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Chapter 1

List of symbols

Z the ring of integers

N the set of integers f1; 2; 3; : : :g

Z

m

the ring of integers redued modulo m

Z

n

m

the n-dimensional vetor spae over Z

m

GF (q) the �nite �eld of order q

GF (q)[X℄ the algebra of polynomials over GF (q)

(in indeterminate X)

H Shannon's entropy

I(X; Y ) the amount of mutual information between X and Y

gd greatest ommon divisor

lm least ommon multiple

LSB(X) the least signi�ant bit of a binary representation of X

PRBG Pseudo-Random Bit Generator

LFSR Linear Feedbak Shift Register

FCSR Feedbak with Carry Shift Register

NSG Natural Sequene Generator
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Chapter 2

Introdution

2.1 Motivation

Cryptography is nowadays an inseparable part of a large number

of business proesses and our everyday ativities although in many

ases we have no idea about it. Internet, bank transfers, mobile

phones are ommon examples of the usage of ryptography.

The main goals of ryptography are to ahieve privay, data in-

tegrity, authentiity, and non-repudiation [54℄.

In this dissertation we will deal with some aspets of

� stream iphers � enryption algorithms, used to ensure privay,

and

� hash funtions � algorithms used to ensure data integrity.

A signi�ant milestone in the area of stream iphers was the year

1917 when G.Vernam invented his one-time pad. It was the �rst un-

onditionally seure ipher (aording to the Shannon's de�nition)

against the iphertext-only attak. Stream iphers are popular due

to their high enryption/deryption speed. Their simple and heap

hardware design is often preferred in real-world appliations. Prob-

ably the most widely used appliation of stream iphers are mobile

phones (GSM, UMTS).

Espeially after the publiation of the �nal report of the projet

NESSIE [68℄ one an get the feeling that stream iphers are less

seure than blok iphers sine no stream ipher was reommended

from the projet proposals. That is probably not true but the design

of blok iphers seems to be more sophistiated in the present time.

6



However there are still many open questions in the "lassial" design

of stream iphers and new design trends (inspired by the design of

blok iphers) appeared in reent years [71℄, [33℄, [13℄.

At the same time this was a new all for random and pseudoran-

dom sequenes whih lasts up to these days. Modelling, simulation,

and ryptography are probably the most important of them. The

so-alled truly random sequenes are usually obtained from physial

soures or proesses with random behaviour. Emitters, and noise

samplers in eletrial iruits are ommon examples. However, slow

speed of a truly random sequene prodution is a severe problem.

Moreover a sample we get is �nite and hene some other require-

ments are needed. This leads to an intensive researh in the area

of pseudorandom sequenes. In spite of their deterministi produ-

tion they possess (statistial) properties ommon to truly random

sequenes. Moreover they an be produed very fast, e�iently,

and are reproduible when some initial seeds are known - what is

an important feature in some appliations.

In the area of ryptography pseudorandom sequenes are of tre-

mendous interest. Many items in ryptographi protools (e.g. hal-

lenges), signature shemes and of ourse the keys for ryptosystems

must be generated in a random fashion. Moreover pseudorandom

sequenes are the ore of stream iphers. Pseudorandom genera-

tors suitable for use in ryptographi appliations may need to meet

stronger requirements than those for other appliations. In partiu-

lar, their outputs must be unpreditable in the absene of knowledge

of the inputs.

It an be simply said that hash funtions "ompress" (in a lossy

manner) a string of an arbitrary length (a message) to a string of a

�xed length (a message digest or hash value). The main goal is not

to ompress the message but to produe a message digest that in

some sense represents this message. (An analogous example is the

�ngerprint of a human being.)

Hash funtions have a large number of appliations in omputer

siene (optimized aess to the stored data) and in ryptography

(integrity protetion of stored/transmitted data) as well. The uni-

form distribution of message digests is usually the most important

requirement in omputer siene appliations. However hash fun-

tions used in ryptographi appliations may need to meet stronger

requirements. First of all they must be one-way, i.e. given a message
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digest it must be "di�ult" (omputationally infeasible) to �nd a

message that would hash to this given message digest. Moreover,

given a message it must be "di�ult" to produe another message

suh that these two messages have the same message digest.

Hash funtions are used almost in all pratial digital signature

shemes. (Digital signature shemes are rather slow whih makes

it impratial to sign large messages. A ommon approah is to

produe a message digest and then to sign it.)

Clearly, integrity protetion via hash funtions di�ers from the in-

tegrity protetion via the well-known yli redundany odes (CRCs)

that enable the detetion of errors that our due the noise in the

transmission hannel. Analogy in hash funtions is a message au-

thentiation ode (MAC) that is a hash funtion with a seret key.

2.2 Researh targets

In this dissertation there are properties of some spei�ally on-

struted pseudorandom sequenes studied both from the point of

view of ryptography and ryptanalysis. This dissertation deals

also with a relatively new diretion in ryptography � the usage

of quasigroups in the design of stream iphers and hash funtions.

The researh targets an be formulated as follows:

1. to introdue neessary basi notions onerning pseudorandom

generators and hash funtions in ryptography;

2. to study ryptographi properties of the onatenation of peri-

ods of several ml-pseudorandom sequenes;

3. to ryptanalyse stream iphers that are based on the onate-

nation of transformed runs of two ml-sequenes;

4. to ryptanalyse one stream ipher based on a quasigroup, whih

was proposed in [59℄,

5. to study the seurity of a hash funtion based on a quasigroup,

whih was proposed in [21℄, [22℄.

The struture of this dissertation is as follows. Setion 3 deals

with the state of the art in stream iphers and hash funtions. Basi

notions onerning stream iphers are outlined in Setion 3.1. Sta-

tistial tests of randomness of sequenes are mentioned in Setion
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3.2. Design approahes for stream iphers are desribed in Se-

tion 3.3 inluding several examples in Setion 3.4. Basi attaks on

stream iphers are desribed in Setion 3.5. Basi notions onern-

ing hash funtions are outlined in Setion 3.6. Design approahes for

hash funtions are desribed in Setion 3.7. Basi attaks on hash

funtions are desribed in Setion 3.8. Finally, a short information

about the projets NESSIE and CRYPTREC is given in Setion

3.9 inluding the reommended stream iphers and hash funtions.

The results of our researh are presented in Setion 4. This setion

is based on the author's papers [85℄, [86℄, [87℄, [88℄, [89℄, [90℄, [91℄,

[92℄ and [93℄. Cryptographi properties of the onatenation of pe-

riods of several ml-pseudorandom sequenes are studied in Setion

4.1. Setion 4.2 deals with ryptanalysis of a stream ipher based

on the onatenation of transformed runs of two ml-sequenes. Sev-

eral attaks on a stream ipher based on a quasigroup (proposed in

[59℄) are desribed in Setion 4.3. The properties of a hash funtion

based on a quasigroup (proposed in [21℄, [22℄) are studied in Setion

4.4. Conlusions are given in Setion 5. A omplete list of author's

papers, onferene presentations, and other related ativities an be

found in Setion 6. Finally, Bibliography is to be found at the end

of this dissertation.
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Chapter 3

Stream iphers and hash

funtions � state of the art

3.1 Stream iphers

Stream iphers form an important lass of symmetri (lassial,

seret-key) ryptosystems.

De�nition 3.1.1 [32℄, [83℄ A ryptosystem is formally a 5-tuple

(P; C;K; E ;D), where:

� P is a �nite set of plaintexts,

� C is a �nite set of iphertexts,

� K is a �nite set of keys,

� E is a �nite set of enryption transformations e

k

e

: P ! C,

where the key k

e

2 K is the parameter of the enryption trans-

formation,

� D is a �nite set of deryption transformations d

k

d

: C ! P,

where the key k

d

2 K is the parameter of the deryption trans-

formation. The following must hold: d

k

d

(e

k

e

(P )) = P , 8P 2 P.

Cryptosystems an be roughly subdivided into the following

two groups aording to the relation between the enryption and

deryption keys:

symmetri (lassial). Enryption key an be easily omputed

from the deryption key and vie versa. Sine these keys are
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usually (speularly) idential, they are not onsidered sepa-

rately. Seurity of symmetri ryptosystems is based on the

serey of the key.

asymmetri (publi). Di�erent keys are used for enryption and

deryption. Enryption (publi) key an be made publi. De-

ryption (private) key must be kept seret (the parameters used

to alulate the deryption key must be kept seret, too). It is

required that it is not possible to ompute (in a real-time) the

deryption key from the enryption key.

Aording to the enryption transformation ryptosystems an

be subdivided as follows [72℄:

blok iphers. They transform a plaintext blok using a �xed en-

ryption transformation, i.e. a plaintext blok is substituted

with another blok. It is required that the blok is large

enough, to make the ditionary attak impossible. Typial

blok size nowadays is 128 or 256 bits. However in some appli-

ations the 64-bit blok is still favourable.

stream iphers. Individual bloks of plaintext (also alled sym-

bols, beause they are muh shorter than bloks used within

blok iphers) are transformed using a time-varying enryp-

tion transformation that is dependent on the inner state of the

stream ipher.

High enryption/deryption speed and simple hardware imple-

mentation are ommon and most favourable properties of stream

iphers. Moreover, their properties are usually analyzable and prov-

able using algebrai tehniques.

Stream iphers an be subdivided into [72, pp.6�7℄:

synhronous. The next inner state of the stream ipher depends

only on its previous inner state and not on plaintext,

self-synhronizing. The next inner state of the stream ipher de-

pends on its previous inner state and on a �xed number of

previously enrypted symbols.

The desription of its advantages, disadvantages and resistane

against several kinds of attaks an be found in [78, pp.197�199,

202�203℄, [54, pp.193�195℄, [72, pp.14�15℄.
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Remark 3.1.2 One may onstrut a stream ipher also from a blok

ipher [78, pp.189�211℄. Running a blok ipher in the so alled

output feedbak (OFB) mode or in the ipher feedbak (CFB) mode,

respetively we obtain a synhronous or a self-synhronizing stream

ipher, respetively.

An important position among the stream iphers has the so-alled

binary additive stream ipher.

De�nition 3.1.3 Let P = (p

0

; p

1

; : : : ; p

N�1

) denote the bits of the

plaintext, C = (

0

; 

1

; : : : ; 

N�1

) denote the iphertext bits, and

z = (z

0

; z

1

; : : : ; z

N�1

) denote the keystream bits. Binary additive

stream ipher is a synhronous stream ipher. Its enryption trans-

formation is given as:



i

= p

i

� z

i

; i = 0; 1; : : : ; N � 1:

The symbol � denotes the addition modulo 2 or in other words it is

the XOR operation. Deryption transformation is then:

p

i

= 

i

� z

i

; i = 0; 1; : : : ; N � 1:

If the keystream z is also the key k of the ryptosystem, this i-

pher is also known as the Vernam ipher. If the individual

bits of the keystream z were produed randomly and independently,

the Vernam ipher is absolutely seure (aording to the Shan-

non's de�nition, see Setion 3.5) against the iphertext-only at-

tak. Let H be the Shannon's entropy. Hene the following holds:

H(P=C) = H(P ), i.e. the unertainty about the plaintext if the i-

phertext is known is the same as the unertainty about the plaintext

itself.

Shannon has proved, that the neessary ondition to onsider a

symmetri ryptosystem as an absolutely seure one is

H(k) � H(P ) (i.e. unertainty about the key of the ryptosys-

tem may not be smaller than the unertainty about the plaintext).

If the bits of the key were produed randomly and independently,

then H(k) = kkk, where kkk denotes the number of bits in the key

k. Thus kkk � H(P ). As it an be seen, the Vernam ipher is the

optimal solution from the point of view of the key length.

Two important problems arise when the Vernam ipher is used

in real-world appliations:
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key generation. One of the basi seurity priniples is that the

key an be used only one. Thus a new key is needed for eah

message to be enrypted. Moreover the key must be as long

as the message and the key bits must be generated randomly

and independently. It an be done using a physial true ran-

dom number generator. However suh generators are very slow

whih makes them impossible to use when a heavy tra� must

be enrypted.

key distribution. Both, a sender and a reeiver must agree on

a key. The key must be transmitted from the sender to the

reeiver. Thus a trusted and seure hannel is neessary to be

shared between the sender and reeiver.

These were the reasons that has brought the pseudorandom bit

generators into the entre of interest in the area of stream iphers.

De�nition 3.1.4 [83, Chapter 12℄, [54, Chapter 5℄ Let kkk; kzk be

positive integers suh that kzk � kkk + 1. A (kkk; kzk)-pseudo-

random bit generator (more brie�y, a (kkk; kzk)-PRBG) is a de-

terministi algorithm (running in polynomial time as a funtion of

kkk) whih, given a truly random binary sequene k of length kkk,

outputs a binary sequene z of length kzk whih "appears" to be

random. The input to the PRBG is alled the seed, while the out-

put of the PRBG is alled a pseudorandom bit sequene. (PRBGs

used in stream iphers to produe keystreams are often referred to

as keystream or running-key generators.)

The design goal in stream iphers is to e�iently produe pseu-

dorandom sequenes - keystreams, i.e. sequenes that possess prop-

erties ommon to truly random sequenes, that are unpreditable

and in some sense "indistinguishable" from these sequenes.

De�nition 3.1.5 [83, Chapter 12℄ Suppose p

0

and p

1

are two prob-

ability distributions on the set Z

kzk

2

of bit-strings of length kzk. Let

A : Z

kzk

2

! f0; 1g be a probabilisti algorithm that runs in polyno-

mial time (as a funtion of kzk). Let � > 0. For j = 0; 1, de�ne

E

A

(p

j

) =

=

P

(z

1

;:::;z

kzk

)2Z

kzk

2

p

j

(z

1

; : : : ; z

kzk

)p(A(z

1

; : : : ; z

kzk

) = 1j(z

1

; : : : ; z

kzk

)):
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We say that A is an �-distinguisher of p

0

and p

1

provided that

kE

A

(p

0

)�E

A

(p

1

)k � �, and we say that p

0

and p

1

are �-distinguish-

able if there exists an �-distinguisher A of p

0

and p

1

.

De�nition 3.1.6 [54, Chapter 5, p.171℄ A PRBG is said to pass

all polynomial-time statistial tests if no polynomial-time algorithm

an orretly distinguish between an output sequene of the generator

and a truly random sequene of the same length with probability

signi�antly greater than 1=2.

De�nition 3.1.7 [83, Chapter 12℄ Let p

1

be the probability distri-

bution on the set Z

kzk

2

of bit-strings of length kzk indued by the

(kkk; kzk)-PRBG. Then the probabilisti algorithm B

i

, 1 < i � kzk

is an �-next bit preditor for (kkk; klk)-PRBG if and only if

X

(z

1

;:::;z

i�1

)2Z

i�1

2

p

1

(z

1

; : : : ; z

i�1

)p(z

i

= B

i

j(z

1

; : : : ; z

i�1

)) �

1

2

+ �:

See [83, Chapter 12℄ for the onnetions between distinguishers

and next-bit preditors.

De�nition 3.1.8 [54, Chapter 5, p.171℄ A PRBG is said to pass

the next-bit test if there is no polynomial-time algorithm whih, on

input of the �rst l bits of an output sequene z, an predit the

(l + 1)

st

bit of z with probability signi�antly greater than 1=2.

The importane of the next-bit preditors is expressed in the

following Theorem.

Theorem 3.1.9 [54, Chapter 5, p.171℄ A PRBG passes the next-bit

test if and only if it passes all polynomial-time statistial tests.

Studying properties and seurity of almost all pratial designs of

stream iphers using the previously stated notions of unpreditabil-

ity and indistinguishability is almost impossible. That is why other

(weaker) measures are used in real world.

Notation 3.1.10 Let an in�nite sequene z of elements from a

symbol set S be denoted as z = z

0

; z

1

; z

2

; : : : , z

i

2 S, i � 0.

Further let the N-ouple beginning of this sequene be denoted as

z

N

= z

0

; z

1

; z

2

; : : : ; z

N�1

.
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There are usually binary sequenes used in ryptographi appli-

ations, i.e. S = f0; 1g. Sine many of the used sequenes are

produed by some �nite automata, it is natural to de�ne the period

of the sequene.

De�nition 3.1.11 Let z = z

0

; z

1

; z

2

; : : : be an in�nite sequene. If

there exist r; q 2 N, q � 0; r > 0, suh that z

q

= z

q+r

,

z

q+1

= z

q+r+1

; : : : , then the sequene z is alled ultimately periodi.

If q = 0, the sequene z is referred to as periodi. The smallest

integer r for whih the previous statements hold is alled the period

of the sequene z.

Grouping idential adjaent elements in a sequene together leads

to the notion of a run.

De�nition 3.1.12 Let z

N

= z

0

; z

1

; z

2

; : : : ; z

N�1

be an N-ouple se-

quene. Then a subsequene z

i

; z

i+1

; : : : ; z

i+d�1

, 0 � i � N � 1,

1 � d � N � i is alled a run of length d, if z

i

= z

i+1

= � � � = z

i+d�1

provided z

i�1

6= z

i

(if i > 0) and z

i+d�1

6= z

i+d

(if i+ d < N). If the

sequene z

N

is binary then a run onsisting of ones, resp. zeros is

alled a blok, resp. a gap.

De�nition 3.1.13 [4℄ Relation

a

0

s

i

+ a

1

s

i�1

+ � � �+ a

m

s

i�m

= 0; (3.1)

a

i

; s

i

2 GF (q); a

0

6= 0; a

m

6= 0;

i = m;m + 1; m+ 2; : : :

is alled the mth-order linear reurring relation. Sequene s

0

; s

1

;

s

2

; : : : satisfying this relation is alled the mth-order linear reurring

sequene (or the solution of the linear reurring relation). Elements

s

0

; s

1

; : : : ; s

m�1

are referred to as the initial values.

De�nition 3.1.14 [4℄ There are two important polynomials on-

neted to the linear reurring relation (3.1):

the left harateristi polynomial: a(x) = a

0

+a

1

x+� � �+a

m

x

m

,

the right harateristi polynomial: �a(x) = a

0

x

m

+ a

1

x

m�1

+

+ � � �+ a

m

.

It holds that a(x) = x

m

�a(1=x).
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If there are "many" oe�ients a

i

of the (left or right, respe-

tively) harateristi polynomial equal to zero, the polynomial is

said to be "sparse". Otherwise the polynomial is referred to as the

"dense" one.

De�nition 3.1.15 [57℄ Polynomial of the smallest degree, whih is

harateristi polynomial of the sequene s

0

; s

1

; s

2

; : : : is alled the

minimal polynomial of this sequene.

De�nition 3.1.16 [57℄ Linear omplexity of a sequene is the de-

gree of the minimal polynomial of this sequene.

De�nition 3.1.17 Let us denote s = s

0

; s

1

; : : : ; s

N�1

as fs

i

g

N�1

i=0

.

Let us de�ne the following set of sequenes onstruted from the

sequene s: J = ffs

i

g

j

i=0

; j = 0; 1; : : : ; N�1g. The linear omplexity

pro�le is a funtion J ! N, whih assigns to eah sequene from J

its linear omplexity. (Note that the linear omplexity pro�le is a

nondereasing funtion.)

Any sequene produed by some generator must possess the fol-

lowing features in order to be useful in ryptography as a keystream

sequene:

� long period, sine only its part an be used as a keystream

for enryption. Moreover long period is a basi ondition for

unpreditability of a sequene. Another important fat is that

the period of a sequene represents an upper bound for its linear

omplexity.

� large linear omplexity. It is well known that a sequene with

linear omplexity m an be ompletely reonstruted from

its 2m onseutive bits. More preisely, it is possible to �nd

the minimal polynomial of this sequene using the Berlekamp-

Massey algorithm [51℄. The omplexity of this algorithm is

roughly the square of the sequene length. If m is small and a

iphertext is given, only a short plaintext is required to alu-

late the orresponding part of the keystream and then to �nd

the minimal polynomial of the keystream whih yields in the

break of the ipher. (If the short plaintext is not known, the at-

taker may try to guess probable words in the plaintext.) The

omplexities of higher orders (quadrati [11℄, ubi, et.) an

be de�ned too. However there is no known e�ient algorithm
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to alulate them. In past years also the 2-adi omplexity

was studied with the onnetion to feedbak with arry shift

registers (FCSRs) [15℄, [41℄, [42℄. However for most urrent

designs of stream iphers (or keystream generators) it is im-

possible to give useful estimates of the 2-adi omplexity of

their keystreams.

� linear omplexity pro�le, that is only a little bit di�erent from

the ideal one, whih is represented by the n=2 line. Moreover

the di�erenes should be irregular. If a linear omplexity is

onstant on a large segment under the n=2 line it is possible to

approximate the keystream (or a part of it) using a linear reur-

ring relation of a smaller order. A nie example is the sequene

0; 0; : : : ; 0; 1. Its linear omplexity is maximal, i.e. equal to the

number of bits in this sequene. However this sequene an be

very well approximated by the all-zero sequene.

� proper statistial properties. As it was said a (pseudorandom)

keystream should possess features ommon to truly random se-

quenes. How random a keystream appears an be heked

when statistial tests are applied on it (see Setion 3.2 for fur-

ther details).

A ommonly used approah in the keystream generator evalua-

tion is a ombination of theoreti and experimental approah. The

period and linear omplexity (or their lower and upper bounds)

of keystreams produed by the studied generator are determined

using algebrai tehniques. Some basi statistial properties suh

as number of ones, frequeny of pairs of bits, number of runs of a

given length, et. in a period of a keystream are sometimes studied

analytially, too. However these results do not express statistial

properties of a keystream in a su�ient manner. Then a battery of

statistial tests (see [45℄, [23℄, [24℄, [76℄) is applied on a number of

keystreams. (One should realize that it is not possible to test all the

keystreams and moreover only a small, negligible part of the period

of the keystream is tested.) Finally the resistane of the keystream

generator against the known attaks is studied.
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3.2 Statistial tests of pseudorandom sequenes

Any sequene must possess ommon features expeted in random

sequenes in order to be onsidered pseudorandom.

Golomb was the �rst one who formulated neessary (but not suf-

�ient) onditions a pseudorandom sequene has to satisfy in order

to be onsidered random.

Let z

N

= z

0

; z

1

; :::; z

N�1

be a binary sequene (for a periodi

sequene let N be its period). Golomb's randomness postulates

state:

P1: The number of ones and zeros in z

N

di�ers at most by 1.

P2: In the sequene z

N

, one half of runs has length 1, one fourth has

length 2, one eighth has length 3, et. Moreover, the number

of bloks and the number of gaps of a given length is roughly

equal in z

N

.

P3: Autoorrelation funtion C(t) is two-valued, i.e. there exists

suh a number K 2 Z, that the following holds:

NC(t) =

N�1

X

i=0

(2z

i

� 1)(2z

i+t

� 1) =

�

N; if t = 0

K; if 1 � t � N � 1:

However, these postulates are too strit for a pratial evaluation

of a keystream generator.

Let H

0

be the hypothesis that the studied sequene possesses

features ommon to a random sequene. Alternative hypothesis (the

studied sequene does not possess features ommon to a random

sequene), is denoted H

1

. Whih one of these hypotheses will be

aepted we deide after performing a statistial test. If we rejet

H

0

although it was orret, we make the Type-I of error. Probability

of this type of an error is referred to as the size of the test and is

denoted as �. A typial hoie of the test size is 0:001 � � � 0:05.

If we aept H

0

although H

1

is valid, we make the Type-II of error.

Probability of this error is denoted as �. The number 1�� is referred

to as the power of the test. It is neessary to onsider the length of

the sequene during the hoie of parameters � or �. It is important

to realize that power of the test is more important than its size sine

aeptane of a "bad" sequene (or a "bad" keystream generator)
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an ause a seurity inident whereas rejetion of a "good" sequene

an ause "only" ine�ieny.

There are various statistial tests (theoretial or empirial) to

be applied to hek whether the studied sequene possesses some

feature ommon to a random sequene. Usually a two-sided test is

applied. A large number of statistial tests an be found e.g. in

[45℄, however not all of them are meaningful to be applied to binary

sequenes.

FIPS 140-2

This standard for nonlassi�ed data suggests 4 statistial tests

a sequene should pass to be onsidered pseudorandom. Required

number of bits in a sample of a sequene is 20 000. FIPS 140-2 ([24℄)

is the suessor of FIPS 140-1 ([23℄). A very important hange has

been done: the test size was set to � = 10

�4

, whereas in FIPS 140-1

it was � = 10

�6

. These tests are based on the law of large numbers

and the �

2

-test.

1. Monobit test

The number of ourenes of element 1 in the sample (denoted

as n

1

) should pass the inequality 9 725 < n

1

< 10 275.

2. The poker test (equidistribution of quadruples)

The studied sample is divided into 5 000 onseutive non-over-

lapping quadruples. The number of ourenes of individual

quadruples, denoted as o

i

; i = 0; : : : ; 15, is determined and the

following value is alulated.

V =

16

5 000

15

X

i=0

o

2

i

� 5 000:

A sample passes this test if it holds that 2:16 < V < 46:17.

3. Run test

Let us denote B

i

, resp. G

i

the number of bloks, resp. gaps

of length i in the sample. (Runs longer than 6 are ounted

together with runs of length 6.) The values B

i

, resp. G

i

should

our in intervals spei�ed in the following table.
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Length of run Interval

1 2 343 � 2 657

2 1 135 � 1 365

3 542 � 708

4 251 � 373

5 111 � 201

6 111 � 201

Table 3.1: FIPS 140-2: Required number of runs

4. Long run test

A sample passes this test if it does not ontain runs of length

26 or longer.

Probably the only publiation dealing with statistial tests (and

ontaining a mathematial bakground) of pseudorandom sequenes

used in ryptography is [76℄ (see also orretions in [40℄). There are

16 tests desribed (mathematial bakground as well as the imple-

mentation) in this book. Soure odes for Linux are to be found at

http://sr.nist.gov/rng/rng2.html. Other software pakages

for statistial testing of pseudorandom sequenes are e.g. DIEHARD

or Crypt-X.

3.3 Design of stream iphers

There are four di�erent approahes to the design of stream iphers

aording to Rueppel [74℄, [75℄:

System-theoreti. A new keystream generator is designed using

the best known design priniples. Next the aomplishment of

basi riteria (period, linear omplexity, statistial properties,

et.) on keystream generators is heked. Finally, it is studied

whether the new keystream generator is a di�ult and unknown

problem (from the point of view of possible attaks) for an

attaker.

Information-theoreti. The idea is to keep the ryptanalyst in

the dark about the plaintext. No matter how muh work the

ryptanalyst invests, he will never get a unique solution.
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Complexity-theoreti. The goal is to base the ryptosystem on,

or make it equivalent to, some known and di�ult problem suh

as fatoring or alulating disrete logarithms.

Randomized. The keystream generator designed using this ap-

proah is based on a large number of transformations. The

idea is to fore the ryptanalyst to examine lots of useless data

in his attempts at ryptanalysis. (Note: Complexity and a

number of transformations do not guarantee seurity. An ex-

ample of a "super-random" generator an be found in [45, p.4,

Algorithm K℄.)

The most ommonly used design approah is the system-theoreti

one. Almost all the designs based on linear feedbak shift regis-

ters rank among this ategory (for further details see this Setion

hereafter). However, there are also several stream iphers designed

aording to the omplexity-theoreti approah (e.g. BBS).

Next we introdue several basi building bloks of stream iphers.

Several designs of stream iphers are inluded as examples.

Linear ongruential generator

One of the ommon ways of produing pseudorandom sequenes

(mostly used in modelling and simulation) is the linear ongruential

generator [45℄. It is based on the reurring relation

z

i

= (a:z

i�1

+ b) mod m;

where a; b;m are hosen onstants (integers), an integer

z

0

2 f0; 1; : : : ; (m � 1)g is alled the seed, or the initial loading

of the generator (seret key). A proper hoie of the onstants en-

sures the maximal period of the produed keystream (e.g. when b

and m are relatively prime). It is well known (see e.g. [45℄) that

linear ongruential generator passes many standard statistial tests.

However, there are also tests [9℄, [47℄ that this generator fails.

The output of the linear ongruential generator is easily pre-

ditable, thus it is not suitable for ryptographi appliations.

It was suggested to extrat a given number of most signi�ant

bits from eah item of the sequene z. However, this transformation

does not improve the seurity of this generator signi�antly [46℄.
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It is possible to generalize the onept of a linear ongruential

generator to a polynomial one. Also these generators are not on-

sidered seure [47℄.

Linear feedbak shift register (LFSR)

Linear feedbak shift register L (see Fig. 3.1) represents a teh-

nial (hardware) implementation of a solution of a linear reurring

relation (3.1). It is a ommon basi building blok of keystream

generators.

Figure 3.1: Linear feedbak shift register

Below we show several possible representations of elements of a

linear reurring sequene. Linear reurring sequenes are studied

e.g. in [38℄, [48℄, [57℄.

Theorem 3.3.1 [57℄ Let s

0

; s

1

; s

2

; ::: be a solution of the linear re-

urring relation (3.1) in the �eld GF (q) with a left harateristi

polynomial a(x). If �

1

; �

2

; : : : ; �

m

are mutually di�erent roots of

the polynomial a(x), then s

i

=

P

m

j=1

�

j

�

i

j

, for i = 0; 1; 2; : : : , where

�

1

; �

2

; : : : ; �

m

are the elements of the extension �eld to the GF (q)

for the a(x) polynomial, that are uniquely determined by the initial

values s

0

; s

1

; : : : ; s

m�1

.

De�nition 3.3.2 [57℄ Let � be an element from F = GF (q

m

), that

is an m-th order extension to the �eld K = GF (q). Then the trae

of the element � is de�ned as Tr

F=K

(�) = �+�

q

+�

q

2

+ � � �+�

q

m�1

.
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The trae Tr

F=K

(�) is a linear funtion from the �eld F onto

the �eld K, provided both �elds are understood as a linear (vetor)

spaes over the �eld K.

Theorem 3.3.3 [57℄ Let s

0

; s

1

; s

2

; ::: be a solution to the linear re-

urring relation (3.1) in K = GF (q) with a left harateristi poly-

nomial a(x), that is irreduible over K. Let � be a root of a(x) in the

extension �eld F = GF (q

m

) of the �eld K. Then s

i

= Tr

F=K

(��

i

),

for i = 0; 1; 2; : : : , where � is a uniquely determined element from

F .

This representation of elements of linear reurring relations is

of partiular importane for the analysis of ombination of several

linear reurring relations.

As it was said before, the period of a keystream is a very impor-

tant feature. Thus it is natural to ask how to onstrut an LFSR

to obtain the maximal possible period of the produed keystream.

It is quite easy to see that an m-bit long LFSR an produe only

sequenes with period at most 2

m

� 1.

De�nition 3.3.4 [4℄ A polynomial a(x) 2 GF (2)[X℄, deg a(x) = m

is said to be primitive, if it holds that a(x) divides x

2

m

�1

� 1 and

does not divide any polynomial x

t

� 1, where t < 2

m

� 1.

Theorem 3.3.5 [4, p.350, Theorem 9℄ If the left harateristi poly-

nomial a(x) 2 GF (2)[X℄, deg a(x) = m assoiated with an LFSR

is primitive, then any sequene this LFSR produes from a non-zero

inital loading has period 2

m

� 1. An LFSR with assoiated prim-

itive polynomial is also alled ml-LFSR and sequenes it produes

are alled ml-sequenes.

ml-sequenes are well known due to their nie statistial prop-

erties and they also pass the Golomb randomness postulates (see

Setion 3.2). The distribution of patterns in an ml-sequene is ex-

pressed in the following theorem.

Theorem 3.3.6 [54, p.197,Fat 6.14℄ Let u be an ml-sequene gen-

erated by an ml-LFSR L, that is kLk bits long. Let k be an integer,

1 � k � kLk, and let �u be any subsequene of u of length 2

kLk

+k�2.

Then eah non-zero sequene of length k appers exatly 2

kLk�k

times

as a subsequene of �u. Furthermore, the zero sequene of length k

appears exatly 2

kLk�k

� 1 times as a subsequene of �u.
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It is also possible to assoiate a formal power series s(x) =

s

0

+ s

1

x + s

2

x

2

+ : : : to a binary sequene s = s

0

; s

1

; s

2

; : : : as

its generating funtion. Aording to [4, p.340, Consequene of the

Theorem 5℄ eah solution to the linear reurring relation (3.1) has in

GF (2)[X℄ a generating funtion s(x) =

h(x)

a(x)

, h(x); a(x) 2 GF (2)[X℄,

deg h(x) < deg a(x) and a(x) is the left harateristi polynomial of

the linear reurring relation.

An LFSR annot be used itself as a keystream generator. Its

seurity weakness is the small linear omplexity of the produed

keystream.

J.L.Massey in [51℄ proved that Berlekamp algorithm for deoding

BCH odes is a general solution to the problem of synthesis of the

shortest LFSR that generates a given sequene. Let s = s

0

; s

1

; s

2

; : : :

be a binary sequene and m be its linear omplexity. Then it is pos-

sible to �nd uniquely the shortest LFSR that generates the sequene

s using the Berlekamp-Massey algorithm from 2m onseutive bits

of the sequene s. The omplexity of this algorithm is roughly the

square of the sequene length.

We will desribe several modi�ations of an LFSR that enlarge

the linear omplexity of a produed sequene. These designs an be

found in a large number of lassial stream iphers.

Filtered LFSR

Linear feedbak shift register is in fat a �nite automat. One of

its possible modi�ations is to hange the output funtion. Whereas

the output of a "lassial" LFSR is a single bit of its loading in the

given time, the output of a �ltered LFSR is a value of a Boolean

funtion that takes as input all the bits of the LFSR loading in the

given time. Properties of �ltered LFSRs are studied in [72℄.

Let a sequene s

0

; s

1

; s

2

; ::: be a solution to a linear reurring

relation (3.1) in GF (2) with a left harateristi polynomial a(x).

Further let n � m of the LFSR bits be an input to a �lter funtion

f : Z

n

2

! Z

2

. The �lter funtion must be nonlinear, otherwise it

makes no sense to use it. Let 0 � j

1

< j

2

< : : : j

n

< m be the

indies of these bits. The output of this �ltered LFSR in time i is

z

i

= f(s

i+j

1

; s

i+j

2

; : : : ; s

i+j

n

).

The next two Theorems haraterize the important properties -

period and linear omplexity of a �ltered LFSR.
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Figure 3.2: Filtered LFSR

Theorem 3.3.7 [82℄ Let a(x) be a left harateristi polynomial of

a �ltered LFSR with a non-zero initial loading. If the �lter fun-

tion f is balaned or (2

deg a(x)

� 1 is a prime number and f is

not a onstant funtion), then the period of this �ltered LFSR is

2

deg a(x)

� 1.

Theorem 3.3.8 [72℄ Let a(x) be a primitive left harateristi poly-

nomial of a �ltered LFSR. Let f : Z

n

2

! Z

2

be the �lter funtion.

Then the linear omplexity of the output sequene z, denoted as �(z),

an be upperbounded by:

�(z) �

n

X

i=1

�

deg a(x)

i

�

:

Clok-ontrolled LFSR

Let a sequene s = s

0

; s

1

; s

2

; ::: be a solution to a linear reurring

relation (3.1) in the �eld GF (2) with a left harateristi polynomial

a(x). Let z = z

0

; z

1

; z

2

; ::: be the output sequene from a lok-

ontrolled LFSR.

One of the methods for inreasing the linear omplexity of a

sequene z is to hange the loking of the register. Note, that in

general it will be s

i

6= z

i

. The hange of the loking of an LFSR

also inreases the resistane against the so-alled orrelation attaks

(see Setion 3.5 for further details).

The lok ontrol of an LFSR an be in general understood as

a seletion of elements from its output sequene s driven by the so-

alled (periodi) deimation sequene d = d

0

; d

1

; d

2

; : : : ,

0 � d

i

� 2

deg a(x)

� 2, i = 0; 1; 2; : : : ,
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z

0

= s

0

;

z

i

= s

P

i�1

j=0

d

j

; i = 1; 2; : : : :

LFSR with onstant loking

The simplest ase is the seletion of eah t-th element,

i.e. z

i

= s

it

. The next Theorem haraterizes the important prop-

erties of an LFSR with a onstant loking, namely its period, and

linear omplexity.

Theorem 3.3.9 [72℄ Let s be a linear reurring sequene over GF (q)

with period T and harateristi polynomial a(x), deg a(x) = m, that

is irreduible over GF (q). Let � be a root of a(x). Then the sequene

z

i

= s

it

has the following properties:

� its harateristi polynomial is the minimal polynomial for the

element �

t

,

� its period T

�

=

T

gd(t;T )

,

� its linear omplexity is equal to the multipliative order of q in

Z

T

�

.

Moreover for all t 2 fk; kq; kq

2

; : : : (mod T )g is the output sequene

z the same for a proper hoie of the initial loading.

Self lok-ontrolled LFSR

Rueppel in [73℄ proposed a linear feedbak shift register whih is

self lok-ontrolled.

Let a sequene s = s

0

; s

1

; s

2

; ::: be a solution to a linear reurring

relation (3.1) in GF (2) with a(x) being the left harateristi poly-

nomial. Let z = z

0

; z

1

; z

2

; : : : be the output sequene from the self

lok-ontrolled LFSR. The lok-ontrol works as follows:

� z

0

= s

0

,

� if z

i

= 0 then the register is loked l-times (in other words if

z

i

= s

j

then z

i+1

= s

j+l

),

� if z

i

= 1 then the register is loked k-times,
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where l; k 2 N are arbitrarily hosen onstants. The output sequene

z is also alled an [l; k℄ self-deimated sequene.

If the polynomial a(x) is primitive and the onstants l; k are

properly hosen, it is possible for the sequene z to ahieve uni-

form distribution of patterns and also a maximal period equal to

b(2=3) � (2

deg a(x)

� 1). Performed exhaustive searh experiments

show also a large linear omplexity and an almost �at autoorrela-

tion funtion.

If the onstants l and k are known to the attaker, it is possible

to �nd the initial loading of the register from the sequene z � it

su�es to solve a system of linear equations. Thus a self lok-

ontrolled LFSR is not resistant against the known plaintext attak

(see Setion 3.5). Hene a self lok-ontrolled LFSR should not be

itself a keystream generator. Anyway it an be used as a building

blok for keystream generator.

The lok-ontrol of an LFSR using the output of another LFSR

is studied in [3℄. The generalization of this idea, the so-alled asade

of LFSRs, is studied in [29℄.

Other registers

Up to now we have disussed a linear feedbak shift register and

several of its modi�ations. It is also possible to build a shift reg-

ister with a nonlinear feedbak. However they are not favoured as

building bloks for keystream generators. The main reason is the

insu�ient knowledge about their properties. On the other hand

the not well developed mathematial methods onerning analysis

of nonlinear feedbak shift registers make the ryptanalysis muh

harder. However the designers of keystream generators favour well

known and analyzed building bloks.

Feedbak with arry shift register (FCSR) is another kind of reg-

ister [41℄, [42℄, [15℄. It is based on the theory of 2-adi numbers. It

is known that for any periodi sequene there exists an FCSR that

generates it. The mutual relation between LFSR and FCSR is un-

known up to now [15℄. An upper bound on the period of sequenes

produed by an FCSR has been determined. It is also known how to

hoose the parameters of an FCSR to obtain sequenes with maxi-

mal period. The problem is that a sequene with maximal period is
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not obtained for all the initial loadings of an FCSR (with properly

hosen parameters to obtain sequenes with maximal period) [78℄,

[15℄.

The only published keystream generators (known to me) based

on FCSRs an be found in [78℄. These generators are simple modi�-

ations of the well known keystream generators (usually one or more

LFSRs are substituted by FCSRs). However their seurity is often

an open problem. Cryptanalysis of two suh designs - the parity

and the threshold keystream generators was done in [84℄, [69℄.

Combination of LFSRs

One of the lassial methods of building a keystream generator

is to use several LFSRs and to ombine their outputs using a (non-

linear) ombination funtion. The most simple ase is the XOR of

two linear reurring sequenes. We de�ne also a speial operation -

the bitwise multipliation of sequenes.

De�nition 3.3.10 [57℄ Let s

0

; s

1

; s

2

; : : : and s

0

0

; s

0

1

; s

0

2

; : : : be two

linear reurring sequenes over GF (2) with assoiated left hara-

teristi polynomials a(x) and a

0

(x). We de�ne the sum of these

sequenes s + s

0

to be the sequene s

0

+ s

0

0

; s

1

+ s

0

1

; s

2

+ s

0

2

; : : : ,

where + denotes the addition in GF (2) (in other words XOR). Next

we de�ne the (bitwise) produt of these sequenes s:s

0

to be the se-

quene s

0

:s

0

0

; s

1

:s

0

1

; s

2

:s

0

2

; : : : , where : denotes the multipliation in

GF (2) (in other words AND).

The set of all linear reurring sequenes, generated by a primi-

tive polynomial a(x), is losed with respet to the sum [4, p.351℄.

Moreover it is losed also with respet to the shift and salar multi-

pliation.

Linear omplexity of a sequene produed as a polynomial om-

bination of several (speial) linear reurring sequenes is determined

in the following Theorem.

Theorem 3.3.11 [57℄ Let F be a nonlinear funtion over GF (2),

F (s

(1)

; s

(2)

; : : : ; s

(N)

) =

= u

0

+

P

u

i

s

(i)

+

P

u

ij

s

(i)

s

(j)

+ � � �+ u

12:::N

s

(1)

s

(2)

: : : s

(N)

;

where u

i

; u

ij

; : : : ; u

12:::N

2 GF (2). Let s

(1)

; s

(2)

; : : : ; s

(N)

be linear

reurring sequenes over GF (2) with minimal polynomials m

s

(i)

(x),
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degm

s

(i)

(x) = M

i

. Let us assume that eah polynomial m

s

(i)

has

only simple roots in GF (2

M

i

) n GF (2) and none of the roots is

a salar multiple of another root. Let us further assume that the

degrees of the minimal polynomials are pairwise relatively prime.

Then a sequene z = F (s

(1)

; s

(2)

; : : : ; s

(N)

) has a minimal polyno-

mial m

z

(x) of degree M = F

0

(M

1

;M

2

; : : : ;M

N

). The polynomial F

0

is given by the same expression as the polynomial F , with (integer)

oe�ients u

0

i

; u

0

ij

; : : : ; u

0

12:::N

, that are equal to 0 or 1, respetively

whenever u

i

; u

ij

; : : : ; u

12:::N

are equal or non-equal to zero, respe-

tively. The polynomial F

0

is evaluated in integers and not in the

�eld GF (2). All the roots of the minimal polynomial m

z

(x) are sim-

ple and are from GF (2

m

) nGF (2), where m =

Q

N

i=1

M

i

.

Besides the nonlinearity of a ombination funtion F (see e.g.

[72℄, [57℄), an important role plays also its orrelation immunity (see

e.g. [72℄, [79℄). The orrelation immunity haraterizes the relation

between the output of a funtion and its inputs.

De�nition 3.3.12 [72℄, [30℄ A funtion f : Z

n

2

! Z

2

is said to be

k-th order orrelation immune, 1 � k < n, if I(f(X); Y ) = 0 for

eah k-dimensional subvetor Y of a vetor X, where I(U; V ) =

H(U)�H(U=V ) is the so-alled amount of mutual information be-

tween U and V .

The relation among the order of orrelation immunity, algebrai

order and number of variables of a Boolean funtion is determined

in the next Theorem.

Theorem 3.3.13 [79℄ If a funtion f : Z

n

2

! Z

2

is k-th order

orrelation immune, 1 � k < n, then eah term in its algebrai

normal form must have less than n� k + 1 variables.

Constrution of sequenes with a given orrelation immunity is

studied in [79℄.

NSG: natural sequene generator

A speial lass of keystream generators - the so-alled natural

sequene generators (NSGs) is studied in [15℄. From a design point

of view there is an obvious similarity with a �ltered LFSR. NSG

is based on a ounter and on an output (�lter) funtion. The i-th
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keystream bit z

i

is produed aording to the rule

z

i

= f(i+ k mod N), where f : Z

N

! Z

2

is the output funtion, N

is the period of the keystream and k 2 Z

N

is a seret key.

A quite speial design of an NSG allows the appliation of many

number theoreti results. It an be easily seen that the output fun-

tion plays an important role in the seurity of the NSG. There are

several onstrutions of the output funtion studied in [15℄. It is

important that under the proper hoie of the NSG parameters one

may obtain a keystream generator with high nonlinearity, linear,

weight and sphere omplexity. It is also resistant against the di�er-

ential ryptanalysis. It is interesting that one of the parameters is

the period of the keystream, whih is usually hosen to be a prime

number (sometimes a speial form is required).

Although NSGs may possess many nie properties, they are very

slow (about 4 kB per seond) both in hardware and software. It

is mostly due to the operations that NSGs use: multipliation and

exponentiation are the ommon ones. Thus the pratial usage of

NSGs is rather restrited. One of the possible areas is the key gen-

eration.

Other designs

Some reent stream iphers have been designed for e�ient soft-

ware implementation, and are not based on LFSRs [62℄. Examples

inlude the stream iphers RC4, SEAL, Sream and the NESSIE

submission LEVIATHAN. These iphers are build upon the blok

ipher design ideas. In some ases, they are in fat a blok ipher in

a speial mode of operation (e.g. the BMGL stream ipher, whih

is one of the submissions to NESSIE).

3.4 Examples of stream iphers

There are several hosen stream iphers presented in this Setion.

Ge�e's generator

Ge�e's generator is based on a polynomial ombination of out-

puts from three LFSRs L1, L2 and L3. Let Li(t), i = 1; 2; 3 be

the output from the LFSR Li in time t. The output of the gen-

erator in time t is then z

t

= (L1(t) � 1):L2(t) � L1(t):L3(t). The
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period of the keystream is the least ommon multiple of periods

of sequenes produed by the individual LFSRs. The linear om-

plexity of the keystream (under a proper hoie of LFSR polyno-

mials) an be determined due to the Theorem 3.3.11. Note that

Pr(z

t

= L2(t)) = Pr(z

t

= L3(t)) = 0:75, thus a orrelation attak

is possible to be performed. Hene the Ge�e's generator is inseure.

However it is a nie design for demonstrating divide-and-onquer

and orrelation attaks (see Setion 3.5).

Generator LILI�128

LILI�128 [17℄ is one of the keystream generators submitted to the

NESSIE projet. Its design ombines two priniples - �lter funtion

and lok ontrol. LILI�128 onsists of two nonlinearly �ltered LF-

SRs. The output the �rst register ontrols the loking of the seond

register. The output of the keystream generator is the output from

the seond register. The produed keystream has a large period and

also a large linear omplexity. However there is an attak faster than

exhaustive searh against this generator and that was the reason why

it was not inluded in the NESSIE portfolio of reommended stream

iphers.

BBS: Blum, Blum, Shub generator

BBS is a "number-theoreti" keystream generator designed a-

ording to the omplexity-theoreti approah [7℄. Its seurity is

based on the problem of fatoring integers. An important fat is

that the keystream is unpreditable (neither to the left, nor to the

right).

Algorithm of the BBS keystream generator:

1. Choose primes p and q suh that p 6= q, p � 3 mod 4,

q � 3 mod 4. Calulate n = pq.

2. Choose a random w 2 [1; n � 1℄, suh that gd(w; n) = 1.

Calulate x

0

 w

2

mod n.

3. Keystream z

1

; z

2

; : : : ; z

N

is produed as follows:

x

i

 x

2

i�1

mod n.

z

i

 LSB(x

i

) for i = 1; 2; : : : ; N .

LSB(x

i

) is the least signi�ant bit of a binary representation of

x

i

.
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Due to the operations the BBS uses, it ranks among the slow gen-

erators. Thus its pratial usage as a keystream generator is limited

to appliations, where the enryption speed does not play muh a

role or whih require high seurity. For example, it an be used as

a generator of random values (e.g. keys) for other ryptographi

primitives.

A large number of keystream generators an be found e.g. in [78℄,

[54℄.

3.5 Attaks on stream iphers

The natural requirement on any ryptosystem is its seurity. There

are also other important properties of ryptosystems, suh as e.g.

error propagation, key size, et. (see Kerkho�s's and Shannon's

requirements on ryptosystems in [32, pp.40�41℄).

A well known requirement, formulated by Kerkho�s in the 19-th

entury, is that the seurity of any ryptosystem should be based on

keeping the key seret and not on keeping the entire ryptosystem

seret.

The famous notions of perfet and relative serey of ryptosys-

tems were introdued by Shannon. A perfetly seure ryptosystem

must have the following property: the amount of information about

the plaintext and the key does not inrease when a new iphertext

is obtained.

More formally, H(P;K=C) = H(P;K), where P 2 P, C 2 C,

K 2 K and H is the entropy funtion (see e.g. [32, pp.81�82℄). As-

suming the mutual independeny between the key and the plaintext

one an write H(P;K) = H(P ) + H(K). Cryptosystems that are

not perfetly seure an be only relatively seure.

A ryptosystem is said to be omputationally seure, if it is not

possible to perform an attak against it in a real time with really

available omputing power (number of proessors, amount of mem-

ory and dis storage, et.).

Moreover, Shannon introdued also the notion of ideal serey

1

.

When the uniity distane is in�nite, one speaks about ideal serey.

The uniity distane determines the amount of a iphertext needed

1

An ideally seure ryptosystem does not have to be perfetly seure!
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for �nding the orresponding plaintext uniquely (see [78, pp.235�

236℄).

Basi assumptions for ryptanalysis were formulated by Kerk-

ho�s in the 19-th entury. Aording to them a ryptanalyst has

detailed knowledge about the ryptosystem, inluding all the details

about the algorithm and also about its tehnial implementation. If

the ryptanalyst, having this knowledge, is not able to break the

ryptosystem, it is reasonable to assume that an attaker will not

be able to break this ryptosystem without this knowledge.

The goal of an attak on a ryptosystem might be to �nd the

deryption key, the plaintext, et. Knudsen lassi�ed the following

four ategories of breaking an algorithm [43℄:

total break. An attaker �nds the deryption key.

global dedution. An attaker �nds an algorithm for derypting

the iphertext without knowing the deryption key.

instane (or loal) dedution. An attaker �nds the plaintext of

an interepted iphertext.

information dedution. An attaker gains some information about

the key or plaintext.

Attaks an be further subdivided into the following ategories

aording the amount of information an attaker has:

iphertext-only attak. An attaker knows only a iphertext

C 2 C.

known plaintext attak. An attaker is given a plaintext P 2 P

and the orresponding iphertext C 2 C, C = e

k

e

(P ) or several

plaintext-iphertext pairs.

hosen plaintext attak. An attaker an hoose a set of plain-

texts and obtain the orresponding iphertexts.

Further details onerning the above mentioned attaks, inlud-

ing some other attaks, an be found in [78, pp.5�7℄.

It annot be said that there is a standard set of attaks on a

stream ipher as it is for a blok ipher (di�erential and linear

ryptanalysis, related keys attak, et.). Neither there are no suh

important results relating the seurity of a stream ipher to some
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of its onstrution parameters as there is for a blok ipher (e.g.

the relation between the number of rounds and resistane against

di�erential ryptanalysis or the notion of provable seurity against

the di�erential and linear ryptanalysis, see e.g. the blok ipher

MISTY and the papers by M.Matsui). The attaks against stream

iphers usually exploit some spei� weakness of the design.

In the following, we try to point out some general and most om-

mon attaks against stream iphers.

Brute-fore attak

Any relatively seure ryptosystem is vulnerable to a brute-fore

attak (sometimes also alled exhaustive searh). The idea behind

this attak is simply to try all the keys. For eah key a iphertext

is derypted and the obtained plaintext is heked whether it is the

"right" one. Usually some assumptions about the plaintext must

be done, e.g. a language it is written in is known, whih enables to

searh for words, or possibly some struture a plaintext message has

is known, whih might be the ase of database reords. Thus it is

natural to require any ryptosystem to have a large keyspae and a

�at probability distribution.

Divide-and-onquer attak

The idea of a divide-and-onquer attak is to divide the key into

parts (not neessarily disjoint), perform attaks to gain these parts,

put them together and onquer. Assume a keystream generator that

onsists of several LFSRs. Let the initial loadings of these LFSRs

be the key. The divide-and-onquer strategy is to perform attaks

against the individual LFSRs (see e.g. orrelation attaks in this

Setion hereafter).

This attak is usually ombined with other attaks or tehniques.

One of them is a guess-and-hek tehnique. It is very ommon

in the ontext of known (or hosen) plaintext attak. The idea

is to divide the key into parts, hoose some of them, alulate the

remaining parts of the key and �nally hek the key, e.g. whether the

obtained key produes the keystream an attaker has. A pratial

example of this approah is the attak on the stream ipher ORYX

[94℄.
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Time-memory tradeo� attak

The time-memory tradeo� on a stream ipher is in general an

adaptation of the time-memory tradeo� developed by Hellman for

blok iphers. Suh attaks an be applied to almost any ryptosys-

tem, but they are feasible only when the number of internal states

is relatively small. The basi idea of the time-memory tradeo� is

to keep a large set A of preomputed states on a hard disk, and

to onsider the large set B of states through whih the algorithm

progresses during the atual generation of output bits. Any inter-

setion between A and B will enable us to identify an atual state

of the algorithm from the stored information [5℄.

Time-memory tradeo� is one of the basi ideas of attaks [5℄, [6℄,

[28℄ on the stream ipher A5/1 whih is used in GSM.

Correlation attaks

Correlation attaks are studied mostly in onnetion to LFSRs.

Let us have a keystream generator, whih ontains an LFSR as one

of its building bloks. Let s = s

0

; s

1

; : : : ; s

N�1

be the (unknown) out-

put of this LFSR. Assume, the keystream bits z = z

0

; z

1

; : : : ; z

N�1

and the value p = Pr(z

i

= s

i

) > 1=2 are known (a textbook exam-

ple is the Ge�e's generator, see Setion 3.3). The idea behind the

orrelation attaks is to exploit the oinidene between the known

keystream and the unknown output of the LFSR to �nd the initial

loading of this LFSR.

Siegenthaler's orrelation attak

The �rst published orrelation attak [80℄ is based on an exhaus-

tive searh. The output of an attaked LFSR is produed for eah

of its possible initial loadings. The real oinidene between the

known keystream and eah of the produed output sequenes from

the LFSR is determined. The initial loading for whih the di�erene

between the real and theoretial oinidene is the smallest one, is

the best andidate to be the key. This attak is infeasible when a

su�iently long LFSR (nowadays about 80 bits) is used.
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Meier's-Sta�elbah's fast orrelation attaks

Meier's-Sta�elbah's fast orrelation attaks (algorithms A and

B) [53℄ rank among the �rst fast orrelation attaks that are not

based on an exhaustive searh in the keyspae. (Algorithm A is

mentioned also in [30℄, where the desription of several other attaks

an be found.)

Reall that the sequene s is a solution to a linear reurring se-

quene given by a left harateristi polynomial a(x), deg a(x) = m.

Let (t + 1) be the number of non-zero oe�ients of a(x). Eah

bit s

i

of the sequene s (exept several bits at the borders) may be

written in the linear reurring relation at t + 1 positions. In other

words, t + 1 relations may be written for eah bit of s using the

linear reurring relation. Reall that a(x)

j

= a(x

j

), i = 0; 1; 2; : : :

holds for j = 2

i

(in �elds of harateristi 2). This yields another

relations. All these relations are also alled the parity heks. Let us

substitute the individual bits from the seqeune s in parity heks

by the orresponding bits from z. Not neessarily all of them will

hold (or will be valid). This leads us to the idea of an iterative

orrelation attak, whih an be informally desribed as follows:

1. �nd a set of (linearly independent) parity heks for eah bit

in the sequene z,

2. aording to the number of parity heks that hold, deide

whether s

i

= z

i

or s

i

6= z

i

,

3. if all the parity heks hold, stop the algorithm,

4. alter the bits in the sequene z for whih the deision was

s

i

6= z

i

and go to the step 2.

For further analysis we introdue a statistial model based on the

set of (linearly independent) parity heks [53℄

S � B

i1

� B

i2

� � � � �B

it

= 0; i = 1; 2; : : : ; o;

where S is a random variable orresponding to s

n

, B

ij

are random

variables orresponding to those bits from s that appear in the i-th

parity hek for s

n

. The average number of parity heks o for one

bit will be disussed later.

Similarly for the keystream sequene:

L

i

= Z � Y

i1

� Y

i2

� � � � � Y

it

; i = 1; 2; : : : ; o:
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Let us assume that the used random variables are mutually inde-

pendent and uniformly distributed. It follows that

Pr(Z = S) = Pr(B

ij

= Y

ij

) = p;

Pr(

t

M

j=1

Y

ij

=

t

M

j=1

B

ij

) = f(p; t);

f(p; t) = pf(p; t� 1) + (1� p)(1� f(p; t� 1));

f(p; 1) = p:

Sometimes for simpliity we write only f instead of f(p; t).

The probability that z

i

= s

i

provided h of o parity heks hold

(this ondition is here denoted as ond:) is then

p

�

= Pr(z

i

= s

i

=ond:) =

=

pf(p;t)

h

(1�f(p;t))

o�h

pf(p;t)

h

(1�f(p;t))

o�h

+(1�p)(1�f(p;t))

h

f(p;t)

o�h

:

An average number of parity heks o for a single bit is

o = o(N;m; t) � log

2

(N=(2m))(t+ 1):

The probability that at least h of o parity heks hold for a hosen

bit z

i

is given by the following relation:

Q(p; o; h) =

o

X

i=h

�

o

i

�

pf

i

(1� f)

o�i

+ (1� p)(1� f)

i

f

o�i

:

Algorithm B

This algorithm is based on an iterative modi�ation of the key-

stream sequene z, whih yields the sequene s. The onvergene

of this proess as well as the orretness of the solution is not guar-

anteed! However this attak works usually �ne even when there are

some linear dependenies in the set of the parity heks [10℄.

The probability that at most h of o parity heks hold for z

i

is

U(p; o; h) =

h

X

i=0

�

o

i

�

pf

i

(1� f)

o�i

+ (1� p)(1� f)

i

f

o�i

:

Thus U(p; o; h)N is then the average number of bits that will be

altered.
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The probability that z

i

= s

i

and at most h of o parity heks

hold for z

i

is

V (p; o; h) =

h

X

i=0

�

o

i

�

pf

i

(1� f)

o�i

and the probability that z

i

6= s

i

and at most h of o parity heks

hold for z

i

is

W (p; o; h) =

h

X

i=0

�

o

i

�

(1� p)(1� f)

i

f

o�i

:

I(p; o; h)N = (W (p; o; h)� V (p; o; h))N is then the inrease of or-

retly altered bits.

The algorithm works as follows:

1. Calulate o and �nd the value h (denoted as h

max

) for whih

I(p; o; h) is maximal.

2. Calulate the threshold probability p

thr

= (1=2)(p

�

(p; o; h

max

)+

p

�

(p; o; h

max

+ 1)) and the expeted number of bits for whih

their p

�

< p

thr

using the relationN

thr

= U(p; o; h

max

)N . Choose

 - the maximal number of iterations in one round. (Aording

to the performed experiments in [10℄, the best hoie is  = 2.)

3. Set the iteration ounter; I = 0.

4. Calulate a new p

�

for eah bit of the analyzed sequene z.

(These probabilities are stored and used in iterations when

I > 0 in the relations for f(p; t) whih will be hanged into

f(p

�

1

; p

�

2

; : : : ; p

�

t

; t), see [53℄ for details.)

5. The algorithm terminates if all the parity heks hold. The

obtained modi�ed sequene z is the output from the attaked

LFSR and its starting bits form its initial loading.

6. Determine N

w

whih is the number of bits in z with their p

�

<

p

thr

. If (N

w

� N

thr

or I = ) then alter those bits z

i

, for whih

their p

�

< p

thr

, forget the stored values p

�

for all the bits in z

(i.e. assume again that Pr(z

i

= s

i

) = p) and go to the step 3.

7. I = I + 1. Go to the step 4.
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This attak is feasible when a sparse harateristi polynomial is

used, i.e. t � 10. The length of the LFSR an be up to 1 000. (The

largest suesfully attaked LFSR known to me was 9 689 bits long,

t = 2, p = 0:75, N = 700 000, see [10℄ for details.) Algorithm B

works also when p is lose to 1=2, e.g. for values 0:55.

The following parameters in�uene the suess of this algorithm:

p, t, N=m. The estimates of omplexity of this algorithm based on

the values of the above mentioned parameters an be found in [53℄.

Comparison of hosen iterative orrelation attaks

A omparison of several iterative orrelation attaks based on a

number of experimental attaks an be found in [56℄. A large number

of experimental results on various iterative orrelation attaks an

be found also in [10℄. These attaks an be subdivided into the

following three ategories:

1. alternation of bits in the keystream z is based on the number

of satis�ed parity heks (e.g. linear syndrome attak [95℄, see

also an improved version in [96℄),

2. alternation of bits in the keystream z is based on the esti-

matation of the relevant àposterior probabilities (i.e. Pr(z

i

=

s

i

=ond:)) obtained by using the average àposterior probability

estimated in the previous iteration as the prior probability (i.e.

Pr(z

i

= s

i

)) in the urrent iteration (e.g. simpli�ed algorithm

from [55℄),

3. alternation of bits in the keystream z is based on the esti-

matation of the relevant àposterior probabilities (i.e. Pr(z

i

=

s

i

=ond:)) obtained by using the àposterior probabilities esti-

mated in the previous iteration as the prior probabilities (i.e.

Pr(z

i

= s

i

)) in the urrent iteration (e.g. simpli�ed algorithm

B from [53℄, see also this Setion above).

Attaks based on these priniples were tested on a 10 000-bits

long keystream, produed by an LFSR with assoiated left har-

ateristi polynomial 1 + x

5

+ x

47

, probabilities Pr(z

i

= s

i

) were

p

1

= 0:6, p

2

= 0:575, p

3

= 0:565. Algorithm based on the 1st

priniple sueeded in reonstrution of the output from the LFSR

only for p

1

. Algorithm that worked aording to the 2nd priniple

was suessful both for p

1

and p

2

. Finally, the algorithm based on
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the 3rd priniple sueeded in reonstrution of the output from the

LFSR for all studied probabilities.

Based on the results from the experimental analysis of iterative

orrelation attaks, the authors in [56℄ suggest to use algorithms,

based on the 1st or on the 2nd priniple, for high probabilities

Pr(z

i

= s

i

). The main reasons are the higher speed of the algo-

rithms and lower implementation osts. The algorithms based on

the 3rd priniple are suitable for probabilities Pr(z

i

= s

i

) lose to

1=2. However, it was suggested to perform only �rst few rounds of

this algorithm and then to use algorithms based on the 1st or on

the 2nd priniple. Suh a ooperative attak strategy was experi-

mentally studied in [10℄.

In order to attain resistane against the desribed orrelation

attaks, sparse harateristi polynomials should be avoided and

the probability that s

i

= z

i

should be as lose as possible to 1=2.

The impat of parity heks used in iterative orrelation attaks

was studied in [12℄. Most appropriate ones are the parity heks

with a small number of elements, preferably 4 or 5.

New orrelation attaks [35℄, [37℄, [36℄ are appliable even though

a dense harateristi polynomial is used and the probability of o-

inidene is very lose to 1=2.

A orrelation attak against a nonlinearly �ltered LFSR was

studied in [81℄, [77℄. The idea behind this attak is to onstrut

an equivalent keystream generator that is in fat a polynomial om-

bination of several idential LFSRs. The attak does not require the

knowledge of the �lter funtion. However it is based on an exhaus-

tive searh through the all initial loadings of the attaked LFSR,

whih makes it infeasible for a su�iently large LFSR.

Other attaks

There is no known fast orrelation attak on a lok-ontrolled

LFSR. This ase is in general very ompliated. However there

were obtained some results when the deimation sequene has some

speial properties, see e.g. [97℄ (the omplexity of this attak is

exponential with respet to the length of the LFSR).
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The di�erential ryptanalysis [15℄ is appliable on stream ip-

hers, too. This attak was studied mostly in onnetion to natural

sequene generators (see Setion 3.3 or [15℄).

In past years there appeared the so alled distinguishing attaks

(e.g. against the stream ipher SEAL). Their objetive is to dis-

prove the assumption about the randomness of the keystream by

distinguishing this keystream from a truly random sequene. Reall

that there are also generi distinguishing attaks on blok iphers in

OFB and Counter Mode. For a blok ipher with blok size m, 2

m=2

bloks of a keystream are su�ient to distinguish this keystream

from a truly random sequene. This is ahieved by looking for re-

peated ourrenes of bloks, whih are not possible when the stream

is generated by a blok ipher in OFB or Counter Mode (unless the

sequene has started to repeat itself) [62℄.

3.6 Hash funtions

Hash funtions ompress a string of an arbitrary length to a string

of a �xed length. They have a large number of appliations in om-

puter siene (optimized/fast aess to the stored data), and as well

in ryptography (integrity protetion of stored/transmitted data).

However hash funtions used in ryptographi appliations may need

to meet stronger requirements than those for other appliations.

Probably the best publiation that deals with hash funtions is [61℄.

Aording to the number of inputs one an subdivide hash fun-

tions into two lasses [63℄:

� one input (a message to be hashed). These are alled Manipu-

lation Detetion Codes (MDCs), sometimes also ryptographi

hash funtions or just only hash funtions.

� two inputs (a message to be hashed and a key). If the key is kept

seret one alls them Message Authentiation Codes (MACs).

If the key is publi one alls them Universal One-Way Hash

Funtions (UOWHFs).

Next we give an informal basi de�nition of a hash funtion and

of a ollision resistant hash funtion.
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De�nition 3.6.1 ([63℄, informal) A one-way hash funtion is a

funtion h : f0; 1g

�

! f0; 1g

m

, where f0; 1g

�

is the set of all �nite

binary strings and m is a given integer

2

, satisfying the following

onditions:

1. the hash funtion must be one way in the sense that given a y in

the image of h, it is "hard" (i.e. omputationally infeasible in

a real time) to �nd a message x suh that h(x) = y (preimage

resistant);

2. given an x in the domain of h and h(x), it is "hard" to �nd

a message x

0

6= x, suh that h(x

0

) = h(x) (seond preimage

resistant).

De�nition 3.6.2 ([63℄, informal) A ollision resistant hash fun-

tion is a one-way hash funtion h : f0; 1g

�

! f0; 1g

m

for whih it is

"hard" to �nd two distint messages x; x

0

, suh that h(x) = h(x

0

).

Clearly, both De�nitions given above an be extended for any

alphabet Q.

However, only a few known results follow from ollision resistane

[1℄. One of the most important ones is that this property is preserved

under haining [16℄. In order to prove some seurity results for

pratial systems, one is usually fored to use other de�nitions, e.g.

suh as Okamoto's orrelation free one-way hash funtions.

De�nition 3.6.3 ([1℄, informal) A funtion h : f0; 1g

�

! f0; 1g

m

is orrelation free, if it is omputationally infeasible to �nd X; Y 2

f0; 1g

�

, suh that the Hamming weight of h(X)� h(Y ) is less than

one would expet to get from random hane if we alulated h(M)

for a lot of M 2 f0; 1g

�

.

Intuitively, this de�nition means that as well as having no olli-

sions, we get no near misses either.

3.7 Design of hash funtions

Most known hash funtions are based on a ompression funtion

with �xed size inputs [63℄. Computation of the hash value an be

desribed as follows:

2

Nowadays ommonly used values for m are 128, 160, 196, 256.
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� A message to be hashed x is divided into bloks x

1

; x

2

; : : : ; x

t

of a �xed size. If the last blok is shorter, it is padded using a

padding rule to have a proper length.

� The hash value h(x) is omputed in an iterative way using the

ompression funtion f :

H

0

= IV , H

i

= f(x

i

; H

i�1

), i = 1; 2; : : : ; t,

h(x) = g(H

t

).

Here the IV is a given initial vetor and g is the output funtion

whih is in many ases the identity funtion.

Both, IV and the padding rule, signi�antly a�et the seurity

of the hash funtion. IV is reommended to be a part of the hash

funtion desription. The padding rule should be designed in suh

a way that there do not exist two messages that will be padded to

the same padded message.

A general model for MACs is similar to the previously desribed

model for MDCs.

Aording to the onstrution of a ompression funtion, hash

funtion an be subdivided into the following ategories:

MDCs based on a blok ipher. An obvious motivation for suh

a onstrution is to adopt the knownledge on blok iphers due

to the similarities between an iterative hash funtion and a

blok ipher. Moreover, it enables to reuse existing optimized

designs and implementations whih yields in the ost redu-

tion of ryptographi hardware. Blok iphers are fast enough

to provide su�ient speed for hashing. However, ustom de-

signed hash funtions are usually muh faster (realize that hash

funtions based on blok iphers require a key hange after ev-

ery enryption). One might naturally believe that the seurity

of a blok ipher will be handed over to the derived hash fun-

tion. On the other hand, some weaknesses may appear due to

the spei� usage of a blok ipher.

Various subategories may be identi�ed aording to the rela-

tion among the hash value length, the key size, and the blok

size (see [63℄ for a detailed information).

MDCs based on algebrai strutures and mathematial

problems. These hash funtions are based on known di�ult
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mathematial problems, usually from number theory. This al-

lows in many ases to prove seurity properties of a onstruted

hash funtion. The another design approah is to use opera-

tions from various algebrai strutures. One of the main rea-

sons for suh an approah is the hardware reusability (e.g. mod-

ular arithmeti in RSA), sine hash funtions are typially used

with signature shemes. See [63℄ for more detailed information.

There were some designs also based on quasigroups published

in reent years, e.g. [27℄, [50℄, [21℄, [22℄ (ryptanalysis of the

last two designs an be found in Setion 4.4). Finally, MAC

based on a quasigroup an be found in [2℄.

Custom designed MDCs. This ategory overs the designs that

are espeially oriented on hashing. A ommon way is to use the

so-alled Davies-Meyer approah: the ompression funtion is

a blok ipher, keyed by the text input x

i

; the plaintext is the

value H

i�1

, whih is also added to the iphertext (feedforward)

[63℄. It must be said that almost all hash funtions used in

pratie rank into this ategory.

Examples of ustom designed hash funtions are the well known

algorithms suh as MD4, MD5 designed by Rivest. A pratial

attak against the MD4 an be found in [20℄. Several problems

onerning ollision resistane in MD5 were shown in [8℄, how-

ever they do not represent a real threat (see e.g. the evaluation

of MD5 in the CRYPTREC Projet). Many hash funtion de-

signs were inspired by the MD4 hash funtion. We also speak

about the MDx-family [63℄. Another very popular hash fun-

tion is SHA-1. It is an improved version of MD4, designed by

NIST [25℄ (a newer version with 256, 384 and 512-bit hash value

length is nowadays prepared). The "European" hash funtion,

designed by Dobbertin et al. [19℄, is the RIPEMD-160. It is

based on the design of MD4, too. We reall that SHA-1 and

RIPEMD-160 are the only reommended hash funtions in the

Order of the National Seurity Authority of the Slovak Re-

publi pursuant to the Eletroni Signature Law [60℄. A large

number of MDCs and MACs an be found also in [78℄, [54℄.

Although almost all the pratially used hash funtions rank into

the ategory of ustom designs, a lot of work has been done in

the area of the design of MDCs based on blok iphers and also
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on mathematial problems and algebrai strutures. The study of

these onstrutions helps us to better understand hash funtion as

a ryptographi primitive.

3.8 Attaks on hash funtions

In the following we present a taxonomy of attaks against MDCs,

as it was desribed in [63℄.

Attaks independent of the algorithm

These attaks depend only on the size of the hash result (m bits)

and do not exploit spei� features of the hash algorithm.

Random (2nd) preimage attak. The attaker selets a random

message and hopes that the given hash result will be hit. If

the hash funtion has the required "random" behaviour, his

probability of suess equals 1=2

m

, where m is the number of

bits of the hash result. In order to guarantee seurity for the

next 15-20 years

3

, m should be at least 80.

Birthday attak. The attaker generates r

1

variations on a bogus

message and r

2

variations on a genuine message. The expeted

number of ollisions equals r

1

r

2

=m. The probability of �nding

a bogus message and a genuine message that hash to the same

result is given by 1� exp(�r

1

r

2

=2

m

), whih is about 63% when

r

1

= r

2

= 2

m=2

. Referenes to several triks that an be used

to improve this attak in pratie an be found in [63℄.

Attaks dependent on the haining

Meet-in-the-middle attak. This attak is a variation on the

birthday attak, but instead of omparing the hash result, one

ompares intermediate haining variables. The attak enables

an attaker to onstrut a (2nd) preimage, whih is not pos-

sible for a simple birthday attak. The opponent generates r

1

3

One has to realize that, aording to the famous Moore's law, the speed of omputers is

multiplied by four every three years
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variations on the �rst part of a bogus message and r

2

varia-

tions on the last part. Starting from the initial value and going

bakwards from the hash result, the probability for a mathing

intermediate variable is again 1 � exp(�r

1

r

2

=2

m

). The only

restrition that applies to the meeting point is that it annot

be the �rst or last value of the haining variable.

Fixed point attak. The idea of this attak is to look for an H

i�1

and x

i

suh that f(x

i

; H

i�1

) = H

i�1

. If the haining variable

is equal to H

i�1

, it is possible to insert an arbitrary number

of bloks equal to x

i

without modifying the hash result. Of

ourse this attak an be extended to �xed points that our

after more than one iteration.

3.9 Projets NESSIE and CRYPTREC

NESSIE

New European Shemes for Signatures, Integrity and Enryption

(NESSIE) was a 3-year researh projet within the Information So-

ieties Tehnology (IST) Programme of the European Commission

under the umbrella of the Fifth Framework Programme (FP5) [68℄,

[64℄.

The main objetive of the projet was to put forward a portfolio

of strong ryptographi primitives that had been obtained after an

open all and had been evaluated using a transparent and open pro-

ess. The projet goal is to widely disseminate the projet results

and to build onsensus based on these results using the appropri-

ate fora (a projet industry board, 5th Framework programme, and

various standardization bodies). A �nal objetive is to maintain

the strong position of European researh while strengthening the

position of European industry in ryptography [68℄.

The projet launhed an open all (Marh 2000) for a broad set

of primitives providing on�dentiality, data integrity, and authenti-

ation. These primitives inlude blok iphers, stream iphers, hash

funtions, MAC algorithms, digital signature shemes, and publi-

key enryption shemes. In addition, the NESSIE all asked also for

evaluation methodologies for these primitives. The all also spei�ed
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the main seletion riteria: long-term seurity, market requirements,

e�ieny and �exibility.

As it an be seen, the sope of the NESSIE all was muh wider

than that of the AES all launhed by NIST [58℄, whih was re-

strited to 128-bit blok iphers. It is omparable to that of the

RACE Projet RIPE (RACE Integrity Primitives Evaluation, 1988-

1992) [70℄ (on�dentiality algorithms were exluded from RIPE for

politial reasons) and that of the Japanese CRYPTREC projet

(whih also inludes key establishment protools and pseudo-random

number generation) [65℄.

Another di�erene is that both AES [58℄ and CRYPTREC [65℄

intend to produe algorithms for government standards. The re-

sults of NESSIE will not be adopted by any government or by the

European ommission. However, the intention is that relevant stan-

dardization bodies will adopt these results.

There were all together 40 submissions to the NESSIE Projet.

Of ourse, there was an evaluation methodology (both for seu-

rity and performane evaluation) and a software toolbox to support

the evaluation (an improved version of the tools developed by the

RIPE, but it is not publily available) developed within the NESSIE

projet.

Due to the sope of this dissertation, we will mention only stream

iphers, hash funtions and MACs.

The following synhronous stream iphers were evaluated: BMGL,

Leviathan, LILI�128, SNOW, SOBER-t16, and SOBER-t32.

The portfolio of suggested stream iphers was empty!

The NESSIE portfolio of ollision-resistant hash funtions in-

ludes Whirpool, SHA-256, SHA-384, and SHA-512.

The NESSIE portfolio of MACs inludes UMAC, TTMAC, EMAC,

and HMAC.

See materials (e.g. �nal deision) in [68℄ for the explanation.

The relevant primitives from the NESSIE portfolia were sug-

gested to be inorporated into e.g. ISO/IEC JTC 1/SC 27, IS

10118-3, ISO 18033.

A new projet ECRYPT - European Network of Exellene in

Cryptology started within the Information Soieties Tehnology

(IST) Programme of the European Commission under the umbrella

of the Sixth Framework Programme (FP6) only a few months ago

[67℄.
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CRYPTREC

CRYPTREC is a projet of the Japanese Information-Tehnology

Promotion Ageny (IPA). Its main objetive is to prepare a list

of ryptographi primitives and tehniques available for use by the

e-Government [65℄. (Japan's e-Government projet was set for in-

auguration by �sal year 2003.)

The projet launhed an open all (June and July 2000) for a

broad set of primitives. The ategories were publi-key ryptosys-

tems, symmetri iphers (stream iphers, 64- and 128-bit blok i-

phers), hash funtions and pseudo-random number generators. Be-

sides the submitted algorithms also a large number of non-submitted

algorithms were evaluated. Due to the national harater of this

projet (e-Government), the evaluators were only from Japan.

These stream iphers were evaluated in the CRYPTREC projet:

MULTI-S01, TOYOCRYPT-HS1, C4-1, FSAngo, MUGI, and RC4.

Among them, MUGI, MULTI-S01, and RC4 were evaluated as "pra-

tially seure" and are the reommended ones (see [39℄ for further

details).

The following hash funtions were evaluated in the CRYPTREC

projet: MD5, RIPEMD-160, SHA-1, and draft SHA-256, 384, 512.

All of them, exept MD5, were evaluated as "pratially seure" and

are the reommended ones (see [39℄ for further details).

The �nal deision about other reommended ryptographi prim-

itives an be found in [66℄.
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Chapter 4

Results

The following results of the researh are presented in this setion:

� Cryptographi properties of the onatenation of periods of sev-

eral ml-pseudorandom sequenes are studied in Setion 4.1.

This setion is based on [87℄, [88℄.

� Setion 4.2 deals with ryptanalysis of one stream ipher based

on the onatenation of transformed runs of two ml-sequenes.

It is based on [85℄, [86℄.

� Several attaks on one stream ipher based on a quasigroup

(proposed in [59℄) are desribed in Setion 4.3. Main results of

this setion were published in [90℄, [91℄.

� The properties of one hash funtion based on a quasigroup

(proposed in [21℄, [22℄) are studied in Setion 4.4. This setion

is based on the papers [92℄, [93℄.

4.1 A new onstrution of a ompletely equidis-

tributed sequene

In the following we introdue neessary notions onerning om-

pletely equidistributed sequenes (for more details see [44℄, [45℄).

De�nition 4.1.1 b-ary sequeneX

1

; X

2

; X

3

; : : : is alled k-distribu-

ted, if Pr(X

n+1

= a

1

; X

n+2

= a

2

; : : : ; X

n+k

= a

k

) = 1=b

k

, for all

ordered k-tuples (a

1

; a

2

; : : : ; a

k

), a

i

2 f0; 1; : : : ; b � 1g. A sequene

is alled ompletely equidistributed, if it is k-distributed for all k.
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A simple onstrution of a k-distributed b-ary sequene (k 2 N ,

k � 2) was proposed by Ford [26℄. Choose X

1

= X

2

= � � � = X

k

= 0

and then hoose X

n+k

for 0 < n � b

k

aording to the following rule:

X

n+k

= 0 if and only if all k-tuples (X

n+1

; X

n+2

; : : : ; X

n+k�1

; j) have

already appeared in the sequene for 1 � j < b.

For example, if b = k = 3, and if we hoose X

n+k

to be the small-

est value onsistent with the above rule, we obtain

00011121101221201021002220200.

Now let A(b; k) be the �nite k-distributed b-ary sequene onsist-

ing of its �rst b

k

terms, with eah term divided by b. Thus, eah

element of A(b; k) is a real number in [0; 1). Further, let A(b; k)

n

denote the sequene A(b; k) repeated n times.

The �rst onstrution of a ompletely equidistributed sequene is

known due to Knuth (see [44℄) and is shown in the following theorem.

Theorem 4.1.2 The sequene of real numbers

A(2; 1)

1:2

2

; A(2

2

; 2)

2:2

4

; A(2

3

; 3)

3:2

6

; : : :

is ompletely equidistributed.

We found that although Ford's and Knuth's sequenes have uni-

form distribution of patterns, they posses several weaknesses (see

[87℄ for details). Ford's k-distributed b-ary sequene appears to

be vulnerable to di�erential ryptanalysis. It has a non-�at dis-

tribution of di�erene parameters (see [15℄) with distanes between

peaks equal to k. Similar weaknesses appear in (a �nite part of)

Knuth's ompletely equidistributed sequene, too. From a prati-

al point of view both sequenes are di�ult to be produed by

a hardware-designed generator whih makes them improper for a

usage in real-world appliations. The Knuth's onstrution of a

ompletely equidistributed real-valued sequene leads to an in�nite

sequene and is based on the onatenation of an in�nite number of

k-distributed b-ary sequenes.

These nie statistial properties of ompletely equidistributed se-

quenes motivated us to �nd another (more pratial) onstrution

of suh a sequene. Sine in omputer-world we have to deal with

�nite sequenes only, we turn our attention to some �nite part of a

newly onstruted sequene.

The new onstrution of a ompletely equidistributed real val-

ued sequene is based on the onatenation of ml-sequenes. ml-
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sequenes are almost k-distributed, only the all-zero k-tuple is miss-

ing in one period of this sequene. Proofs of the next results of this

setion are published in [88℄.

Theorem 4.1.3 Let p be a prime, l an integer, and b = p

l

. Further,

let ML

0

(b; k) be a �nite b-ary ml-sequene onsisting of the �rst

b

k

� 1 terms, generated by some primitive polynomial over GF (b).

Let ML(b; k) be onstruted from ML

0

(b; k) by dividing eah term

by b. Real valued sequene

ML(2; 1)

1:2

2

;ML(2

2

; 2)

2:2

4

;ML(2

3

; 3)

3:2

6

; : : :

is ompletely equidistributed.

Sketh of the proof: The proof is similar to the proof of Theorem 3

in [44℄. The missing k-tuple in the ml-sequene is ignored just as the

e�ets that appear at the borders of the onatenated sequenes. �

If we onsider a deterministi hardware prodution of suh a pseu-

dorandom sequene we are onstrained on building only (ultimately)

periodi sequenes onsisting of terms from some �nite set.

Thus we may use only a part of the above de�ned sequene.

Moreover, we need to transform the terms of ML

0

(b; k) sequenes,

e.g. into GF (2).

Beause of the pratial point of view we studied the loal prop-

erties, namely the onatenation of two (or more)ml-sequenes over

GF (2). Our analysis, using extensive omputer simulations, showed

that the onatenation of two ml-sequenes possesses a large linear

omplexity and moderate "out-of-phase" autoorrelation funtion

magnitudes. Moreover, we found the period of suh a sequene.

Theorem 4.1.4 Let u = u

0

; u

1

; : : : ; u

2

deg 

1

(x)

�2

, and v = v

0

; v

1

; : : : ;

v

2

deg 

2

(x)

�2

be one period of a sequene produed by primitive polyno-

mial 

1

(x), and 

2

(x) 2 GF (2)[X℄, respetively, deg 

1

(x);

deg 

2

(x) > 1, deg 

1

(x) 6= deg 

2

(x), deg 

1

(x) 6= 2 and

deg 

2

(x) 6= 3, and vie versa. Then the period of a sequene

u; v; u; v; : : : produed by onatenation of sequenes u and v is equal

to (2

deg 

1

(x)

� 1) + (2

deg 

2

(x)

� 1).

Proof: Assume that the period d of the sequene is one of the non-

trivial divisors of (2

deg 

1

(x)

� 1) + (2

deg 

2

(x)

� 1).
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Let MAX = maxfdeg 

1

(x); deg 

2

(x)g. It follows from the pattern

distribution property of a ml-sequene that

2

MAX

� 1�MAX < d � (2

deg 

1

(x)

� 1 + 2

deg 

2

(x)

� 1)=2. This in-

equality is a ontradition. In the speial ase, where deg 

1

(x) = 2,

deg 

2

(x) = 3, the possible periods are d = 5 and d = 10. In all other

ases the period of a sequene is d = (2

deg 

1

(x)

� 1) + (2

deg 

2

(x)

� 1).

�

This theorem an be generalized as follows:

Theorem 4.1.5 Let u

1

= u

1

0

; u

1

1

; : : : ; u

1

2

deg 

1

(x)

�2

, u

2

= u

2

0

; u

2

1

; : : :

u

2

2

deg 

2

(x)

�2

, : : : , u

n

= u

n

0

; u

n

1

; : : : ; u

n

2

deg 

n

(x)

�2

be one period of a se-

quene produed by primitive polynomials 

1

(x); 

2

(x); : : : ;



n

(x) 2 GF (2)[X℄, 3 < deg 

1

(x) < deg 

2

(x) < � � � < deg 

n

(x)

or deg 

1

(x) > deg 

2

(x) > � � � > deg 

n

(x) > 3. Then the period

of a sequene u

1

; u

2

; : : : ; u

n

; u

1

; u

2

; : : : ; u

n

; : : : produed by onate-

nation of sequenes u

1

; u

2

; : : : ; u

n

is

P

n

i=1

(2

deg 

i

(x)

� 1).

Proof: The inequality used in the proof of the Theorem 4.1.4 must be

slightly modi�ed: 2

MAX

� 1�MAX < d � (

P

n

i=1

(2

deg 

i

(x)

� 1))=w,

where MAX = maxfdeg 

1

(x); deg 

2

(x); : : : ; deg 

n

(x)g, and w = 2

for n even, w = 3 for n odd. The rest of the proof is similar to the

proof of the Theorem 4.1.4. �

Conlusions

There are ryptographi properties of some speially onstruted

sequenes studied in this setion. The period of a sequene ob-

tained by periodi onatenation of two or more ml-sequenes is

determined. Moreover, a new onstrution of a ompletely equidis-

tributed real valued sequene based on the onatenation of ml-

sequenes is presented.
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4.2 Conatenation of runs from two ml-sequenes

This setion deals with the ryptanalysis of one running key gener-

ator whih ombines the outputs of two asynhronously loked LF-

SRs. Its keystream prodution ould be haraterized as onatena-

tion of transformed runs of twoml-sequenes. Computer simulations

show a large linear omplexity of the produed keystream sequene.

The period of the keystream and several theorems onerning the

number of runs in an ml-sequene are proved. Conditions for pass-

ing the Golomb's randomness postulates are proposed. Results of

the performed statistial tests (FIPS 140-1, gap test, serial orrela-

tion test) are presented. Finally, a known plaintext attak against

the studied running key generator is presented.

This setion is based on author's papers [85℄ and [86℄.

Desription of the running key generator

The generator G onsists of two asynhronously loked (in a

stop-and-go fashion) LFSRs L1 and L2, respetively. The key of

the generator is the initial state of the registers L1 and L2. Assume

the polynomials 

1

(x); 

2

(x) 2 GF (2)[X℄ assoiated to the registers

L1, L2 are primitive. Let ~a = ~a

0

; ~a

1

; : : : , resp.

~

b =

~

b

0

;

~

b

1

; : : : be

the binary sequene produed by lok-ontrolled (as used in gener-

ator G) registers L1, resp. L2. Moreover, let a = a

0

; a

1

; : : : , resp.

b = b

0

; b

1

; : : : be the binary sequene produed by the regularly

loked registers L1, resp. L2.

Algorithm of the generator G:

1. Keystream bit prodution: z

t

= L1(t)� L2(t) = ~a

t

�

~

b

t

.

2. Next-state funtion: if z

t

= 1, then L1 loks, otherwise

(z

t

= 0) L2 loks.

Example 4.2.1 Assume the following realization of the generator

G: 

1

(x) = 1+x+x

2

and 

2

(x) = 1+x+x

3

. Let us look at the hanges

of the registers L1 and L2 states during the keystream generation.

(Output bits ~a

t

, resp.

~

b

t

are the underlined bits of the L1, resp. L2

states. The state of a register that loks at a given time t is bold

typed. The underlined bits of bold typed states of register L1, resp.

L2 form runs (either bloks B

a

i

, resp. B

b

i

or gaps G

a

i

, resp. G

b

i

) of

the sequenes a, and b, respetively.
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t State of L1 State of L2 z

t

Runs of a Runs of b

0 01 001 0 G

b

0

1 01 011 0

2 01 111 1 G

a

0

3 11 111 0 B

b

1

4 11 110 0

5 11 101 0

6 11 010 1 B

a

1

7 10 010 1

8 01 010 0 G

b

2

9 01 100 1 G

a

0

10 11 100 0 B

b

3

11 11 001 1 B

a

1

12 10 001 1

13 01 001 0

Table 4.1: Generation of a keystream of the generator G

Observation 4.2.2 The keystream prodution ould be harater-

ized as joining transformed runs of sequenes a and b (look at the

relation among underlined bold typed bits, z

t

, and runs of the se-

quenes a, and b, respetively).

Analysis of the keystream

Theorem 4.2.3 Let u be an ml-sequene generated by an ml-LFSR

with assoiated primitive polynomial (x), deg (x) > 1. Let

u

0

= u

1

= � � � = u

deg (x)�2

= 0; u

deg (x)�1

= 1. Then the num-

ber of runs in one period of the sequene u is even. Moreover, the

number of bloks is equal to the number of gaps.

This theorem follows from the fat u

2

deg (x)

�2

= 1.

Next, we determine the exat number of runs in one period of an

ml-sequene.

Theorem 4.2.4 Let u be a sequene generated by an ml-LFSR with

assoiated primitive polynomial (x) 2 GF (2)[X℄, deg (x) > 1.

Assume u

0

= 0; u

1

= 0; : : : ; u

deg (x)�2

= 0; u

deg (x)�1

= 1. Then the

number of runs in one period of the sequne u is 2

deg (x)�1

.

Proof: Aording to the Theorem 4.2.3, it is su�ient to prove that

the number of bloks in one period of u = u

0

; u

1

; : : : ; u

2

deg (x)

�2

is
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equal to 2

deg (x)�2

. Let us denote B

u

[i℄ the number of bloks of

length deg (x)� i. It follows from the Theorem 3.3.6, that

B

u

[i℄ = 2

deg (x)�(deg (x)�i)

�

i�1

X

j=0

B

u

[j℄(i� j + 1):

P

i

j=0

B

u

[j℄ = 2

i�1

, 1 � i < kLk

B

0

= 1

�

Corollary 4.2.5 (of the Theorem 4.2.4). Let u and v be ml-sequen-

es generated by ml-LFSRs L

u

and L

v

with assoiated primitive

polynomials 

u

(x); 

v

(x) 2 GF (2)[X℄, deg 

u

(x) = deg 

v

(x). Let

u

0

= u

1

= � � � = u

deg 

u

(x)�2

= 0; u

deg 

u

(x)�1

= 1 and

v

0

= v

1

= � � � = v

deg 

v

(x)�2

= 0; v

deg 

v

(x)�1

= 1. Then the se-

quenes u and v have the same number of bloks, and gaps of lengths

1; 2; :::; deg 

u

(x) = deg 

v

(x).

Next, we generalize Theorem 4.2.4 for any non-zero initial state

of the generating register.

Theorem 4.2.6 Let u denote an ml-sequene generated by an ml-

LFSR (from a non-zero initial state) with assoiated primitive poly-

nomial (x) 2 GF (2)[X℄, deg (x) > 1. Then the number of runs in

one period of the sequene u is either 2

deg (x)�1

or 2

deg (x)�1

+ 1.

Proof: Let us denote a sequene u that starts with

u

0

= u

1

= � � � = u

deg (x)�2

= 0; u

deg (x)�1

= 1 as w. Realize that

any sequene u an be obtained from the sequene w by shifting [4,

pp.350�351℄. Thus the sequene w an be shifted to the beginning

of a new run, whih yields the number of runs equal to 2

deg (x)�1

or

somewhere inside a run, whih yields the number of runs equal to

2

deg (x)�1

+ 1. �

The following theorem onerning the period of the keystream

of the generator G is based on the Observation 4.2.2 and on the

Theorem 4.2.6. (A onjeture was presented in [86℄.)
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Theorem 4.2.7 Assume that the registers L1, resp. L2 with assoi-

ated primitive polynomials 

1

(x), resp. 

2

(x), deg 

1

(x);

deg 

2

(x) > 1 are loaded with a non-zero initial state. Then the

period of the keystream sequene z of the generator G is

(2

maxfdeg 

1

(x);deg 

2

(x)g

�1)+2

jdeg 

1

(x)�deg 

2

(x)j

(2

minfdeg 

1

(x);deg 

2

(x)g

�1):

(4.1)

Proof: First, assume that (4.1) is an integer multiple of the period

of the keystream sequene z. There are 16 possibilities aording to

the start and end runs of one period of the sequenes a and b. Look

at one of them (the other possibilities an be analyzed in a similar

way).

Assume that a starts with a gap and ends with a blok, b starts

and ends with a gap. (The notation of bloks and gaps is similar to

that used in Example 4.2.1.)

L1 G

a

0

B

a

1

. . . B

a

2

deg 

1

(x)�1

G

a

0

L2 G

b

0

B

b

1

. . . G

b

2

deg 

2

(x)�1

+1

G

b

0

* * * * . . . * *

   . . .   

Table 4.2: Joining of runs during the prodution of the keystream

The *-denoted (as well as the -denoted, that have the start

and end runs from di�erent registers) runs learly form an integer

multiple of the period of the keystream sequene s.

Finally realize that the -denoted part of the keystream se-

quene ontains exatly one blok of length kL1k (if kL1k � kL2k)

or one gap of length kL2k (if kL1k � kL2k). Thus the -denoted

part of the keystream must form exatly one period.

The next theorem haraterizes the basi balanedness of the

keystream sequene.

Theorem 4.2.8 Assume that the registers L1, resp. L2 with assoi-

ated primitive polynomials 

1

(x), resp. 

2

(x), deg 

1

(x);

deg 

2

(x) > 1 are loaded with a non-zero initial state. Then the

number of ones and zeros in one period of the generated keystream

sequene is given as follows:
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1. if deg 

1

(x) � deg 

2

(x) then

number of ones is 2

deg 

1

(x)

� 1

number of zeros is 2

jdeg 

1

(x)�deg 

2

(x)j

(2

deg 

2

(x)

� 1);

2. if deg 

1

(x) < deg 

2

(x) then

number of ones is 2

jdeg 

1

(x)�deg 

2

(x)j

(2

deg 

1

(x)

� 1)

number of zeros is 2

deg 

2

(x)

� 1.

Proof: Theorem 4.2.8 follows from the proof of the period and from

the prodution of the keystream as joining transformed runs from

sequenes a and b. �

The following theorem about passing the �rst and seond Golomb's

postulates follows.

Theorem 4.2.9 Assume that the registers L1, resp. L2 with assoi-

ated primitive polynomials 

1

(x), resp. 

2

(x), deg 

1

(x);

deg 

2

(x) > 1, j deg 

1

(x) � deg 

2

(x)j � 1 are loaded with a non-

zero initial state. Then the generated keystream sequene passes the

�rst Golomb's postulate. Moreover, if deg 

1

(x) = deg 

2

(x) then the

keystream sequene passes the seond Golomb's postulate, too.

Statistial tests - results

Our realization of the generator G was tested for:



1

(x) = 1 + x + x

2

+ x

5

+ x

19

, 

2

(x) = 1 + x

3

+ x

31

. The test

set onsisted of 1 000 keystream sequenes (eah 20 000 bits long)

produed by this realization of the generator.

All of the tested sequenes passed all tests given by FIPS 140-1

[23℄ (at the time of writing the papers [85℄ and [86℄, FIPS 140-2,

whih is the suessor of FIPS 140-1, was not admitted), 95% of

them passed the serial orrelation test [45℄ and none of them passed

the gap test [45℄.

Table 4.3 outlines the values of the serial orrelation oe�ient,

the statistis for the poker test [54, p.182℄, and the number of ones

in a keystream sequene for the monobit test [23℄. The last row of

the table shows the expeted intervals.
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# Serial orrelation test Poker test (for quadruples) Monobit test

0 0.002385 15.5264 9958

1 0.001986 6.08640 9734

2 -0.005419 9.92 10003

3 0.003574 10.8288 9750

4 0.007899 18.5472 9986

5 0.007897 16.6784 10156

6 0.004948 10.5088 10248

7 -0.002401 18.0352 10067

8 -0.000602 15.904 9973

9 -0.000602 16.6464 10224

[-0.00068,0.00068℄ [1.03,57.4℄ [9654,10346℄

Table 4.3: Results of statistial tests

# / 1 2 3 4 5 6

run length

0 2459 1302 693 386 187 123

1 2642 1209 713 267 176 160

2 2340 1179 604 245 173 129

3 2400 1167 530 361 155 134

4 2589 1376 587 378 113 149

5 2512 1391 536 276 180 167

6 2680 1268 568 246 99 187

7 2540 1290 633 358 137 181

8 2397 1104 712 369 169 152

9 2645 1176 589 374 138 192

[2267,2733℄ [1079,1421℄ [502,748℄ [223,402℄ [90,223℄ [90,223℄

Table 4.4: Run test - numbers of ourrenes of runs with ertain lengths

Aording to the results of the Maurer's universal statistial test

[52℄ the keystream sequene is not signi�antly ompressable (in

Table 4.5, Q denotes the number of initial bloks and K denotes the

number of tested bloks).

Theorem 4.2.10 The keystream sequene produed by the genera-

tor G passes the long run test (FIPS 140-1) if 1 < kL1k; kL2k < 34

(and registers L1, resp. L2 are loaded with a non-zero initial state).

Proof of this theorem follows from the fat that the longest run

in the keystream sequene has maxfkL1k; kL2kg bits (see Example

4.2.1). �
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# Q = 2560 Q = 25600

K = 256000 K = 2560000

0 8.003677 8.002048

1 7.999273 8.000793

2 8.002426 7.999964

3 8.000400 8.000941

4 8.001049 7.999997

5 7.999030 8.002516

6 7.998300 8.001611

7 8.000900 8.001506

8 7.999110 7.999905

9 8.002141 8.001281

Table 4.5: Maurer's universal statistial test - entropy on the 8-bit blok

The ryptanalysed generator is based on an alternating loking

of its registers. Thus the situations when only one register loks

should be avoided. This happens when one of the registers produes

the sequene with period equal to 1. It follows that the use of the

zero initial state and the use of the polynomials of degree equal to

1 should be avoided.

Linear omplexity

One of the important properties of the keystream sequene is its

linear omplexity. Based on the omputer simulations (small sample

of them is shown in the Table 4.6) we onlude that the produed

keystream sequene has a large linear omplexity.

Theorem 4.2.11 puts important restritions on the hoie of the

lengths of registers L1 and L2 (see Expression 4.1).

Theorem 4.2.11 [15, p.52,Theorem 3.4.4℄ Let N be an odd prime

and q be a primitive root modulo N suh that gd(N; q) = 1. Then

the linear omplexity of any nononstant sequene u of period N

over GF (2) is N or N � 1.

Linear omplexity pro�le

Aording to the performed simulations the linear omplexity

pro�le of the keystream sequene has no signi�ant di�erenes from

the optimum. The small di�erenes do not weaken the generator.
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L1 polynomial L2 polynomial Linear omplexity

x

2

+ x+ 1 x

2

+ x+ 1 7

x

2

+ x+ 1 x

3

+ x+ 1 13

x

2

+ x+ 1 x

4

+ x+ 1 25

x

2

+ x+ 1 x

5

+ x

2

+ 1 55

x

2

+ x+ 1 x

6

+ x+ 1 109

x

2

+ x+ 1 x

7

+ x+ 1 223

x

2

+ x+ 1 x

7

+ x

3

+ 1 223

x

3

+ x+ 1 x

2

+ x+ 1 13

x

3

+ x+ 1 x

3

+ x+ 1 14

x

3

+ x+ 1 x

4

+ x+ 1 28

x

3

+ x+ 1 x

5

+ x

2

+ 1 58

x

3

+ x+ 1 x

6

+ x+ 1 115

x

3

+ x+ 1 x

7

+ x+ 1 238

x

3

+ x+ 1 x

7

+ x

3

+ 1 238

x

4

+ x+ 1 x

2

+ x+ 1 25

x

4

+ x+ 1 x

3

+ x+ 1 29

x

4

+ x+ 1 x

4

+ x+ 1 30

x

4

+ x+ 1 x

5

+ x

2

+ 1 60

x

4

+ x+ 1 x

6

+ x+ 1 120

Table 4.6: Linear omplexity of the keystream sequene.

Attaks

The simplest attak against any ipher system is the brute-fore

attak. Its omplexity depends on the size of the keyspae. The

omplexity of the brute-fore attak against the ryptanalysed gen-

erator is given by the following formula (the zero initial states are

exluded):

(2

kL1k

� 1)(2

kL2k

� 1):

The ryptanalysed running key generator is vulnerable to the

known plaintext attak. We show how to �nd the key of the gener-

ator.

Assume the plaintext P = p

0

; p

1

; : : : ; p

N�1

, and the orrespond-

ing iphertext C = 

0

; 

1

; : : : ; 

N�1

are given. Applying the enryp-

tion formula for the stream ipher systems 

t

= p

t

� z

t

we immedi-

ately alulate the keystream sequene z.

Realize that in one step only one register loks. Thus we an

build a simple algorithm for the initial state of the L1 and L2 reg-

isters reonstrution.
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Algorithm 4.2.12 (Reonstrution of initial states)

1. if s

0

= 1 then

a

(1)

0

 0; b

(1)

0

 1

a

(2)

0

 1; b

(2)

0

 0

else

a

(1)

0

 0; b

(1)

0

 0

a

(2)

0

 1; b

(2)

0

 1

2. i 0

j  0

t 0

3. if i � kL1k � 1 and j � kL2k � 1 then terminate; the initial

states of L1 and L2 are reonstruted

4. if t = N � 1 then terminate; the initial states of L1 and L2 are

partially reonstruted

5. t t + 1

6. if s

t�1

= 0 then j  j + 1

else i i+ 1

7. solve the equation s

t

= a

i

� b

j

8. go to step 3

The number of found bits of the register L1, resp. L2 is determined

by the number of ones, resp. zeros in the keystream sequene z.

There are two possible solutions after the algorithm terminates:

1. a

(1)

= a

(1)

0

; a

1

; : : : ; a

i

b

(1)

= b

(1)

0

; b

1

; : : : ; b

j

2. a

(2)

= a

(2)

0

; a

1

; : : : ; a

i

b

(2)

= b

(2)

0

; b

1

; : : : ; b

j

The orret solution ould be found when keystreams produed

from these two solutions are ompared to the keystream z.

The omplexity of the initial state reonstrution is of order

O(2N2

m

1

2

m

2

), where m

1

, resp. m

2

denote the number of missing

bits of initial state of the registers L1, resp. L2 . In an optimal ase

an (kL1k+ kL2k � 1) bits long keystream sequene is su�ient for

�nding the whole key with the omplexity of order O(2N).
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A note on the seurity of the generator

Assume now that the generator G onsists of two subgenerators

G1 and G2, respetively.

Using the known plaintext attak presented above it is easy to

�nd sequenes a and b generated by these subgenerators G1 and

G2. Thus the seurity of the whole generator against the known

plaintext attak depends on the seurity of G1 and G2 against this

kind of an attak.

Clearly, when using LFSRs L1 and L2 as the subgenerators G1

and G2, the key of the generator (the initial loading of the registers

L1 and L2) is diretly the beginning part of the sequenes a and b.

Conlusions

There are several theorems determining the number of runs in an

ml-sequene presented in this setion. The period of the keystream

sequene of the ryptanalysed generator is determined as well as its

basi statistial properties. The keystream sequene possesses good

ryptographi properties as long period and large linear omplexity.

The results of statistial tests are outlined. A known plaintext at-

tak on the studied running key generator is proposed. The seurity

of the generator against the known plaintext attak is generalized.
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4.3 Attaks on one stream ipher based on a quasi-

group

There are several attaks on a stream ipher, that was proposed in

[59℄, presented in this setion. Almost the same ipher was proposed

also in [49℄. The ryptanalysed stream ipher is based on a hidden

quasigroup (that represents the key). It works in a self-synhronizing

fashion and was suggested for the enryption of a �le system. The

ipher has a very large keyspae and was laimed to be resistant

against any attak [59℄.

Main results of this setion were published in [90℄ and [91℄.

Self-synhronizing stream ipher based on a quasigroup

De�nition 4.3.1 [18℄ The struture (Q; �), Q = fq

1

; q

2

; : : : ; q

n

g,

kQk = n is alled a �nite quasigroup of order n if, when any two

elements a; b 2 Q are given, the equations a � x = b and y � a = b

eah have exatly one solution. Thus the Caley table of a �nite

quasigroup of order n is a Latin square, i.e. an n�n array with the

property that eah row and eah olumn ontains the permutation of

symbols from Q. The operation n is alled the right inverse of � if

it holds that xn(x � y) = y, and x � (xny) = y.

Let (Q; �) be a �nite quasigroup. Let individual plaintext hara-

ters be represented by the elements of Q, i.e. p

1

; p

2

; : : : ; p

k

, p

i

2 Q,

1 � i � k. Similarly let the iphertext haraters 

1

; 

2

; : : : ; 

k

be

represented also by the elements of Q, i.e. 

i

2 Q, 1 � i � k. The

key of the studied stream ipher is the de�nition of the operation �

on the set Q, i.e. the Caley table of this operation

1

.

Enryption:

enrypt(p

1

; p

2

; : : : ; p

k

) = 

1

; 

2

; : : : ; 

k

.



1

= l � p

1

, where l is a given "initial value".



i+1

= 

i

� p

i+1

, i = 1; 2; : : : ; k � 1:

Deryption:

derypt(

1

; 

2

; : : : ; 

k

) = p

1

; p

2

; : : : ; p

k

.

p

1

= ln

1

.

p

i+1

= 

i

n

i+1

, i = 1; 2; : : : ; k � 1:

1

It is a rather strange design onept. Nowadays iphers do not use operations on sets as

keys. The key is an item in some set, e.g. an element of Q that is kept seret.

63



Example 4.3.2 Let Q = f0; 1; 2g and let the quasigroups (Q; �),

resp. (Q; n) be de�ned by Table 4.7. Let l 2 Q; l = 0.

* 0 1 2

0 1 2 0

1 2 0 1

2 0 1 2

n 0 1 2

0 2 0 1

1 1 2 0

2 0 1 2

Table 4.7: Caley tables of quasigroups (Q; �) and (Q; n)

enrypt(1; 2; 0; 0; 0; 1; 1; 2; 0) = 2; 2; 0; 1; 2; 1; 0; 0; 1



1

= l � p

1

= 0 � 1 = 2



2

= 

1

� p

2

= 2 � 2 = 2



3

= 

2

� p

3

= 2 � 0 = 0

.

.

.

derypt(2; 2; 0; 1; 2; 1; 0; 0; 1) = 1; 2; 0; 0; 0; 1; 1; 2; 0

p

1

= ln

1

= 0n2 = 1

p

2

= 

1

n

2

= 2n2 = 2

p

3

= 

2

n

3

= 2n0 = 0

.

.

.

There are at least n!(n� 1)!(n� 2)! : : : 2! Latin squares of order

n. If we assume that Q = f0; 1; : : : ; 255g (i.e. eah data item is

represented by 8 bits = 1 byte) then there are at least 10

58 000

quasi-

groups. The keyspae is enormously large. The ipher was laimed

to be resistant against any attak [59℄ although the authors stud-

ied only resistane against brute fore attak and performed some

statistial tests on this ipher. From a point of view of ryptanaly-

sis, a good ipher should be resistant against iphertext-only attak,

hosen/known iphertext/plaintext attaks, as well. Some possible

attaks are shown below.

Chosen iphertext attak

Let Q = fq

1

; q

2

; : : : ; q

n

g and assume the ryptanalyst has aess

to the deryption devie loaded with an unknown key. Then he/she

an onstrut the following iphertext:

q

1

; q

1

; q

1

; q

2

; q

1

; q

3

; : : : ; q

1

; q

n

;

q

2

; q

1

; q

2

; q

2

; q

2

; q

3

; : : : ; q

2

; q

n

;
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.

.

.

q

n

; q

1

; q

n

; q

2

; q

n

; q

3

; : : : ; q

n

; q

n

and enter it into the deryption devie. The deryption devie gives

the following plaintext:

lnq

1

; q

1

nq

1

; q

1

nq

1

; q

1

nq

2

; q

2

nq

1

; q

1

nq

3

; : : : ; q

1

nq

n

;

.

.

.

q

n

nq

n

; q

n

nq

1

; q

1

nq

n

; q

n

nq

2

; q

2

nq

n

; q

n

nq

3

; : : : ; q

n

nq

n

.

It is easy to see that the Caley table of the operation n de�ned

on Q is ompletely found. The onstrution of the Caley table for

the operation � is straightforward. The iphertext used in the at-

tak onsists of 2n

2

haraters. (Of ourse a shorter iphertext an

be onstruted. The only requirement is that all the pairs of adja-

ent elements will appear in the iphertext. The presented attak

requires 2n

2

operations n.

One may also use the elementary fat that the last olumn and

the last row of the Caley table of the operation de�ned on quasi-

group is ompletely determined by previous rows, resp. olumns.

Generalization of this idea leads to the notion of ritial sets of

Latin squares. Reall that a partial Latin square of order n is an

n�n array on a symbol set E, kEk = n, suh that eah ell is either

empty or ontains an element of E, and eah element of E ours

in eah row and in eah olumn at most one. A ritial set C of

order n is a partial Latin square of order n whih an be ompleted

to a Latin square L in a unique way, and removing any element

of C destroys that property. That is, C provides minimal informa-

tion from whih L an be reonstruted uniquely (see [18℄, [34℄).

Denote the minimum size of a ritial set of order n by M(n). In

[14℄ it has been shown that M(n) �

n

2

4

, whih is generally believed

to be asymptotially the orret order of M(n). The losest up to

date lower bound on the size of the ritial set of order n, n � 8 is

M(n) � b

4n�8

3

 (see [34℄).

However, the implementation of the above mentioned fats on

ritial sets into the desribed attaks will lead to a problem of

reonstrution of the Latin square from its ritial set.
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Chosen plaintext attak

Let Q = fq

1

; q

2

; : : : ; q

n

g and assume the ryptanalyst has aess

to the enryption devie loaded with an unknown key. Then he/she

an onstrut the following plaintexts:

q

1

; q

1

;

q

1

; q

2

;

.

.

.

q

1

; q

n

;

q

2

; q

1

;

q

2

; q

2

;

.

.

.

q

2

; q

n

;

.

.

.

q

n

; q

1

;

q

n

; q

2

;

.

.

.

q

n

; q

n

and enter them into the enryption devie. The following iphertexts

will be obtained:

l � q

1

; (l � q

1

) � q

1

;

l � q

1

; (l � q

1

) � q

2

;

.

.

.

l � q

1

; (l � q

1

) � q

n

;

l � q

2

; (l � q

2

) � q

1

;

l � q

2

; (l � q

2

) � q

2

;

.

.

.

l � q

2

; (l � q

2

) � q

n

;

.

.

.

l � q

n

; (l � q

n

) � q

1

;

l � q

n

; (l � q

n

) � q

2

;

.

.

.

l � q

n

; (l � q

n

) � q

n

:

It is easy to see that the key, i.e. the Caley table of the operation
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� de�ned on Q is ompletely found. The presented hosen plain-

text attak requires n

2

messages and eah message onsists of two

haraters. (Of ourse a smaller number of messages an be used.

See the above desribed hosen iphertext attak.) The presented

attak requires 2n

2

operations �.

It is also possible to built up a known plaintext attak. However

it is not guaranteed that the whole key will be revealed.

Ciphertext-only attak

Let us assume that the plaintext message was written in a redun-

dant language, e.g. Slovak, Czeh, English, et., i.e. the distribution

of frequenies of ourenes of individual haraters is not uniform.

Further let us assume that the language, the plaintext message was

written in, is known and also that the ryptanalyst knows the dis-

tribution of frequenies of ourenes of individual haraters from

the used language. Assume that eah harater from the plaintext

message is represented by a single element from the quasigroup.

Further assume that the order n of the quasigroup (Q; �), where

Q = fq

1

; q

2

; : : : ; q

n

g, is known. Let us denote the obtained ipher-

text as 

1

; 

2

; : : : ; 

k

, 

i

2 Q, 1 � i � k.

For eah i, 1 � i � n, the ryptanalyst determines the number

of ourenes of pairs of elements q

i

q

j

, 1 � j � n. If the ipher-

text is large enough, for eah q

i

, 1 � i � n, the obtained number

of ourenes of pairs of elements an be mathed to the known

frequenies of ourenes of individual haraters from the used lan-

guage. Thus the ryptanalyst is able to onstrut the Caley table of

the quasigroup (Q; n) and derypt the message. The reonstrution

of the key, i.e. of the Caley table of the quasigroup (Q; �) from the

quasigroup (Q; n) is straightforward.

However the mathing of obtained number of ourenes of pairs

of elements to the known frequenies of ourenes of individual

haraters from the used language an lead to some errors in the re-

onstrution of the quasigroup (Q; n), either due to the short length

of the analyzed iphertext or due to the spei� properties of the

used language. A better approah is to math only the obvious pairs

of elements, then partially derypt the iphertext. From the par-

tially derypted message it is possible (or highly probable) to �nd

some other ells in the Caley table of the quasigroup (Q; n). This

leads to the iterated deryption, resp. iterated onstrution of the
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Caley table of the quasigroup (Q; n). One an also use the known

results on ritial sets, resp. on ompleting Latin squares.

The previously desribed iterative iphertext-only attak was su-

essfully performed on a plaintext written in Slovak language (book

"SLOVENSKO. Európske súvislosti ©udovej kultúry" by Rastislava

Stoli£ná et al., VEDA Bratislava 1997). The plaintext was written

in the enhaned telegraph alphabet, i.e. it onsisted only of let-

ters A,B, : : : ,Z and "spae" and ontained 291 041 haraters. The

quasigroup was of order 27.

Conlusions

There are three kinds of attaks against the self-synhronizing

stream ipher (proposed in [59℄) presented in this setion. These at-

taks rank among the standard basi ryptanalyst tehniques. Eah

of these attaks is muh faster than the brute-fore attak. We

onlude that the ryptanalysed self-synhronizing stream ipher is

inseure due to its vulnerability to the presented attaks.
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4.4 Attaks on one hash funtion based on quasi-

group

There are properties of a hash funtion based on a quasigroup (pro-

posed in [21℄, [22℄) studied in this setion. An attak against this

hash funtion for some speial quasigroups is presented. Moreover,

the modi�ation of the studied hash funtion to a keyed hash fun-

tion � the so alled MAC is studied, too.

This setion is based on author's papers [92℄, [93℄.

Desription of the hash funtion based on a quasigroup

Constrution 4.4.1 (A new hash funtion [21℄, [22℄.) Let (Q; �)

be a �nite quasigroup and Q

�

be the set of all �nite sequenes of ele-

ments from Q. Let the message be a sequene of elements

fm

1

; m

2

; : : : ; m

k

g from the quasigroup Q. For a �xed a 2 Q let

the hash funtion H

a

: Q�Q

�

! Q be

H

a

(m

1

; m

2

; : : : ; m

k

) = ((: : : ((a �m

1

) �m

2

) � : : : ) �m

k�1

) �m

k

;

where m

i

2 Q, 1 � i � k.

Example 4.4.2 Let Q = f0; 1; 2; 3g and let the operation * on Q

be de�ned by its Caley table, in Table 4.8.

* 0 1 2 3

0 0 2 1 3

1 2 3 0 1

2 1 0 3 2

3 3 1 2 0

Table 4.8: Caley table of the operation * de�ned on Q

Let a = 2 and let the message to be hashed be enoded as f0; 0; 1; 3g.

Then the hash an be omputed as

H

2

(0; 0; 1; 3) = (((2 � 0) � 0) � 1) � 3 = 3:

The usage of a general quasigroup in omputation requires to

store its Caley table, i.e. n

2

elements. The storage requirements

are outlined in Table 4.9. (One an also take notie of a very short
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kQk Hash value length Storage requirements

2

16

16 bits 16:2

16

:2

16

= 64 GB

2

18

18 bits 18:2

18

:2

18

> 1 TB

Table 4.9: Storage requirements for the Caley table a general quasigroup

hash value length. Nowadays the hash value length onsidered to

be seure is 160 - 256 bits.)

Several triks an be used to overome the storage requirements

problem. They are onneted to known results on ritial sets in

Latin squares (see Setion 4.3). However, suh an approah would

signi�antly slow down the speed of omputation of the hash value.

A better approah is to �nd a speial large quasigroup (Q; �).

The operation � in suh a quasigroup should be given by some "easy

to evaluate" expression, i.e. a � b = f(a; b), a; b 2 Q. One of the

general seurity requirements that f(a; b) has to satisfy is that given

the value f(a; b) and the element a, it should be omputationally

infeasible to �nd the element b, suh that a � b = f(a; b). In other

words, it should be omputationally infeasible to �nd the Caley table

of the quasigroup (Q; n).

In order to overome the storage requirements for the Caley table,

a speial quasigroup, namely the quasigroup of modular subtration,

was proposed in [21℄, [22℄ to be used. The operation * de�ned on Q

is then given as

a � b = a+ (n� b) mod n; n = kQk:

* 0 1 2 3

0 0 3 2 1

1 1 0 3 2

2 2 1 0 3

3 3 2 1 0

Table 4.10: Multipliation table in the quasigroup of modular subtration, n = 4

Usage of suh an "easy to evaluate" expression for the de�nition

of the operation * on quasigroup allows us to use quasigroups with

a very large number of elements. Moreover, the isotopism of quasi-

groups gives us the power to use a large number of isotopi quasi-

groups where the omputation of a hash value will be done almost

only using the mentioned "easy to evaluate" expression. Later we
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show that it has also a severe impat on the seurity of the studied

hash funtion.

De�nition 4.4.3 [18℄ Let (G; :) and (H; �) be two quasigroups. An

ordered triple (�; ';  ) of one-to-one mappings �; ';  of the set

G onto the set H is alled an isotopism of (G; :) upon (H; �) if

�(x) � '(y) =  (x:y) for all x; y in G. The quasigroups (G; :) and

(H; �) are then said to be isotopi.

De�nition 4.4.4 Let (G; :) and (H; �) be two quasigroups. An or-

dered triple (�; ';  ) of mappings �; ';  of the set G to the set H is

alled an homotopism of (G; :) to (H; �) if �(x) � '(y) =  (x:y) for

all x; y in G. The quasigroups (G; :) and (H; �) are then said to be

homotopi.

Remark 4.4.5 In [21℄, [22℄ the authors used a notion of homo-

topism of quasigroups, however in fat they used isotopism of quasi-

groups, beause the mappings from one quasigroup to the another

one (here denoted as �; ';  ) were permutations.

Attaks against the hash funtion

Let a 2 Q be the known parameter of the hash funtion and

fm

1

; m

2

; : : :m

k

g, m

i

2 Q, 1 � i � k be a message to be hashed.

Let the hash value be

H

a

(m

1

; m

2

; : : : ; m

k

) = (((a �m

1

) �m

2

) � : : : ) �m

k

= d:

Due to the simple onstrution of the hash funtion one an (in

some ases easily) reate false messages that hash to the same value.

The false message an be onstruted from the original message by

adding pre�x and/or su�x, hanging some parts somewhere in the

middle of the message, or it an be just a totally new message not

based on the original message.

The false message reated from the original one by adding pre�x

an be written as

p

1

; p

2

; : : : ; p

l

; m

1

; m

2

; : : :m

k

; p

i

2 Q; 1 � i � l:

Hene it must hold that (((a � p

1

) � p

2

) � : : : ) � p

l

= a.
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The false message reated from the original one by adding su�x

an be written as

m

1

; m

2

; : : :m

k

; s

1

; s

2

; :::; s

t

s

i

2 Q; 1 � i � t:

Hene it must hold that (((d � s

1

) � s

2

) � : : : ) � s

t

= d.

Remark 4.4.6 Only the last element of the last added, resp. hanged

part of the message has to be hosen in a proper way. It is important

to mention that suh an element always exists (beause the Caley ta-

ble of a quasigroup is a Latin square). All the other elements an be

hosen arbitrarily, i.e. they an represent meaningful data.

Due to the nie algebrai properties of the studied hash funtion

it is possible to evaluate exatly the number of messages of a given

length that hash to the same value.

Theorem 4.4.7 Let (Q; �) be a �nite quasigroup and H

a

be the hash

funtion spei�ed by the Constrution 4.4.1. Then the number of

messages fm

1

; m

2

; : : :m

k

g, m

i

2 Q, 1 � i � k of length k that hash

to the same value is kQk

k�1

.

This Theorem an be prooved easily by indution. A straightfor-

ward onsequene of this Theorem is the balanedness of the studied

hash funtion.

Altering a part of the message or reating a new false message is

similar to previous examples of false messages.

Remark 4.4.8 While thinking about altering some parts of the orig-

inal message one may ask how many elements may/must be hanged

in order to get the same hash value as the original message. It an

be easily seen that hanging a single element leads always to a di�er-

ent hash value from the hash value of the original message. Further

it an be seen that hanging more than one element in the original

message always allows to reah the same hash value as the original

message. Note that only the last element has to be hosen properly

(see below).

Remark 4.4.9 Sketh of the proof of the preimage resistane of the

studied hash funtion was given in [22℄. The problem of seond

preimage resistane and of ollision resistane is in general of om-

plexity at most kQk (see the onstrution of a false message given

above, and also Remark 4.4.6).
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The question is how to �nd the last element of the last added/

hanged/reated part of the false message? In other words, if we

want to produe a false message by adding pre�x to the original mes-

sage, how to �nd p

l

suh that the following will hold

(((a � p

1

) � p

2

) � : : : ) � p

l

= a?

For small instanes of quasigroups with a "storable" Caley table

it is possible to perform brute fore attak (see Table 4.9). It is

widely aepted that problems of omplexity up to 2

64

are nowadays

solvable by exhaustive searh. Thus the table implementation of the

studied hash funtion is not seure.

In order to overome the storage requirements for the Caley table,

a speial quasigroup, namely the quasigroup of modular subtration,

was proposed in [21℄, [22℄ to be used.

Lemma 4.4.10 Quasigroup of modular subtration ontains a right

unit 0.

Corollary 4.4.11 To onstrut a false message (if quasigroup of

modular subtration is used) one an insert an arbitrary number of

0s anywhere into the original message.

Corollary 4.4.11 shows a trivial onstrution of false messages

based on the insertion of a right unit. However, one an do muh

more.

Let we try to reate a totally new message x

1

; x

2

; : : : ; x

v

, x

i

2 Q,

1 � i � v that will hash to the value d. The elements x

1

; x

2

; : : : ; x

v�1

an be hosen arbitrary. Let d

0

= (((a�x

1

)�x

2

) : : : )�x

v�1

. It remains

to �nd suh a x

v

that d

0

� x

v

= d, whih yields

x

v

= d

0

+ (n� d) mod n:

Theorem 4.4.12 Hash funtion H

a

with the quasigroup of modu-

lar subtration is neither ollision resistant, nor seond preimage

resistant.

The attak may beome muh more di�ult when a quasigroup

isotopi to the quasigroup of modular subtration is used for the

hash funtion.

Example 4.4.13 Let (Q; �), kQk = 4 be the quasigroup of modular

subtration with the Caley table given in Table 4.10. Let
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. 0 1 2 3

0 0 2 1 3

1 2 1 3 0

2 1 3 0 2

3 3 0 2 1

Table 4.11: Multipliation table of the quasigroup (Q; :)

� = [1; 2; 3; 0℄, ' = [3; 2; 1; 0℄ and  = [2; 0; 3; 1℄. The Caley ta-

ble of the quasigroup (Q; :) that is isotopi to the (Q; �) is shown in

Table 4.11.

For a �xed a 2 Q the hash value of a message fm

1

; m

2

; : : : ; m

k

g,

m

i

2 Q, 1 � i � k will now

2

be omputed as H

a

(m

1

; m

2

; : : : ; m

k

) =

((: : : ((a:m

1

):m

2

): : : : ):m

k�1

):m

k

.

A nie trik is that the quasigroup operation in (Q; :) may also

be written as

a:b =  

�1

(�(a) + (n� '(b)) mod n);

where n = kQk, and  ; �; ' are the mappings that de�ne the iso-

topism between the quasigroups (Q; :) and (Q; �).

In the previously desribed attaks, when a quasigroup of modu-

lar subtration was used, the attaker was fored to solve the equa-

tion a � b = d in a given quasigroup, where a and d are known, b is

unknown. Formally, the solution an be written as b = and, where

n is the right inverse of �. For a quasigroup of modular subtration

one an write b = and = a � d. When a quasigroup, isotopi to

the quasigroup of modular subtration, is used the attak leads to

the equation d = a:b =  

�1

(�(a) + (n � '(b)) mod n) for a given

quasigroup, where a and d are known, and b is unknown. Hene, the

seurity of the studied hash funtion, when a quasigroup isotopi to

a quasigroup of modular subtration is used, severely depends on

the di�ulty of inverting the mappings ' and  

�1

. The mapping �

has no impat on the seurity of the studied hash funtion beause

in the previously desribed attaks the argument of this mapping is

known.

Remark 4.4.14 Note that any Latin square of prime power order

is polynomial [31℄. It is an open question if the results on polynomial

2

a quasigroup (Q; :) isotopi to the quasigroup of modular subtration (Q; �) is used for

the hash funtion
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Latin squares or polynomial approximations of Latin squares an be

used in attaks against the studied hash funtion.

There might be also another seurity problem. Let (G; :) and

(H; �) be two isotopi quasigroups, i.e. there exist one-to-one map-

pings �; ';  of the set G onto the set H, suh that �(x) � '(y) =

 (x:y) for all x; y in G. However, there might exist other one-

to-one mappings �

0

; '

0

;  

0

of the set G onto the set H, suh that

�

0

(x) � '

0

(y) =  

0

(x:y) for all x; y in G. For example, another

triplet of mappings (�; ';  ) that de�ne isotopism between the quasi-

groups used in Example 4.4.13 is � = [1; 2; 3; 0℄, ' = [2; 1; 0; 3℄ and

 = [3; 1; 0; 2℄. It might happen that even though the mappings

' and  

�1

were "hard to invert", the mappings '

0

and  

0

�1

were

"easy to invert". However, �nding suh mappings �

0

; '

0

;  

0

may be

di�ult. Moreover, we tried to treat these mappings at a general

level, i.e. we have not hosen any de�nite mappings. Neither in [21℄,

[22℄ was the hoie of the mappings �; ';  

�1

studied.

We also performed exhaustive searh experiments (for kQk =

3; 4; 5, and 6) where we studied the number of one-to-one mappings

�; ';  that de�ne isotopism between the quasigroup of modular sub-

tration (Q;�) and any quasigroup (Q; :) isotopi to this quasigroup

of modular subtration. In all the experiments the number of one-

to-one mappings �; ';  was 2kQk

2

.

Modi�ation to a keyed hash funtion � MAC

Assume, a in the H

a

hash funtion is a seret key. H

a

is then an

MAC. Further assume that the quasigroup of modular subtration

was used. In the following we show how to reate false messages,

that will hash to the same value.

Let m

1

; m

2

; : : :m

k

, m

i

2 Q, 1 � i � k be a message to be hashed.

The hash value is then omputed as follows:

H

a

(m

1

; m

2

; : : : ; m

k

) = (((a �m

1

) �m

2

) � : : : ) �m

k

= d:

We an add su�x and onstrut suh a message

fm

1

; m

2

; : : : ; m

k

; s

1

; s

2

; : : : ; s

u

g, s

i

2 Q, 1 � i � u that will hash

to the same result as the original message. Again the elements

s

1

; s

2

; : : : ; s

u�1

an be arbitrary (i.e. they an represent meaningful

data), only s

u

has to be alulated in a proper way. For the quasi-

group of modular subtration it is easy to do (see above presented

onstrution of false messages).
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It is possible to reate the following false messages that will hash

to the same value as the original message: take a new message, add

su�x to the original message, or hange some parts of the message.

Adding only a pre�x to the original message seems to be impossible

due to the seret key a. However it is possible to add both a pre�x

and a su�x, or add a pre�x and hange some part of the original

message.

Theorem 4.4.15 Hash funtion H

a

with the quasigroup of modular

subtration when used as MAC, with the seret key a, is neither

ollision resistant, nor seond preimage resistant.

A stronger result on the seurity of this MAC is as follows.

Theorem 4.4.16 Constrution of false messages for the hash fun-

tion H

a

when used as MAC, with the seret key a, is only as di�ult

as the onstrution of a false messages for the hash funtion H

a

itself

(a is publi).

Conlusions

There were some possible attaks against the hash funtion, pro-

posed in [21℄,[22℄ shown in this setion. Attaks were studied in a

setting when a general (storable, i.e. small) quasigroup was used

and also when a speial (large) quasigroup, namely the quasigroup

of modular subtration was used. The seurity of the onstrution of

a hash funtions was studied both in the MDC and also in the MAC

senario. In all the ases it was possible to reate false messages.

In order to make suh a hash funtion useful in ryptology a very

speial quasigroup (Q; �) has to be found. The multipliation in suh

a quasigroup should be given by some "easy to evaluate" expression

f(a; b), i.e. a � b = f(a; b), a; b 2 Q. Thus a "large" quasigroup

ould be used (without storing its multipliation table). Moreover,

given a, resp. b and f(a; b) it must be "di�ult" (omputationally

infeasible) to �nd b, resp. a.

One of the ways how to ahieve this is to use isotopi quasigroup

to the quasigroup of modular subtration, as it was proposed in

[21℄, [22℄. The seurity of the studied hash funtion then depends

on the "di�ulty" (i.e. omputational infeasibility) of inverting the

mappings ' and  

�1

used in the isotopy, and is a topi for further

researh.
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Chapter 5

Conlusion

We are onvined that the researh targets assigned at the beginning

of this dissertation were aomplished.

The state of the art in stream iphers and hash futions is given

in Setion 3.

The results of the researh are presented in Setion 4. This se-

tion is based on the author's papers [85℄, [86℄, [87℄, [88℄, [89℄, [90℄,

[91℄, [92℄ and [93℄.

Cryptographi properties of the onatenation of periods of sev-

eral ml-pseudorandom sequenes are studied in Setion 4.1. The

length of the period of a sequene obtained by periodi onatena-

tion of two or more ml-sequenes is determined. Moreover, a new

onstrution of a ompletely equidistributed real valued sequene

based on onatenation of ml-sequenes is presented.

Setion 4.2 deals with ryptanalysis of one stream ipher based on

the onatenation of transformed runs of two ml-sequenes. There

are several theorems determining the number of runs in an ml-

sequene presented in this setion. The period of the keystream

sequene of the ryptanalysed generator is determined as well as

its basi statistial properties. The keystream sequene possesses

good ryptographi properties suh as long period and large linear

omplexity. The results of statistial tests are outlined. A known

plaintext attak on the studied running key generator is proposed.

The seurity of the generator against the known plaintext attak is

generalized.

There are three suessful attaks, namely hosen iphertext, ho-

sen plaintext and iphertext-only attaks, against the self-synhro-
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nizing stream ipher (proposed in [59℄) presented in Setion 4.3.

These attaks rank among the standard basi ryptanalyst teh-

niques. Eah of these attaks is muh faster than the brute-fore at-

tak. We onlude that the ryptanalysed self-synhronizing stream

ipher is inseure due to its vulnerability to the presented attaks.

The properties of one hash funtion based on a quasigroup (pro-

posed in [21℄, [22℄) are studied in Setion 4.4. Some possible attaks

against this hash funtion are presented. Attaks are studied in a

setting when a general (storable, i.e. small) quasigroup is used and

also when a speial (large) quasigroup, namely the quasigroup of

modular subtration is used. The seurity of the onstrution of a

hash funtions is studied both in the MDC and also in the MAC

senario. In all the ases it was possible to reate false messages.

It was demostrated whih mappings play an important role in the

seurity of the studied hash funtion when a quasigroup isotopi to

the quasigroup of modular subtration is used. A possible weakness

of isotopi mappings was found.
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Chapter 6

List of author's publiations,

presentations, and other

related ativities

Sienti� papers

� Vojvoda, M.: Cryptanalysis of a Clok-Controlled Running

Key Generator, Journal of Eletrial Engineering, Vol. 50

(1999), No. 10/s, pp.16-18.

� Vojvoda, M.: Enhaned Cryptanalysis of a Clok-Controlled

Running Key Generator, Journal of Eletrial Engineering, Vol.

51 (2000), No. 12/s, pp. 81-84.

� Vojvoda, M., �imovová, M.: Some Properties of Uniformly

Distributed Sequenes, Proeedings of abstrats from the on-

ferene Eliteh 2000, (Vojvoda 50%, �imovová 50%).

� Vojvoda, M., �imovová, M.: On Conatenating Pseudoran-

dom Sequenes, Journal of Eletrial Engineering, Vol. 52

(2001), No. 10/s, pp.36-37, (Vojvoda 70%, �imovová 30%).

� Vojvoda, M.: A Survey of Seurity Mehanisms in Mobile Com-

muniation Systems, Tatra Mountains Mathematial Publia-

tions, Vol. 25 (2002), pp. 101-117.

� Vojvoda, M.: A Probabilisti Approah to Weight Complexity

of Binary Sequenes, Proeedings of Eliteh 2001, FEI STU,

Bratislava, 2002, pp.91-92.
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� �imovová, M., Vojvoda, M.: Symmetri and Complementary

Boolean Funtions, Proeedings of Eliteh 2001, FEI STU,

Bratislava, 2002, pp. 89-90, (Vojvoda 30%, �imovová 70%).

� Vojvoda, M.: Cryptanalysis of a File Enoding System Based

on Quasigroup, Journal of Eletrial Engineering, Vol.54 (2003),

No.12/s, pp.69-71.

� Vojvoda, M.: Cryptanalysis of One Hash Funtion Based on

Quasigroup, aepted for publiation in Tatra Mountains Math-

ematial Publiations.

� Vojvoda, M.: Attaks on a File Enryption System Based on

Quasigroup, Proeedings of the 6th Sienti� Conferene on

Eletrial Engineering and Information Tehnology for PhD

students - Eliteh 2003, FEI-STU 2003, pp.54-56.

� Vojvoda, M.: On One Hash Funtion Based on Quasigroup,

Proeedings of the Conferene "Mikulá²ská kryptobesídka",

eom-monitor.om 2003, pp.23-28.

Leture Notes

� Akantis,D., Gro²ek,O., Nemoga,K., Satko,L., Vojvoda,M.:

CRYPTOLOGY: The Elements and Appliations in Banking

VIII., FEI-STU 2001, Leture Notes, 86 pages.

� Gro²ek,O., Nemoga,K., Satko,L., Strnád,O., �rámka,M., Voj-

voda,M.: CRYPTOLOGY: The Elements and Appliations in

Banking IX., FEI-STU 2002, Leture Notes, 152 pages.

� Gro²ek,O., Nemoga,K., Orave,P., Satko,L., �i²ka,J., Vávra,A.,

Vojvoda,M., Zanehal,M.: CRYPTOLOGY: The Elements and

Appliations in Banking X., FEI-STU 2003, Leture Notes, 123

pages.

Grants, Tehnial Reports, and Researh Projets

� Co-researher of the grant "Methods and resoures of obtain-

ing, representing, presenting and searhing of information and

knowledge", VEGA 1/7611/20, Prinipal researher: Professor

Ing. Vladimír Vojtek, PhD. (years 2001 � 2002).
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� Co-researher of the grant "Information proessing in the dis-

tributed environment of intelligent mobile agents", VEGA

1/0161/03, Prinipal researher: Professor Ing. Vladimír Voj-

tek, PhD. (sine 2003).

� Co-researher of 9 researh projets and o-author of 9 tehni-

al reports for the National Seurity Authority of the Slovak

Republi (sine 2001).

Conferene Presentations and Seminar Letures

� Cryptanalysis of a Clok-Controlled Running Key Generator,

talk at SCAM 1999, Bratislava, Slovak Republi.

� Enhaned Cryptanalysis of a Clok-Controlled Running Key

Generator, talk at SCAM 2000, FEI STU, Bratislava, Slovak

Republi.

� Some Properties of Uniformly Distributed Sequenes, joint work

with M.�imovová, talk at ELITECH 2000, Bratislava, Slovak

Republi.

� Deision Tree Attak, talk at the CRYPTO seminar, june 2000,

FEI-STU, Bratislava, Slovak Republi.

� Some Properties of Uniformly Distributed Sequenes, talk at

the CRYPTO seminar, otober 2000, FEI-STU, Bratislava, Slo-

vak Republi.

� 2-adi Numbers and Sequenes, 3 talks at the CRYPTO semi-

nar, november 2000, FEI-STU, Bratislava, Slovak Republi.

� On Conatenating Pseudorandom Sequenes, joint work with

M.�imovová, talk at SCAM 2001, Bratislava, Slovak Republi.

� Stream Ciphers, 4 talks at the CRYPTO seminar, april 2001,

FEI-STU, Bratislava, Slovak Republi.

� Mobile Communiations and Seurity, talk at TATRACRYPT

2001, Liptovský Ján, Slovak Republi.

� Seurity in E�Business, talk at the BEST summer ourse, Au-

gust 15, 2001, FEI STU, Bratislava, Slovak Republi.
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� A Probabilisti Approah to Weight Complexity of Binary Se-

quenes, talk at Eliteh 2001, Bratislava, Slovak Republi.

� Identi�ation Protools Seure Against Reset Attaks, talk at

the seminar "CRYPTOLOGY: The Elements and Appliations

in Banking VIII.", 2001, FEI-STU, Bratislava, Slovak Republi.

� Does Enryption With Redundany Ensure Authentiity, talk

at the seminar "CRYPTOLOGY: The Elements and Appli-

ations in Banking VIII.", 2001, FEI-STU, Bratislava, Slovak

Republi.

� Cryptanalysis of the MD4 Hash Funtion, talk at the CRYPTO

seminar, Marh 13, 2002, FEI-STU, Bratislava, Slovak Repub-

li.

� Some Problems Conerning Latin Squares and Their Crypto-

graphi Appliations, talk at HAJDUCRYPT 2002,Debreen,

Hungary.

� Cryptanalysis of the Self-Shrinking Generator, talk at SCAM
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� Digital Signatures, talk for the Lazar Consulting Company, O-

tober 2002, BCPB, Bratislava, Slovak Republi.

� Order of the National Seurity Authority of the Slovak Re-

publi pursuant to the Eletroni Signature Law, talk at the

CRYPTO seminar, Otober 9, 2002, FEI-STU, Bratislava, Slo-

vak Republi.

� New Stream Ciphers, talk at the seminar "CRYPTOLOGY:
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STU, Bratislava, Slovak Republi.

� Attaks on the A5 Stream Cipher, talk at the seminar "CRYP-
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� Cryptanalysis of a File Enoding System Based on Quasigroup,
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� Cryptanalysis of One Hash Funtion Based on Quasigroup, talk

at TATRACRYPT 2003, Bratislava, Slovak Republi.

82
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� On One Hash Funtion Based on Quasigroup, talk at the Con-

ferene "Mikulá²ská kryptobesídka", Prague, Czeh Republi.
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