ = [3,2,1,0] and ¢» = [2,0,3,1]. The Caley ta-
ble of the quasigroup (Q,.) that is isotopic to the (Q,*) is shown in
Table 4.11.

For a fixed a €) the hash value of a message {my, ma,...,my},
m; € Q, 1 < i <k will now? be computed as H,(my, mo,...,mg) =
(... ((amqy).mg)....).mg_1).my.

A nice trick is that the quasigroup operation in (Q,.) may also
be written as

a.b =11 (0(a) + (n — (b)) mod n),

where n = [|Q||, and ¢, 8, ¢ are the mappings that define the iso-
topism between the quasigroups (@, .) and (Q,).

In the previously described attacks, when a quasigroup of modu-
lar subtraction was used, the attacker was forced to solve the equa-
tion a * b = d in a given quasigroup, where a and d are known, b is
unknown. Formally, the solution can be written as b = a\d, where
\ is the right inverse of *. For a quasigroup of modular subtraction
one can write b = a\d = a * d. When a quasigroup, isotopic to
the quasigroup of modular subtraction, is used the attack leads to
the equation d = a.b = ¢ (0(a) + (n — (b)) mod n) for a given
quasigroup, where a and d are known, and b is unknown. Hence, the
security of the studied hash function, when a quasigroup isotopic to
a quasigroup of modular subtraction is used, severely depends on
the difficulty of inverting the mappings ¢ and ¢)~'. The mapping 0
has no impact on the security of the studied hash function because
in the previously described attacks the argument of this mapping is
known.

Remark 4.4.14 Note that any Latin square of prime power order
is polynomial [31]. It is an open question if the results on polynomial

2a quasigroup (Q,.) isotopic to the quasigroup of modular subtraction (Q,*) is used for
the hash function

74

Latin squares or polynomial approzimations of Latin squares can be
used in attacks against the studied hash function.

There might be also another security problem. Let (G,.) and
(H, x) be two isotopic quasigroups, i.e. there exist one-to-one map-
pings 6, ¢, 1) of the set G onto the set H, such that 6(z) x o(y) =
Y(z.y) for all z,y in G. However, there might exist other one-
to-one mappings €', ¢', 1’ of the set G onto the set H, such that
0'(z) *x ¢'(y) = ¢'(x.y) for all z,y in G. For example, another
triplet of mappings (6, ¢, 1) that define isotopism between the quasi-
groups used in Example 4.4.13 is § = [1,2,3,0], ¢ = [2,1,0, 3] and
Y = [3,1,0,2]. It might happen that even though the mappings
¢ and =" were "hard to invert", the mappings ¢’ and ¢'~' were
"easy to invert". However, finding such mappings €', ¢', 1" may be
difficult. Moreover, we tried to treat these mappings at a general
level, i.e. we have not chosen any definite mappings. Neither in [21],
[22] was the choice of the mappings 6, ¢, ! studied.

We also performed exhaustive search experiments (for ||Q| =
3,4,5, and 6) where we studied the number of one-to-one mappings
0, p, 1 that define isotopism between the quasigroup of modular sub-
traction (Q, ®) and any quasigroup (@, .) isotopic to this quasigroup
of modular subtraction. In all the experiments the number of one-
to-one mappings 6, ¢, ¢ was 2||Q||*.

Modification to a keyed hash function - MAC

Assume, @ in the H, hash function is a secret key. H, is then an
MAC. Further assume that the quasigroup of modular subtraction
was used. In the following we show how to create false messages,
that will hash to the same value.

Let mq,mo,...mg, m; € @, 1 < i < k be a message to be hashed.
The hash value is then computed as follows:

Hy(my,ma,...,myg) = (((a*xmq) xmg) *...)*my =d.

We can add suffix and construct such a message
{my,ma, ..., mg, S1,82, ..., 8.}, i € Q, 1 < i < u that will hash
to the same result as the original message. Again the elements
S1,82,...,5, 1 can be arbitrary (i.e. they can represent meaningful
data), only s, has to be calculated in a proper way. For the quasi-
group of modular subtraction it is easy to do (see above presented
construction of false messages).

75

It is possible to create the following false messages that will hash
to the same value as the original message: take a new message, add
suffix to the original message, or change some parts of the message.
Adding only a prefix to the original message seems to be impossible
due to the secret key a. However it is possible to add both a prefix
and a suffix, or add a prefix and change some part of the original
message.

Theorem 4.4.15 Hash function H, with the quasigroup of modular
subtraction when used as MAC, with the secret key a, is neither
collision resistant, nor second preimage resistant.

A stronger result on the security of this MAC is as follows.

Theorem 4.4.16 Construction of false messages for the hash func-
tion H, when used as MAC, with the secret key a, is only as difficult
as the construction of a false messages for the hash function H, itself
(a is public).

Conclusions

There were some possible attacks against the hash function, pro-
posed in [21],[22] shown in this section. Attacks were studied in a
setting when a general (storable, i.e. small) quasigroup was used
and also when a special (large) quasigroup, namely the quasigroup
of modular subtraction was used. The security of the construction of
a hash functions was studied both in the MDC and also in the MAC
scenario. In all the cases it was possible to create false messages.

In order to make such a hash function useful in cryptology a very
special quasigroup (@, *) has to be found. The multiplication in such
a quasigroup should be given by some "easy to evaluate' expression
f(a,b), i.e. axb = f(a,b), a,b € Q. Thus a "large" quasigroup
could be used (without storing its multiplication table). Moreover,
given a, resp. b and f(a,b) it must be "difficult" (computationally
infeasible) to find b, resp. a.

One of the ways how to achieve this is to use isotopic quasigroup
to the quasigroup of modular subtraction, as it was proposed in
[21], [22]. The security of the studied hash function then depends
on the "difficulty" (i.e. computational infeasibility) of inverting the
mappings ¢ and 1! used in the isotopy, and is a topic for further
research.

76

Chapter 5

Conclusion

We are convinced that the research targets assigned at the beginning
of this dissertation were accomplished.

The state of the art in stream ciphers and hash fuctions is given
in Section 3.

The results of the research are presented in Section 4. This sec-
tion is based on the author’s papers [85|, [86], [87], [88], [89], [90],
[91], [92] and [93].

Cryptographic properties of the concatenation of periods of sev-
eral ml-pseudorandom sequences are studied in Section 4.1. The
length of the period of a sequence obtained by periodic concatena-
tion of two or more ml-sequences is determined. Moreover, a new
construction of a completely equidistributed real valued sequence
based on concatenation of ml-sequences is presented.

Section 4.2 deals with cryptanalysis of one stream cipher based on
the concatenation of transformed runs of two ml-sequences. There
are several theorems determining the number of runs in an ml-
sequence presented in this section. The period of the keystream
sequence of the cryptanalysed generator is determined as well as
its basic statistical properties. The keystream sequence possesses
good cryptographic properties such as long period and large linear
complexity. The results of statistical tests are outlined. A known
plaintext attack on the studied running key generator is proposed.
The security of the generator against the known plaintext attack is
generalized.

There are three successful attacks, namely chosen ciphertext, cho-
sen plaintext and ciphertext-only attacks, against the self-synchro-

7

nizing stream cipher (proposed in [59]) presented in Section 4.3.
These attacks rank among the standard basic cryptanalyst tech-
niques. Each of these attacks is much faster than the brute-force at-
tack. We conclude that the cryptanalysed self-synchronizing stream
cipher is insecure due to its vulnerability to the presented attacks.

The properties of one hash function based on a quasigroup (pro-
posed in [21], [22]) are studied in Section 4.4. Some possible attacks
against this hash function are presented. Attacks are studied in a
setting when a general (storable, i.e. small) quasigroup is used and
also when a special (large) quasigroup, namely the quasigroup of
modular subtraction is used. The security of the construction of a
hash functions is studied both in the MDC and also in the MAC
scenario. In all the cases it was possible to create false messages.
It was demostrated which mappings play an important role in the
security of the studied hash function when a quasigroup isotopic to
the quasigroup of modular subtraction is used. A possible weakness
of isotopic mappings was found.

78

Chapter 6

List of author’s publications,
presentations, and other
related activities

Scientific papers

e Vojvoda, M.: Cryptanalysis of a Clock-Controlled Running
Key Generator, Journal of Electrical Engineering, Vol. 50
(1999), No. 10/s, pp.16-18.

e Vojvoda, M.: Enhanced Cryptanalysis of a Clock-Controlled
Running Key Generator, Journal of Electrical Engineering, Vol.
51 (2000), No. 12/s, pp. 81-84.

e Vojvoda, M., Simovcové, M.: Some Properties of Uniformly
Distributed Sequences, Proceedings of abstracts from the con-
ference Elitech 2000, (Vojvoda 50%, Simovcova 50%).

e Vojvoda, M., Simovcové, M.: On Concatenating Pseudoran-
dom Sequences, Journal of Electrical Engineering, Vol. 52
(2001), No. 10/s, pp.36-37, (Vojvoda 70%, Simovcova 30%).

e Vojvoda, M.: A Survey of Security Mechanisms in Mobile Com-
munication Systems, Tatra Mountains Mathematical Publica-
tions, Vol. 25 (2002), pp. 101-117.

e Vojvoda, M.: A Probabilistic Approach to Weight Complexity
of Binary Sequences, Proceedings of Elitech 2001, FEI STU,
Bratislava, 2002, pp.91-92.

79

) Simovcova, M., Vojvoda, M.: Symmetric and Complementary
Boolean Functions, Proceedings of Elitech 2001, FEI STU,
Bratislava, 2002, pp. 89-90, (Vojvoda 30%, Simovcova 70%).

e Vojvoda, M.: Cryptanalysis of a File Encoding System Based
on Quasigroup, Journal of Electrical Engineering, Vol.54 (2003),
No.12/s, pp.69-71.

e Vojvoda, M.: Cryptanalysis of One Hash Function Based on
Quasigroup, accepted for publication in Tatra Mountains Math-
ematical Publications.

e Vojvoda, M.: Attacks on a File Encryption System Based on
Quasigroup, Proceedings of the 6th Scientific Conference on
Electrical Engineering and Information Technology for PhD
students - Elitech 2003, FEI-STU 2003, pp.54-56.

e Vojvoda, M.: On One Hash Function Based on Quasigroup,
Proceedings of the Conference "Mikulasskda kryptobesidka",
ecom-monitor.com 2003, pp.23-28.

Lecture Notes

e Akantis,D., Grosek,0., Nemoga,K., Satko,l.., Vojvoda,M.:
CRYPTOLOGY: The Elements and Applications in Banking
VIII., FEI-STU 2001, Lecture Notes, 86 pages.

e Grosek,0O., Nemoga,K., Satko,L., Strnad,O., grémka,l\/[., Voj-
voda,M.: CRYPTOLOGY: The Elements and Applications in
Banking IX., FEI-STU 2002, Lecture Notes, 152 pages.

e Grosek,O., Nemoga,K., Oravec,P., Satko,L.., Siska,J., Vavra,A.,
Vojvoda,M., Zanechal,M.: CRYPTOLOGY: The Elements and
Applications in Banking X., FEI-STU 2003, Lecture Notes, 123

pages.

Grants, Technical Reports, and Research Projects

e Co-researcher of the grant "Methods and resources of obtain-
ing, representing, presenting and searching of information and
knowledge", VEGA 1/7611/20, Principal researcher: Professor
Ing. Vladimir Vojtek, PhD. (years 2001 — 2002).

80

e Co-researcher of the grant "Information processing in the dis-
tributed environment of intelligent mobile agents", VEGA
1/0161/03, Principal researcher: Professor Ing. Vladimir Voj-
tek, PhD. (since 2003).

e Co-researcher of 9 research projects and co-author of 9 techni-
cal reports for the National Security Authority of the Slovak
Republic (since 2001).

Conference Presentations and Seminar Lectures

e Cryptanalysis of a Clock-Controlled Running Key Generator,
talk at SCAM 1999, Bratislava, Slovak Republic.

e Enhanced Cryptanalysis of a Clock-Controlled Running Key
Generator, talk at SCAM 2000, FEI STU, Bratislava, Slovak
Republic.

e Some Properties of Uniformly Distributed Sequences, joint work
with M.Simovcova, talk at ELITECH 2000, Bratislava, Slovak
Republic.

e Decision Tree Attack, talk at the CRYPTO seminar, june 2000,
FEI-STU, Bratislava, Slovak Republic.

e Some Properties of Uniformly Distributed Sequences, talk at
the CRYPTO seminar, october 2000, FEI-STU, Bratislava, Slo-
vak Republic.

e 2-adic Numbers and Sequences, 3 talks at the CRYPTO semi-
nar, november 2000, FEI-STU, Bratislava, Slovak Republic.

e On_Concatenating Pseudorandom Sequences, joint work with
M.Simovcova, talk at SCAM 2001, Bratislava, Slovak Republic.

e Stream Ciphers, 4 talks at the CRYPTO seminar, april 2001,
FEI-STU, Bratislava, Slovak Republic.

e Mobile Communications and Security, talk at TATRACRYPT
2001, Liptovsky Jan, Slovak Republic.

e Security in E-Business, talk at the BEST summer course, Au-
gust 15, 2001, FEI STU, Bratislava, Slovak Republic.

81

e A Probabilistic Approach to Weight Complexity of Binary Se-
quences, talk at Elitech 2001, Bratislava, Slovak Republic.

e Identification Protocols Secure Against Reset Attacks, talk at
the seminar "CRYPTOLOGY: The Elements and Applications
in Banking VIIIL.", 2001, FEI-STU, Bratislava, Slovak Republic.

e Does Encryption With Redundancy Ensure Authenticity, talk
at the seminar "CRYPTOLOGY: The Elements and Appli-
cations in Banking VIIL.", 2001, FEI-STU, Bratislava, Slovak
Republic.

e Cryptanalysis of the MD4 Hash Function, talk at the CRYPTO
seminar, March 13, 2002, FEI-STU, Bratislava, Slovak Repub-
lic.

e Some Problems Concerning Latin Squares and Their Crypto-
graphic Applications, talk at HAJDUCRYPT 2002,Debrecen,
Hungary.

e Cryptanalysis of the Self-Shrinking Generator, talk at SCAM
2002, Bratislava, Slovak Republic.

e Digital Signatures, talk for the Lazar Consulting Company, Oc-
tober 2002, BCPB, Bratislava, Slovak Republic.

e Order of the National Security Authority of the Slovak Re-
public pursuant to the Electronic Signature Law, talk at the
CRYPTO seminar, October 9, 2002, FEI-STU, Bratislava, Slo-
vak Republic.

e New Stream Ciphers, talk at the seminar "CRYPTOLOGY:
The Elements and Applications in Banking IX.", 2002, FEI-
STU, Bratislava, Slovak Republic.

e Attacks on the A5 Stream Cipher, talk at the seminar "CRYP-
TOLOGY: The Elements and Applications in Banking IX.",
2002, FEI-STU, Bratislava, Slovak Republic.

e Cryptanalysis of a File Encoding System Based on Quasigroup,
talk at ISCAM 2003, Bratislava, Slovak Republic.

e Cryptanalysis of One Hash Function Based on Quasigroup, talk
at TATRACRYPT 2003, Bratislava, Slovak Republic.

82

e New Approaches to Digital Evidence, talk at the CRYPTO
seminar, October 22, 2003, FEI-STU, Bratislava, Slovak Re-
public.

e Attacks on a File Encryption System Based on Quasigroup,
talk at Elitech 2003, Bratislava, Slovak Republic.

e Using Hard Artificial Intelligence Problems in Security, 2 talks
at the CRYPTO seminar, November 26, 2003, and December
3, 2003, FEI-STU, Bratislava, Slovak Republic.

e On One Hash Function Based on Quasigroup, talk at the Con-
ference "Mikulasska kryptobesidka'", Prague, Czech Republic.

e New Approach to Timestamping, talk at the seminar "CRYP-
TOLOGY: The Elements and Applications in Banking X.",
2003, FEI-STU, Bratislava, Slovak Republic.

Supervised theses and projects

e Jurenka, M.: Stream ciphers for software applications, Diploma
thesis (2003/04), diploma project (2002-2003).

e Balik, M.: Attacks on A5 algorithm, Diploma project (2003/04).

e Klenovi¢, L.: New attacks on stream ciphers, Diploma project
(2003/04).

e Balvan, R.: Security of mobile agents, Diploma project (2002-
03), Diploma thesis (2003).

e Bucka, A.: Attacks on stream ciphers, Diploma thesis (2003).

e Trgala, S.: Usage of additive generators in cryptography, Bach-
elor’s project (2002/03).

e Klenovic, L.: Security mechanisms in UMTS, Bachelor’s project
(2002/03).

e Zeman, J.: A note on row-complete latin squares, Students’
scientific project - SVOC (2001/02).

e Vadovi¢, P.: Cryptanalysis of the parity generator based on
LFSRs and FCSRs, Diploma project (2000/01), Diploma thesis
(2001).

83

e Repcik, P.: Cryptanalysis of the treshold generator based on
LFSRs and FCSRs, Diploma project (2000/01), Diploma thesis
(2001).

84

Bibliography

[1] Anderson, R.: The Classification of Hash Functions, Codes and
Ciphers - Cryptography and Coding IV, 1995, pp.83-93.

[2] Bakhtiari, S., Safavi-Naini, R., Pieprzyk, J.: A Message Au-
thentication Code Based on Latin Squares, Proceedings of
ACISP '97, LNCS 1270, Springer-Verlag 1997, pp.194-203.

[3] Beth, T., Piper, F.C.: The Stop—and-go Generator, Advances
in Cryptology — EUROCRYPT ’84 Proceedings, LNCS 209,
Springer—Verlag 1985, pp.88-92.

[4] Birkhoff, G., Bartee, T.C.: Applied Algebra (Aplikovana alge-
bra), Bratislava, Alfa 1981 (in Slovak).

[5] Biryukov, A., Shamir, A.: Real Time Cryptanalysis of the Al-
leged A5/1 on a PC, preliminary draft, December 9, 1999.

[6] Biryukov, A., Shamir, A., Wagner, D.: Real Time Cryptanal-
ysis of A5/1 on PC, FSE 2000, LNCS 2365, Springer—Verlag,
pp-1-18.

[7] Blum, L., Blum, M., Shub, M.: A Simple Unpredictable
Pseudo-Random Number Generator, STAM Journal on Com-
puting, Vol.15 (1986), No.2, pp.364-383.

[8] den Boer, B., Bosselaers, A.: Collision for the Compression
Function of MD5, Advances in Cryptology - EUROCRYPT ’93
Proceedings, LNCS 765, Springer—Verlag 1994, pp.293-304.

[9] Boyar, J.: Inferring Sequences Produced by Pseudo-Random
Number Generators, J.Assoc.Comput.Mach., Vol.36 (1989),
pp.129-141.

85

[10] Bucka, A.: Attacks on stream ciphers, diploma thesis, FEI-STU
2003.

[11] Chan, A.H., Games, R.A.: On the Quadratic Spans of Periodic
Sequences, Advances in Cryptology - CRYPTO ’89 Proceed-
ings, LNCS 435, Springer—Verlag 1990, pp.82—-89.

[12] Chepyzhov, V., Smeets, B.: On a Fast Correlation Attack
on Certain Stream Ciphers, Advances in Cryptology — EU-
ROCRYPT ’91 Proceedings, LNCS 547, Springer—Verlag 1991,
pp-176-185.

[13] Coppersmith, D., Halevi, S., Jutla, C. Crypt-
analysis of Stream Ciphers with Linear Masking,
http://eprint.iacr.org/2002/020.ps, 15.4.2004.

[14] Curran, D., van Rees, G.H.J.: Critical Sets in Latin Squares,
Proc. Eight Manitoba Conf. on Numerical Math. and Comput.,
Congressus Numerantium, Vol.23 (1979), pp.165-168.

[15] Cusick, T.W., Ding, C., Renvall, A.: Stream Ciphers and Num-
ber Theory, Elsevier Science B.V. 1998.

[16] Damgard, I.B.: A Design Principle for Hash Functions, Ad-
vances in Cryptology - CRYPTO ’89 Proceedings, LNCS 435,
Springer—Verlag 1990, pp.416-427.

[17] Dawson, E., Clark, A., Goli¢, J., Millan, W., Penna, L., Simp-
son, L.: The LILI-128 Keystream Generator. NESSIE submis-
sion, Proc. 1st Open NESSIE Workshop (Leuven, November
2000), http://cryptonessie.org/.

[18] Dénes, J., Keedwell, A.D.: Latin Squares and Their Applica-
tions, Academic Press, NY 1974.

[19] Dobbertin, H., Bosselaers, A., Preneel, B.: RIPEMD-160: A
Strengthened Version of RIPEMD, Fast Software Encryption,
LNCS 1039, Springer-Verlag 1996, pp.71-82.

[20] Dobbertin, H.: Cryptanalysis of MD4, Journal of Cryptology,
Vol.11 (1998), No.4, pp.253-271. See also Fast Software En-
cryption, LNCS 1039, Springer-Verlag 1996, pp.53—69.

86

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

Dvorsky, J., Ochodkova, E., Snasel, V.. Hash Function
Based on Quasigroups ("Hashovaci funkce zalozena na kvazi-
grupach"), Proc. of Mikuldsskd kryptobesidka, Praha, pp. 27-36,
2001 (in Czech).

Dvorsky, J., Ochodkova, E., Snasel, V.: Hash Functions Based
on Large Quasigroups, Proc. of Velikonocni kryptologie, Brno,
pp. 1-8, 2002.

FIPS PUB 140-1, Federal Information Processing Standard
Publication, Security Requirements for Cryptographic Mod-
ules, National Institute of Standards and Technology (NIST),
U.S. Department of Commerce, Washington D.C.

FIPS PUB 140-2, Federal Information Processing Standard
Publication, Security Requirements for Cryptographic Mod-
ules, National Institute of Standards and Technology (NIST),
U.S. Department of Commerce, Washington D.C., May 25,
2001.

FIPS PUB 180-1, Federal Information Processing Standard
(FIPS), Secure Hash Standard, National Institute of Standards
and Technology (NIST), U.S. Department of Commerce, Wash-
ington D.C., April 17, 1995.

Ford, L.R.Jr.: A Cyclic Arrangement of m-Tuples, Rand Cor-
poration, Santa Monica, California, 1957, report 1071.

Gligoroski, D., Markovski, S., Bakeva, V.: On Infinite Class of
Strongly Collision Resistant Hash Functions "EDON-F" with
Variable Length of Output, Proceedings of 1st International

Conference On Mathematics and Informatics for Industry, April
2003, Thessaloniki, Greece.

Golic, J.Dj.: Cryptanalysis of Alleged A5 Stream Cipher, Ad-
vances in Cryptology - EUROCRYPT ’97 Proceedings, LNCS
1233, Springer—Verlag 1997, pp.239-255.

Gollmann, D.: Pseudo Random Properties of Cascade Connec-
tions of Clock Controlled Shift Registers, Advances in Cryp-
tology — EUROCRYPT ’84 Proceedings, LNCS 209, Springer—
Verlag 1985, pp.93-98.

87

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Grogek, O.: On the Stability of Stream Ciphers (O stabilite
pradovych Sifier), Proceedings of the conference "Jesenny sem-

inar z kryptoanalyzy", Liptovsky Mikulas, October 9-11, 1996,
pp.14-26 (in Slovak).

Grosek, O., Horak, P., van Tran, T.: On Non-Polynomial Latin
Squares, accepted for publication in Design, Codes and Cryp-
tography, Kluwer Academic Publishers.

Grosek, O., Porubsky, S.: Cryptology - Algorithms, Methods,
Practice (Sifrovanie - algoritmy, metody, prax), Praha, Grada
1992 (in Slovak).

Halevi, S., Coppersmith, D., Jutla, C.:
Scream: a Software-Efficient Stream Cipher,
http://eprint.iacr.org/2002/019.ps, 15.4.2004.

Horak, P., Aldred, R.E.L., Fleischner, H.: Completing Latin
Squares: Critical Sets, Journal of Combinatorial Designs,
Vol.10 (2002), pp. 419-432.

Johansson, T., Jonsson, F.: Improved Fast Correlation Attacks
on Stream Ciphers via Convolutional Codes, Advances in Cryp-
tology - EUROCRYPT 99, LNCS 1592, Springer—Verlag 1999,
pp-347-362.

Johansson, T., Jonsson, F.: Fast Correlation Attacks Based on
Turbo Code Techniques, Advances in Cryptology — CRYPTO
99, LNCS 1666, Springer—Verlag 1999, pp.181-197.

Johansson, T., Jonsson, F.: Fast Correlation Attacks through
Reconstruction of Linear Polynomials, Advances in Cryptology
— CRYPTO 2000, LNCS 1880, Springer—Verlag 2000, pp.300—
315.

Jungnickel, D.: Finite Fields. Structure and Arithmetics,
B.I.Wissenschaftsverlag, 1992.

Kaneko, T.: Report on Evaluation of Symmetric-
Key Cryptographic Techniques, http://www.ipa.go.jp/
security/enc/CRYPTREC/fy15/doc/005_kaneko.pdf, (April
15, 2004).

88

[40] Kim, S.-J., Umeno, K., Hasegawa, A.. Corrections
of the NIST Statistical Test Suite for Randomness,
http://eprint.iacr.org/2004/018.ps, (April 15,2004).

[41] Klapper, A.: Feedback with Carry Shift Registers over Finite
Fields, K.U.Leuven Workshop on Cryptographic Algorithms,
Springer-Verlag 1995, pp.170-178.

[42] Klapper, A., Goresky, M.: Large Period Nearly de Bruijn FCSR
Sequences, Advances in Cryptology - EUROCRYPT 95 Pro-
ceedings, LNCS 921, Springer-Verlag 1995, pp.263—-273.

[43] Knudsen, L.R.: Block Ciphers — Analysis, Design, Applications.
Ph.D. dissertation, Aarhus University, November 1994.

[44] Knuth, D.E.: Construction of a Random Sequence, Nordisk
tidskrift for informationbehandling, Vol.5 (1965), No.4, pp.246-
250.

[45] Knuth, D.E.: The Art of Computer Programming, Vol.2
Seminumerical Algorithms, Addison-Wesley 1969.

[46] Knuth, D.E.: Deciphering a Linear Congruential Encryption,
[EEE Transactions on Information Thoery, Vol.IT-31 (January
1985), No.1.

[47] Krawczyk, H.. How to Predict Congruential Generators,
J.Algorithms, Vol.13 (1992), pp.527-545.

[48] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and
Their Applications, Cambridge University Press, 1994, Revised
Edition.

[49] Markovski, S., Gligoroski, D., Andova, S.: Using Quasigroups
for One—One Secure Encoding, Proceedings of LIRA "97 — Novi
Sad Yugoslavia.

[50] Markovski, S., Gligoroski, D., Bakeva, V.: Quasigroups and
Hash Functions, Proceedings of the 6th International Confer-
ence on Discrete Mathematics and Applications, Bansko, Bul-
garia, South-West University, Blagoevgrad, Bulgaria.

[51] Massey, J.L.: Shift-Register Synthesis and BCH Decoding,
IEEE Transactions on Information Theory, Vol.IT-15 (January
1969), No.1.

89

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Maurer, U.: An Universal Statistical Test for Random Bit Gen-
erators, Advances in Cryptology - CRYPTO 90 Proceedings,
LNCS 537, Springer-Verlag 1991, pp.409-420.

Meier, W., Staffelbach, O.: Fast Correlation Attacks on Certain
Stream Ciphers, Journal of Cryptology, Vol.1 (1989), pp.159—
176.

Menezes, A., van Oorschot, P., Vanstone, S.: Hand-
book of Applied Cryptography, CRC Press 1996,
http://www.cacr.math.uwaterloo.ca/hac.

Mihajlevi¢, M.J., Goli¢, J.D.: A Fast Iterative Algorithm for
a Shift Register Initial State Reconstruction Given the Noisy
Output Sequence, Advances in Cryptology — AUSCRYPT ’90,
LNCS 453, Springer—Verlag 1990, pp.165-175.

Mihajlevi¢, M.J., Goli¢, J.D.: A Comparison of Cryptanalytic
Principles Based on Iterative Error—Correction, Advances in
Cryptology — EUROCRYPT ’91, LNCS 547, Springer—Verlag
1991, pp.527-531.

Nemoga, K.: Linear Recurring Sequences (Linearne rekurentné
postupnosti), Proceedings of the conference "Jesenny seminar z
kryptoanalyzy", Liptovsky Mikulas, October 9-11, 1996, pp.1—
13 (in Slovak).

NIST: AES Initiative, http://www.nist.gov/aes (May 25,
2001).

Ochodkova, E., Snasel, V.: Using Quasigroups for Secure En-
coding of File System, Proceedings of the International Sci-
entific NATO PfP/PWP Conference "Security and Informa-
tion Protection 2001", May 9-11, 2001, Brno, Czech Republic,
pp.175-181.

Order of the National Security Authority of the Slovak Republic
pursuant to the Electronic Signature Law No. 537, 2002.

Preneel, B.: Analysis and Design of Cryptographic Hash Func-
tions, Doctoral Dissertation, Katholieke Universiteit Leuven,
1993.

90

[62] Preneel, B., Rijmen, V., Bosselaers, A.: Recent Developments
in the Design of Conventional Cryptographic Algorithms, Com-
puter Security and Industrial Cryptography, State of the Art
and Evolution, LNCS 1528, Springer-Verlag, 1998, pp.106-131.

[63] Preneel, B.: The State of Hash Functions, Cryptology and In-
formation Security, Proceedings of VI RECSI, Teneriffe, Spain,
September 2000, RA-MA, Madrid, 2000, pp. 3-27.

[64] Preneel, B.: New European Schemes for Signatures, Integrity
and Encryption (NESSIE): A Status Report, Proceedings of
Mikulasska kryptobesidka 2001, ecom-monitor.com 2001, pp.7—
17.

[65] Project CRYPTREC, http://www.ipa.go.jp/security/
enc/CRYPTREC/index-e.html, (April 19, 2004).

[66] Project CRYPTREC 2002-2003,
http://www.ipa.go.jp/security/enc/CRYPTREC/fy15/
cryptrec20030620_repe.html, (April 19, 2004).

[67] Project ECRYPT - European Network of Excellence in Cryp-
tology, http://www.ecrypt.eu.org, (April 19, 2004).

[68] Project NESSIE, http://wuw.cryptonessie.org.

[69] Repcik, P.: Cryptanalysis of the treshold generator based on
LFSRs and FCSRs, diploma thesis, FEI-STU 2001.

[70] RIPE: Integrity Primitives for Secure Information Systems, Fi-
nal report of RACE Integrity Primitives Evaluation (RIPE-
RACE 1040), LNCS 1007, Springer-Verlag, 1995.

[71] Rogaway, P., Coppersmith, D.: A Software-Optimized Encryp-
tion Algorithm, Fast Software Encryption Proceedings, LNCS
809, Springer—Verlag 1994, pp.56—63.

[72] Rueppel, R.A.: The Analysis and Design of Stream Ciphers,
Berlin, Heidelberg, Springer—Verlag, 1986.

[73] Rueppel, R.A.: When a Shift Registers Clock Themselves, Ad-
vances in Cryptology - EUROCRYPT ’87 Proceedings, LNCS
304, Springer—Verlag 1988, pp.53—64.

91

[74] Rueppel, R.A.: Security Models and Notions for Stream Ci-
phers, Cryptography and Coding II, C.Mitchell, ed., Ox-
ford:Clarendon Press 1992, pp.213-230.

[75] Rueppel, R.A.: Stream Ciphers, Contemporary Cryptology:
The Science of Information Integrity, Editor:G.J.Simmons,
IEEE Press 1992, pp.65-134.

[76] Rukhin, A. et al.: A Statistical Test Suite for Random and
Pseudorandom Number Generators for Cryptographic Applica-
tions. NIST Special Publication 800-22, May 15, 2001.

[77] Satko, L.: Correlation attack of Siegenthaler and Rueppel (Ko-
relaény utok Siegenthalera a Rueppela), Proceedings of the con-

ference "Jesenny seminar z kryptoanalyzy", Liptovsky Mikulas,
October 9-11, 1996, pp.27-35 (in Slovak).

[78] Schneier, B.: Applied Cryptography. Protocols, Algorithms,
and Source Code in C, John Wiley & Sons, Inc. 1996, Second
Edition.

[79] Siegenthaler, T.: Correlation-Immunity of Nonlinear Combin-
ing Functions for Cryptographic Applications, IEEE Transac-
tions on Information Theory, Vol.IT-30 (September 1984), No.5,
pp.776—-780.

[80] Siegenthaler, T.: Decrypting a Class of Stream Ciphers Us-
ing Ciphertext Only, IEEE Transactions on Computers, Vol.34
(January 1985), No.1, pp.81-85.

[81] Siegenthaler, T.: Cryptanalysts Representation of Nonlinearly
Filtered ML-Sequences, Advances in Cryptology, Proc. of EU-
ROCRYPT ’85, LNCS 219, Springer-Verlag 1986, pp.103-110.

[82] Simpson, L.: Divide and Conquer Attacks on Shift Register
Based Stream Ciphers, PhD thesis, Information Security Re-
search Centre, Queensland University of Technology, Brisbane,
Australia, November 1999.

[83] Stinson, D.R.: Cryptography: Theory and Practice, CRC Press
1995.

[84] Vadovi¢, P.: Cryptanalysis of the parity generator based on
LFSRs and FCSRs, diploma, thesis, FEI-STU 2001.

92

[85] Vojvoda, M.: Cryptanalysis of a Clock-Controlled Running Key
Generator, Journal of Electrical Engineering, Vol.50 (1999),
No.10/s, pp.16-18.

[86] Vojvoda, M.: Enhanced Cryptanalysis of a Clock-Controlled
Running Key Generator, Journal of Electrical Engineering,
Vol.51 (2000), No.12/s, pp.81-84.

[87] Vojvoda, M., Simovcovd, M.: Some Properties of Uniformly
Distributed Sequences, Abstracts of the conference "Elitech
2000", FEI-STU, 2000.

[88] Vojvoda, M., éimovcové, M.: On Concatenating Pseudorandom
Sequences, Journal of Electrical Engineering, Vol.52 (2001),
No.10/s, pp.36-37.

[89] Vojvoda, M.: A Probabilistic Approach to Weight Complexity
of Binary Sequences, Proceedings of Elitech 2001, FEI STU,
Bratislava, 2002, pp.91-92.

[90] Vojvoda, M.: Cryptanalysis of a File Encoding System Based
on Quasigroup, Journal of Electrical Engineering, Vol.54
(2003), No.12/s, pp.69-T1.

[91] Vojvoda, M.: Attacks on a File Encryption System Based on
Quasigroup, Proceedings of the 6th Scientific Conference on
Electrical Engineering and Information Technology for PhD
students — Elitech 2003, FEI-STU 2003, pp.54—56.

[92] Vojvoda, M.: Cryptanalysis of One Hash Function Based on
Quasigroup, accepted for publication in Tatra Mountains Math-
ematical Publications.

[93] Vojvoda, M.: On One Hash Function Based on Quasigroup,
Proceedings of the Conference "Mikulasska kryptobesidka',
ecom-monitor.com 2003, pp.23-28.

[94] Wagner, D., Simpson, L., Dawson, E., Kelsey, J., Millan, W.,
Schneier, B.: Cryptanalysis of ORYX, SAC 98, LNCS 1556,
Springer—Verlag 1999, pp.296-305.

[95] Zeng, K.C., Huang, M.: On the Linear Syndrome Method in
Cryptanalysis, Advances in Cryptology — CRYPTO ’88, LNCS
403, Springer—Verlag 1990, pp.469-478.

93

[96] Zeng, K.C., Huang, M., Rao, T.R.N.: An Improved Linear
Syndrome Algorithm in Cryptanalysis With Applications, Ad-
vances in Cryptology — CRYPTO ’90, LNCS 537, Springer—
Verlag 1991, pp.34-47.

[97] Zivkovi¢, M.V.: An Algorithm for the Initial State Recon-
struction of the Clock-Controlled Shift Register, IEEE Trans-
actions on Information Theory, Vol.37 (September 1991), No.5,
pp-1488-1490.

94

