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1 Introduction

Cryptology. Formed from the Greek words kryptós (hidden) and lógos (word). In today’s

information society, cryptology as the science of hidden, disguised information became

one of the main tools for secure communication, privacy, trust, access control, electronic

payments, electronic voting, and for countless other fields.

Cryptology is concerned with three dominant areas. Cryptography, the science of

designing secure schemes, cryptanalysis, the science of breaking them, and steganography,

the science of hiding information.

The goal of cryptanalysis is to find some weaknesses or insecurity in a cryptographic

scheme. Cryptanalysis might be undertaken by a hostile attacker, attempting to subvert

a system, or simply by the designer wishing to evaluate whether a proposed cryptographic

scheme is secure.

In the past, the use of cryptography was a privilege reserved for armies, governments,

and highly skilled specialists. This is no longer true. Cryptographic schemes become

available for everyone. As cryptography evolved over the years, so did cryptanalysis.

However, unlike cryptography which is a clearly defined science, cryptanalysis is still as

much an art as it is a science. Success in cryptanalyzing a cryptographic scheme is a flash

of inspiration almost as often as it the result of using cryptanalysis techniques alone.

Classical cryptanalysis involves an interesting combination of analytical reasoning,

application of mathematical tools, pattern finding, patience, determination, and of course

luck.

On the other hand, modern cryptanalysis is almost entirely mathematized. For

example, public-key cryptography requires a fundamentally different type of cryptanalysis

than is used for cryptanalysis of private-key encryption schemes. Because public-key

cryptography relies on hard mathematical problems, its cryptanalysis is essentially

research into solving the underlying mathematical problems. Cryptanalysis of public-key

cryptosystems is therefore very similar, virtually indistinguishable from research in any

other area of mathematics. In addition, various academic relaxations are taken into

account while cryptanalyzing a given encryption or other cryptographic scheme. These are

discussed later in this dissertation. Finally, the modern cryptanalysis is not only concerned
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with encryption schemes. It covers analysis, weakness finding, and breaking of vast

other cryptographic schemes - such as signature schemes, cryptographic hash functions,

cryptographic protocols, and many others. Furthermore, the modern cryptanalysis is also

concerned with fault and side channel attacks.

1.1 Goals of the dissertation

The major goal of this dissertation is to extend the knowledge in cryptology, namely in

cryptanalysis. My research interests are mainly in public-key cryptosystems and their

underlying problems. However, this dissertation explore and investigate both public-key

and private-key cryptosystems, in order to contemplate, conclude, and especially extend

the current issues in cryptology.

The minor goal of this dissertation is to present my capacity for both independent,

original self-directed work and teamwork, that I believe constitute the skills of a researcher

at the doctoral level.

This dissertation presents four research papers that in one way or another contribute

to the area of study of cryptanalysis. Although the four papers explore different

cryptographic schemes with different underlying mathematical problems, the outcome of

the research exhibits the wide impact a cryptanalysis may result in.

In the first paper, the cryptanalysis of a cryptosystem based on the word problem

leads to the design of another, more secure one. This is an example of a straightforward

application of cryptanalytic results in cryptography. The research contained in this paper

was presented at the WartaCrypt ’04 conference in Bedlewo, Poland on July 1-3, 2004.

Parts of the research were also presented at the Southeastern Weekend Algebra Meeting in

Hammond, Louisiana on November 5-7, 2004, and at the 69th Florida Academy of Sciences

Annual Meeting in Tampa, Florida on March 18-19, 2005.

In the second paper, the symmetry of the NTRU-like lattice (birotation) leads to the

design of a faster algorithm for such lattice basis reduction. Hence the careful analysis of

the underlying problem allows for a speedup in a known attack. The paper was presented

at the Third Pythagorean Conference in Rhodes, Greece on June 1-7, 2003.

The third paper, cryptanalysis of a block cipher based on the Hopfield neural network,

results in a solution for an old matrix conjugacy problem with many applications. The

paper was presented at the MoraviaCrypt ’05 conference in Brno, the Czech Republic on

June 15-17, 2005.
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Last but not least, the fourth paper of this dissertation deals with recently proposed,

poorly designed symmetric ciphers that are susceptible to classical and trivial attacks.

The paper was presented at the TatraCrypt ’03 conference in Bratislava, Slovakia on June

26-28, 2003.

Sections 3.1.7, 3.2.7, 4.1.5, and 4.2.6 summarize the studied problems and provide

some open problems for the further research.

1.2 Outline of the dissertation

There is a wide variety of cryptanalytic attacks against encryption schemes, and they

can be classified in several ways. One distinction concerns what an attacker knows and

does in order to learn secret information. The details of this classification are in the next

Section together with some basic definitions of the terms. An outline of many cryptanalytic

techniques is also provided.

The Section 3 on page 9 contains cryptanalysis of two public-key cryptosystems. This

comprise the main part of this dissertation. The analysis of the first cryptosystem based on

the combinatorial group theory also led to the proposal of a new encryption scheme based

on similar properties as those analyzed. The cryptanalysis of the second cryptosystem

based on the hardness of the lattice problems contains a novel non-deterministic algorithm

for lattice basis reduction. This algorithm in many cases shows more promise than the

algorithms known before.

Finally, the Section 4 on page 33 consists of cryptanalysis of two private-key

(symmetric) cryptosystems. Although the cryptanalytic results are not so significant from

the cryptological point of view, they led to a interesting observation. Namely, there are

still cryptosystems proposed today that can be attacked using classical methods. As a

byproduct a solution to an old mathematical problem was determined while cryptanalyzing

of one of these cryptosystems.

Note, that each research topic is summarized at the end of the particular section.
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2 Cryptanalysis

Cryptanalysis is a part of cryptology. The purpose of modern cryptanalysis is to analyze

existing cryptosystems in order to reveal their weaknesses. As a by-product, the gained

knowledge from cryptanalysis is then applied in cryptography for the purpose of design of

more secure cryptosystems.

2.1 A few definitions

A person who performs cryptanalysis is called a cryptanalyst. However, traditionally and

for mostly historical reasons, this person is often referred to as an attacker, adversary,

opponent, eavesdropper, or codebreaker.

The general assumption in cryptanalyzing any cryptosystem is the assumption that

the attacker has a complete knowledge of the cryptosystem being analyzed. This is known

as the Kerckhoffs’ principle[29]. On the other hand, if an analyzed cryptosystem is being

hidden from the attacker, this would of course made the attacker’s task more difficult.

Fortunately, it turns out that the security of a cryptosystem cannot be based on this fact,

because a knowledge of the cryptosystem can be obtained, assuming enough resources

(time, funds, and minds). Therefore, the first lesson for cryptographers coming from

cryptanalysis is that the security of a cryptosystem must solely depend on a key, not on

the obscurity of the cryptosystem.

From now on, assume that an analyzed cryptosystem is always known, therefore its

security is not based on security-through-obscurity paradigm just described.

An attacker’s goal is to break the given cryptosystem. That means either to obtain a

decryption key (complete break) or the ability to decrypt previously unseen ciphertext(s)

(partial break).

To differentiate among the information given to the attacker, the following basic attack

models are helpful. Some information comes from [44].

Ciphertext-only attack: An attacker possesses one or more ciphertexts.

This is the weakest type of attack. The attacker does not require any additional
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information, just ciphertext(s). In reality, this is the most common scenario, since

an adversary can easily obtain the ciphertexts. The goal of the attacker is either to

decrypt the ciphertexts in possession or obtain the decryption key.

From the security point of view, if a cryptosystem is susceptible to this attack, the

cryptosystem is the least secure one (in comparison to the other attacks).

Known-plaintext attack: An attacker possesses one or more plaintexts and

corresponding ciphertexts.

The attacker is given plaintext-ciphertext pair(s). The goal is to either determine

the decryption key or to decrypt previously unseen ciphertext(s).

Chosen-plaintext attack: An attacker can choose plaintext messages and obtain the

corresponding ciphertexts.

In this scenario, the attacker gains a black-box access to the encryption. That is,

the attacker is able to encrypt any plaintext but does not know the secret key.

Mathematically speaking, the attacker has access to the oracle O that for any

plaintext on input outputs the corresponding ciphertext. The goal of the attacker

is again either to determine the decryption key or decrypt a previously unseen

ciphertext(s).

Chosen-ciphertext attack: An attacker can choose ciphertext messages and obtain the

corresponding plaintexts.

In this scenario, the attacker gains a temporary black-box access to the decryption.

That is, the attacker is able to decrypt ciphertext but does not know the secret key.

Mathematically speaking, the attacker has access to the oracle O that for any

ciphertext on input outputs the corresponding plaintext. If the goal of the attacker

is to determine the decryption key, the attacker can feed any ciphertext as input.

However, if the goal of attacker is to decrypt a ciphertext y, then the attacker can

feed any ciphertext as input to the oracle except the ciphertext y. In other words,

the goal of the attacker is to determine the decryption key or to read previously

unseen ciphertexts.

2.2 Techniques of cryptanalysis

Almost all of the current techniques of cryptanalysis are based on mathematics. This

is mainly because cryptography itself has been vastly mathematized. Those techniques

that are not based on mathematics are usually techniques that are not used to attack the
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cryptosystem itself but its given implementation. Strictly speaking, these are the attacks

afforded by incorrect security engineering.

One very important observation in cryptanalysis is that there may be alternative keys

that perform the same decryption. This was first documented by Adi Shamir in 1982

while cryptanalyzing Merkle-Hellman knapsack cryptosystem[42], but such keys were also

used in breaking ENIGMA, or they exist for RSA, too. The implication is that it may be

possible to find an alternative key in a much easier way (and therefore faster way) than

the original decryption key.

Mathematical techniques:

The areas of mathematics that are relevant to cryptanalysis are: probability and

statistics, linear algebra, number theory, group/ring/field theory, complexity theory,

combinatorics, graph theory, etc. Advanced mathematical, parallel, and distributed

programming is often an essential requirement to the cryptanalysts.

Listing and describing all the cryptanalysis techniques available today is out of the

scope of this dissertation, if not impossible. Therefore, very briefly, a few techniques with

examples and references are provided. The relevant techniques are described in detail in

the following sections.

A great source - a survey of techniques used in cryptanalyzing symmetric block

cryptosystems is [37]. This source includes differential and linear cryptanalysis methods,

too.

In addition to this two statistical attacks against block ciphers, probability and

statistics provides many tools[44] for a cryptanalyst. Ranging from simple techniques

as frequency analysis and counting, through various probabilities about a given language,

to the often used Birthday paradox theorem.

It turns out that studying algebraic properties of a cryptosystem is often very helpful

in analyzing its security. Some cryptosystems can be described in previously unconsidered

algebraic ways. Similarly, in recent years, the lattice reduction related problems become

an important tool not just in cryptography but also in cryptanalysis. Considering and

using these new approaches (in comparison to the original underlying problems and their

complexity) usually lead to a faster acquisition of decryption keys.

Non-mathematical techniques::

The currently known non-mathematic techniques are those that try to take advantage

of flawed implementations of cryptographic schemes. These techniques are classified as
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side-channel attacks and fault attacks, and are afforded by careless security engineering.

Further, these techniques rely on observing and exploiting of available physical

information.

A typical example of a side-channel attacks is a reaction attack[21]. In such scenario, if

the attacker is possible to observe reactions of a real person or machine while performing

encryption/decryption, then the attacker is able to gain a significant knowledge either

about the message or the decryption key itself.

Other well-known side-channel attack techniques are the simple and differential power

analysis, time analysis, analysis of radiation and emission (electromagnetic, sound, . . . ),

and analysis of patterns (memory access, hyperthreads, . . . ).

In fault attacks, the attacker is allowed to actively alter the running cryptosystem.

Using physical means the attacker tries to induce faults in order to extract information

about the message or the decryption key.

The fault attacks can use as subtle means as operating at different frequency, change of

current, change of temperature. Or not so subtle, often extreme, means - freezing, x-ray,

laser, . . .

The lesson from these side-channel and fault attacks is that cryptosystems must be

implemented in such a way that no reaction can be observed, and every value that can be

measured should have no relevant significance to the message or the key currently processed

by the cryptosystem. Fortunately, avoidance of and protection from these attacks is often

straightforward.

2.3 Is cryptanalysis dead?

Herbert Yardley, a famous US codebreaker, in his 1931 book, The American Black

Chamber, describes the one-time tape cipher machine (one-time pad). Of it he says,

Sooner or later all governments, all wireless companies, will adopt some

such system. And when they do, cryptography [he meant cryptanalysis] as

a profession, will die.

In a way, the cryptanalysis has been dead for many years[28]: Edward H. Hebern’s

cipher machines and Arthur Scherbius’ Enigma machines, used in World War II, could

not be cryptanalyzed in those years by study of just the ciphertext, no matter how many

were available. Nor could they be recovered by exhaustive search, since it was beyond
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the technology available that time (computers available today would be able to solve it).

Therefore, pure cryptanalysis was already dead.

So, cryptanalysis was powerless against good cryptosystems as early as World War II.

And it is still powerless against good cryptosystems today. Many cryptosystems known

today cannot be broken by any known techniques of cryptanalysis. Indeed, in such systems

even a chosen-plaintext attack cannot yield the decryption key. In a sense, then, traditional

cryptanalysis is dead.

However, breaking a cryptosystem does not necessarily mean finding a practical way

for an attacker to recover the plaintext from just the ciphertext. In academic cryptanalysis,

the rules are relaxed considerably[37]. Breaking a cryptosystem simply means finding a

weakness in the cryptosystem that can be exploited with a complexity less than brute-force.

Never mind that brute-force might require 2128 encryptions; an attack requiring 2110

encryptions would be considered a break. Breaks might also require unrealistic amounts of

known or chosen plaintext - 256 blocks - or unrealistic amounts of storage - 280. Simply put,

any weakness that proves that the cryptosystem is not as secure as advertised is considered

a break. Another often encountered relaxation is the attack on a similar cryptosystem.

This includes an attack against a block cipher with reduced rounds or an attack against

a simplified variant of the original cryptosystem.

To conclude, cryptanalysis is not dead. The pure/traditional cryptanalysis just evolved

into a modern cryptanalysis that using various (academic) relaxations looks for weaknesses

in the cryptosystems. Although the cryptanalysis of the cryptosystems often does not lead

to practical breaks of the systems, most of the knowledge gained from the weaknesses is

then in turn applied back in in design of new, more secure cryptosystems.
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3 Public-Key Cryptosystems

The first major part of this dissertation consists of cryptanalysis of two public-key

cryptosystems.

A public-key cryptosystem based on combinatorial group theory is first described.

The necessary combinatorial group theory definitions and results are mentioned. A new,

previously unpublished, chosen-ciphertext attack of polynomial complexity is described.

In addition to criticizing and attacking the Wagner-Magyarik public-key cryptosystem, a

new public-key cryptosystem is proposed. This is an example where cryptanalysis of one

cryptosystem led to design of another one.

The lattice basis reduction is a powerful technique in cryptanalysis. It can be used

to break many different kind of problems. Here, it is shown how it can be used to

find the private-key of the original NTRU public-key cryptosystem. A symmetry of

the NTRU-lattice is described. A randomized hill-descending algorithm that uses this

symmetry is proposed to reduce the NTRU-lattice, hence obtaining the private-key faster

than traditional methods. Moreover, instances of the algorithm can run independently in

parallel, thus providing linear speedup.

3.1 Public-key Cryptosystems Based on Combinatorial Group Theory

In this section, we[6] analyze and critique the public-key cryptosystem, based on

combinatorial group theory, that was proposed by Wagner and Magyarik in 1984. Their

idea is actually not based on the word problem as they claim, but on another, generally

easier, premise problem. Moreover, the idea of the Wagner-Magyarik system is vague, and

it is difficult to find a secure realization of this idea. We propose a public-key cryptosystem

inspired in part by the Wagner-Magyarik idea, but we also use group actions on words.

The security evaluation of these schemes leads to interesting new complexity problems in

combinatorial group theory.
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3.1.1 Introduction

A number of public-key cryptosystems based on combinatorial group theory have been

proposed since the early 1980s, the first of which was probably the outline of Wagner

and Magyarik [45]. A good overview of various other group-based systems is given in the

dissertation of M.I. Gonzalez-Vasco[16]; see also [17].

First, a critique of the Wagner-Magyarik cryptosystem is proposed, which is followed

by a proposal of a public-key cryptosystem based on finitely presented groups with hard

word problem, and which are also transformation groups.

3.1.2 Some combinatorial group theory

Some basic definitions from combinatorial group theory are provided. More details and

rigor can be found in texts like [31] or [33].

Let G be a group, defined by a presentation (X, R), where X = {x1, x2, . . .} is a set

of generators and R = {r1, r2, . . .} is a set of relators. When the sets X and R are both

finite we say that the group G is finitely-presented. A word w over X is a finite sequence

of elements of the set X ∪X−1. The empty word is the empty sequence, of length 0. A

word which defines the identity element in the group G is called a relator. We say that

two words w and w′ are equivalent for the presentation (X, R) if and only if the following

operations, applied a finite number of times, transform w into w′:

(T1) Insertion of one of the relators r1, r
−1
1 , r2, r

−1
2 , . . . ∈ R ∪ R−1, or of a trivial relator

(of the form xix
−1
i or x−1

i xi with xi ∈ X) at the beginning of a word, at the end of

a word, or between any two consecutive symbols of a word.

(T2) Deletion of one of the relators r1, r
−1
1 , r2, r

−1
2 , . . . , or of a trivial relator, if it forms

a block of consecutive symbols in a word.

An application of one transformation of the form (T1) or (T2) is called a rewrite step.

Every element g of G = (X, R) can be described by a word over X ∪ X−1, usually in

many ways; the length of the shortest word that describes g is called the word length of

g. For a word w over some fixed alphabet we denote the length of w by |w|; also, for

g ∈ G = (X, R) we denote the word length of g by |g|.

The word problem of a group with generating set X, as introduced by Max Dehn in

1911, is the following decision problem: For an arbitrary word w over X ∪ X−1, is w

equivalent to the empty word?
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In the 1950’s, Novikov and Boone independently showed that there are finite group

presentations whose word problem is undecidable. It is an important fact that the

decidability and the complexity of the word problem of a finitely generated group depend

only on the group, and not on the generators or the presentation chosen (provided that

one sticks to finite generating sets). In other words, if G has decidable word problem for

some finite generating set X then G has decidable word problem for every finite generating

set. Concerning complexity, a change of the finite generating set changes the complexity

only linearly (see [32]). Therefore, we are allowed to talk about “the word problem of a

group G” without referring to a specific presentation.

It was proved more recently that there are finitely presented groups whose word

problem is NP-complete [36], [7], or whose word problem is coNP-complete [4].

By a group with easy word problem we will understand a group whose word problem

is decidable in deterministic polynomial time. The other groups are said to have a hard

word problem.

We will also deal with the following variant of the word problem, which we call the

word choice problem. Let us fix a group G with a finite generating set X, and let us fix

two words w0 and w1 over X ∪X−1.

Input: A word w over X ∪X−1.

Premise: w is either equivalent to w0 or to w1.

Question: Is w equivalent to w0 ?

Note that this is a “premise problem”, i.e., a problem with restrictions (pre-condition)

on the input; an algorithm for solving a premise problem can assume that the pre-condition

holds, and is not required to give correct answers (or any answer at all) on inputs that

violate the pre-condition.

The word choice problem is rather different from the word problem. E.g., for a finitely

presented group, the word choice problem is always decidable; and for a group with word

problem in NP or in coNP, the word choice problem is in NP ∩ coNP. One sees from these

examples that the word choice problem can be much easier than the word problem.

3.1.3 The Wagner-Magyarik cryptosystem

In 1984 Wagner and Magyarik [45] proposed a public-key cryptosystem “based on the

word problem”. The general scheme follows.

Setup: Let X be a finite set of generators, and let R and S be finite sets of relators such
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that the group G = (X, R) has a hard word problem, and the group G′ = (X, R∪S)

has an easy word problem. Choose two words w0 and w1 which are not equivalent

in G′ (and hence not equivalent in G either).

Public key: The presentation (X, R) and the words w0 and w1.

Encryption: To encrypt a single bit i ∈ {0, 1}, pick wi and transform it into a ciphertext

word w by repeatedly and randomly applying the transformations (T1) and (T2)

from page 10 for the presentation (X, R).

Decryption: To decrypt a word w, decide in the group G′ which of ww−1
0 and ww−1

1 is

equivalent to the empty word for the presentation (X, R ∪ S).

The private key is the set S. Actually, this is not sufficient (and [45] is not very

precise at this point): the public key should be a deterministic polynomial-time

algorithm for the word problem of G′ = (X, R∪S); indeed, just knowing S does not

automatically and explicitly give us an efficient algorithm (even if such an algorithm

exists).

To make their system concrete, Wagner and Magyarik introduce the following collection

of finitely-presented groups: The set of generators is X = {x1, x2, . . . , xm} and the set of

relators R is any set of words of the following three types:

(R1) yiyjyky`y
−1
i y−1

k y−1
j y−1

`

(R2) yiyjyky
−1
i y−1

j y−1
k

(R3) yiyjyky
−1
i y−1

k y−1
j

where yi, yj , yk, and y` stand for generators or inverses of generators, not necessarily

distinct. We will call such presentations Wagner-Magyarik presentations.

For the private key S they propose any set of words of the following three types:

(S1) xi (elimination of a generator)

(S2) xix
−1
j (collapse of two generators to one)

(S3) xixjx
−1
i x−1

j (commutator of two generators)

where xi and xj are any generators. A requirement on S is that it should contain enough

relators so that the group G′ = (X, R ∪ S) is isomorphic to a “partially commutative free

group”, i.e., a group generated by a subset of X and presented by a few commutation

12



relations between generators. This will guarantee that the word problem of G′ can be

decided in polynomial time [46]. The words w0, w1 need to be chosen so that they are not

equivalent in G′.

3.1.4 Critique of the Wagner-Magyarik cryptosystem

1. Vagueness of the general scheme: In its general form the Wagner-Magyarik

cryptosystem is far too vague. To turn their idea into an actual cryptosystem, design

questions would need to be answered:

(D1) How do we find appropriate presentations (X, R) and (X, R ∪ S), as well as a

polynomial-time algorithm for the word problem of (X, R ∪ S)?

(D2) How do we find appropriate words w0 and w1?

(D3) How is the random application of the transformations (T1) and (T2) carried out,

and when does it stop?

(D4) Finally, once all these design choices have been specified, how secure is this

cryptosystem?

2. Vagueness and insecurity of the concrete specification: In their specific example, Wagner

and Magyarik give an answer to design question (D1), albeit an unsatisfactory one. Design

questions (D2), (D3) and (D4) are left open. Concerning (D1), it is an open problem

whether the word problem of the Wagner-Magyarik presentations is hard. It is certainly

not hard for every choice of (R1), (R2), (R3); e.g., some of the choices lead to commutative

groups. This means that in the Wagner-Magyarik system, key generation is problematic:

making sure that the chosen R makes the word problem of (X, R) hard is itself apparently

a hard problem. Concerning (D4), a reaction attack[18] and a chosen-ciphertext attacks

are possible, both of complexity O(m2).

3. Chosen-ciphertext attack: In addition to the published reaction attack[18], it is possible

to obtain the private key through a chosen-ciphertext attack: For any relator s of type

(S1), (S2), and (S3), the attacker considers the word w0s, encrypts it (by applying the

transformations (T1) and (T2) several times) and then observes the decryption, say w.

If w is equivalent to w0 in G′ the attacker learns that s belongs to S (or is implied by

relators in S, which means that one might as well assume that it is in S). The complexity

of this attack is O(m2).
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4. Alternative keys: Another problem (already mentioned in [45]) is the existence of

alternative keys. More precisely, in order to decrypt one does not explicitly need the

presentation (X, R ∪ S). Any homomorphic image of G with easy word problem will

decrypt, as long as it separates w0 and w1. So, even if S might be hard to find, one also

has to prove that any homomorphic image of G with easy word problem, is hard to find;

this adds to the difficulty of proving the security of any concrete cryptosystem that follows

the Wagner-Magyarik approach.

5. Word choice problem: An analytical flaw in the Wagner-Magyarik paper (and

subsequent papers that comment on their paper) is the claim that the system is based on

the word problem. In reality, it is based on the word choice problem, that we introduced

earlier. We pointed out already that the word choice problem can be much easier than

the word problem. In particular, it seems unlikely that this system could ever lead to

NP-completeness. Instead, (NP ∩ coNP)-completeness is more likely to be the highest

difficulty that we can hope for, regarding robustness to attack. It is generally believed

that NP ∩ coNP is a strict subclass of NP. Although no (NP ∩ coNP)-complete decision

problem is known (see e.g., [13], page 116), it is not hard to see that for every NP-complete

decision problem one can construct a (NP ∩ coNP)-complete premise problem. See the

next section for details.

6. In summary: The Wagner-Magyarik cryptosystem is not a cryptosystem, but an

approach towards finding new public-key cryptosystems. As a research approach it is

worthwhile, however, leading to interesting (yet unsolved) problems.

3.1.5 A PKC based on finitely presented transformation groups

We describe a public-key cryptosystem that has some similarity with the Wagner-Magyarik

system, as far as the encryption is concerned. However, we use a group G whose word

problem is known to be coNP-complete. The main difference is that for decryption we use

the action of the group on words (instead of Wagner and Magyarik’s homomorphic image

G′).

Our contribution is that (referring to point 1 in our critique of the Wagner-Magyarik

system) we answer the design questions (D1) and (D2). Design question (D3) is addressed,

but our method needs further study, and probably further improvements. Regarding

question (D4), the security of our scheme is much better motivated than the security of

the original Wagner-Magyarik system, but it is necessarily limited (due to the multitude

of hard open problems in complexity, combinatorial group theory, and cryptography).
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We pick a finitely presented group G = (X, R) together with a faithful transitive action

of G on {0, 1, 2}∗ (the set of all strings over the alphabet {0, 1, 2}). We can assume that

the word problem of G is coNP-complete. We conjecture that the word choice problem

of G is (NP ∩ coNP)-complete. The next section deals with a semigroup version of this

question.

An example of such a group is constructed in [4], where it is called G =

〈Gmod 3
3,1 (0, 1; #) ∪ {κ321}〉; it is closely related to the Higman-Thompson group G3,1

(generalizing Richard Thompson’s infinite finitely presented simple group G2,1). This

group has the property that if two elements g0, g1 ∈ G of word length ≤ n are different

then there exists a word z ∈ {0, 1, 2}∗ of length O(n) on which g0 and g1 act differently.

Moreover, given a word z ∈ {0, 1, 2}∗ and a word w over a finite generating set of G,

the word (z)w ∈ {0, 1, 2}∗ (resulting from the action of w on z) can be computed in

deterministic time O(|z|+ |w|). For a definition of the Higman-Thompson groups, see also

[5], [39] and [22].

Key generation: We first pick a word x ∈ {0, 1, 2}∗. For encrypting and decrypting

0 we choose a word z ∈ {0, 1, 2}∗ and, similarly, for 1 we choose a word u ∈ {0, 1, 2}∗; the

three words x, z, u should be long enough so that it is impossible to guess them. For 0, we

also choose m − 1 “intermediary words” zi ∈ {0, 1, 2}∗ (with i = 1, . . . , m − 1); similarly,

for 1 we choose m−1 “intermediary words” ui ∈ {0, 1, 2}∗ (with i = 1, . . . , m−1). Here, m

is a security parameter chosen so that 2m or 4m is very large; e.g., we could have m = 100

or m = 200. The two sets {z} ∪ {zi : i = 1, . . . , m− 1} and {u} ∪ {ui : i = 1, . . . , m− 1}
are required to be disjoint.

Next, we choose a “system of words” over X∪X−1 for encrypting a bit 0, and a system

of words over X ∪X−1 for encrypting a bit 1. A system of words (say for encrypting 0) is

a sequence of m finite sets (Z1, . . . , Zm). Each set Zj is a small set of words over X ∪X−1

(with e.g., 4 elements). Each element w ∈ Zj has the property that (zj−1)w = zj , for

j = 2, . . . , m− 1; also, for each element w ∈ Z1, (x)w = z1, and for each element w ∈ Zm,

(zm−1)w = z. For 1, a similar system (U1, . . . , Um) of sets of words is chosen, with similar

properties regarding x, uj (j = 1, . . . , m − 1), and u. The action diagram below shows

the role of the intermediate words zi ∈ {0, 1, 2}∗ and the action of the words in Zj on the

intermediate words:

x
Z1−→ z1

Z2−→ z2
Z3−→ . . .

Zi−1−→ zi−1
Zi−→ zi

Zi+1−→ . . .
Zm−1−→ zm−1

Zm−→ z

The private key is (x, z, u). (The words zi and ui are required to remain secret but

are not needed after key selection, i.e., they are not used in encryption or decryption.)
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The public key consists of the presentation (X, R), as well as the two set systems

(Z1, . . . , Zm) (for 0), and (U1, . . . , Um) (for 1).

Encryption: To encrypt a bit 0, randomly choose an element wj in each set Zj

(j = 1, . . . , m), and concatenate these elements to form the word w1w2 . . . wm. Next,

as in the Wagner-Magyarik system, we rewrite w1w2 . . . wm by applying the relators of

G = (X, R) (as well as the trivial relators) randomly a “sufficiently large” number of times;

see the discussion below concerning this rewriting. This yields some word W0, encrypting

0. To encrypt a bit 1, the procedure is similar, but now the set system (U1, . . . , Um) is

used.

Decryption: With a ciphertext w, compute (x)w. If (x)w = z, decrypt as a 0; if

(x)w = u, decrypt as a 1.

Some design issues:

1. The words x, z, u ∈ {0, 1, 2}∗ are selected uniformly at random among words of

length between n and 2n. Here n is a security parameter; e.g., n = 100 or n = 200.

Similarly, the intermediary words are selected uniformly at random among words of

length between n/2 and 4n.

Another security parameter is m; e.g., m = 100 or m = 200.

2. How is the “system of words” (Z1, . . . , Zm) (and similarly (U1, . . . , Um)) determined?

For each pair of intermediary words (zj , zj+1) (for 0) we design a boolean circuit that

maps zj to zj+1; similarly, we design a boolean circuit that maps uj to uj+1. These

two circuits should be as similar as possible (in fact, when zj 6= uj , the same circuit

could be used for both; we then can make them different in random details). If we

want Zj+1 (and Uj+1) to have 4 elements we repeat this four times. Next, we use

the correspondence between circuits and elements of the Higman-Thompson group

G3,1 (see [4]) to construct elements of G that simulate these circuits.

3. Random rewriting: The rewriting of an element from Z1 × . . . × Zm (respectively

from U1 × . . . × Um) could be done as follows. First enlarge the presentation G =

(X, R), by including R−1 (the set of inverses of the words in R) into the set of

relators, and adding all cyclic permutations of words in R ∪ R−1 as well; this gives

us the “symmetrized presentation” (X, Rs) of G. Next, we turn (X, Rs) into a

string rewriting system by taking all rules of the form u → v for any (possibly

empty) strings u, v over X ∪X−1 such that u−1v is a relator in Rs. We also add the

rules 1→ a−1a and a−1a→ 1 for any a ∈ X ∪X−1; here, 1 is the empty string. For

rewriting a word w of length n we do the following:
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Procedure A: 1. choose a position in the word obtained so far; 2. choose a rule,

and apply it at the chosen position (if the rule doesn’t apply at this position, go

back to step 1.).

After n repetitions of procedure A, we check whether every letter of w has been

rewritten (this assumes that we marked the original letters of w); if not all letters

have been rewritten, run procedure A another n times; keep repeating n runs of

procedure A until all letters of w have been rewritten. At this point, most positions

of w will have been rewritten many times.

Now we could mark all the letters in the word w′ obtained so far, and start over

with the rewriting until all positions in w′ have been rewritten. All this could be

repeated a few more times.

The encryption of 0 first chooses one out of 4m elements from Z1 × . . . × Zm

(respectively from U1 × . . . × Um for 1). The rewriting process then makes it hard

to recognize what system of sets the chosen element w1 . . . wm originally came from.

The rewrite rules are applied everywhere in the word, so that no local pattern

from a set Zj or Uj (j = 1, . . . , m) remains. Because of the exponential number

of choices for w1 . . . wm, the role of the rewriting is less important than in the

original Wagner-Magyarik idea. The role of the systems of words (Z1, . . . , Zm)

and (U1, . . . , Um) is precisely to (exponentially) strengthen the confusion caused

by rewriting, and this is one of the contributions of our paper. But the rewriting

is nevertheless important, and research is needed to determine how (and how much

of) the random rewriting should be done.

4. Security, open problems: A alternative key is any triple (x′, z′, u′) of words

over the alphabet {0, 1, 2}, with the properties that (x′)v = z′ for any word

v that encrypts 0, and (x′)w = u′ for any word w that encrypts 1. For a

known-plaintext or a chosen-ciphertext attack, suppose the attacker has a collection

of plaintext-ciphertext pairs (0, vi), (1, wj) for i = 1, . . . , m, and n = 1, . . . , n.

Finding (alternative) keys is the search version of the common action problem of

groups elements, which we conjecture to be NP-hard; see the next section.

Our complexity analysis in this paper refers to worst case complexity. For

security, almost-all case complexity, or at least average case complexity is needed.

Unfortunately, almost-all case and average case complexity are still relatively poorly

explored, and still have definitional problems.

Other open problems:

• Is the word choice problem of the group G = 〈Gmod 3
3,1 (0, 1; #) ∪ {κ321}〉 an
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(NP ∩ coNP)-complete premise problem? (The next section gives a result for

semigroups.)

• Is the common action problem of the group G = 〈Gmod 3
3,1 (0, 1; #) ∪ {κ321}〉

NP-complete? (The next section gives a result for circuits and a connection

with G.)

5. Other groups that could be used in our public-key cryptosystem:

The Higman-Thompson group G3,1 with infinite generating set ∆3,1 ∪ {τ0,i : i > 0},
as studied in [4], could be used. This group has a finite presentation, and over this

finite presentation the word problem is easy. However, over the infinite generating

set ∆3,1 ∪ {τ0,i : i > 0} the word problem of G3,1 is coNP-hard. This group can be

used directly to simulate circuits.

The finite symmetric group SN could be used; here N = 2n, and n is a security

parameter, e.g., n = 100. Although this group is finite, its size is exponential in

the security parameter. It is an open problem whether SN has presentations of size

linear in n. We think of SN as acting on bit-strings of length n, hence it is natural

to use elements of SN for representing circuits.

3.1.6 Additional observations and proofs

(NP ∩ coNP)-complete premise problems:

We obtain an (NP ∩ coNP)-complete word choice problem for a finitely presented

semigroup. For groups it is an open problem whether there are (NP ∩ coNP)-complete

word choice problems.

Let Snp = (X, R) be a finitely presented semigroup with NP-complete word

problem, as constructed in [3]; this presentation was derived from any nondeterministic

polynomial-time Turing machine that recognizes an NP-complete language.

Theorem 3.1.1. The word choice problem of the finitely presented semigroup Snp above

is an (NP ∩ coNP)-complete premise problem.

Proof. Let L be any problem in NP ∩ coNP. Consider a nondeterministic polynomial-time

Turing machine that recognizes L and consider also a nondeterministic polynomial-time

Turing machine that recognizes the complement L. Without loss of generality we can

assume that these two Turing machines are actually the same Turing machine (let’s call

it M), except for the accept states: L is accepted by M using accept state q1, and L is

accepted by M using accept state q2. In [3] the acceptance problem “does M accept a
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word w using accept state qi?” (for i = 1, 2) is reduced to the word problem “F (q0w) =Snp

F (qi)?”; here, q0 is the start state of M , and F is a linear-time computable function from

the words over the symbol set of M to the words over X; F is the function that reduces

the decision problem of M to the word problem of Snp. Observe that the same word

F (q0w) is used for both L and L. Therefore, w ∈ L iff F (q0w) =Snp
F (q1), and w /∈ L iff

F (q0w) =Snp
F (q2); hence also, F (q1) 6=Snp

F (q2). So, F reduces the language L to the

word choice problem of the semigroup Snp, relative to the two words F (q1) and F (q2).

The common action problem:

Let G be a group generated by a finite set X ⊂ G and acting faithfully (by total or

partial injective or bijective maps) on the set A∗ (the set of all words over a finite alphabet

A). The common action problem problem of G (with generating set X, acting on A∗) is

specified as follows:

Input: words w1, . . . , wn over X ∪X−1;

Question: does there exist (x, y) ∈ A∗ × A∗ such that for each i = 1, . . . , n: (x)wi = y

?

The search version of this problem consists of outputting any such pair (x, y), rather than

just finding out whether there is one.

The circuit common action problem is specified as follows:

Input: combinational circuits Ci (with I/O function fi : {0, 1}n → {0, 1}n), for i =

1, . . . , k;

Question: is there (x, y) ∈ {0, 1}n × {0, 1}n such that for each i = 1, . . . , k: fi(x) = y ?

Theorem 3.1.2. The common action problem for combinational circuits is NP-complete.

Proof. We will reduce the circuit satisfiability problem (which is NP-compete) to the

circuit common action problem. In the circuit satisfiability problem the input is a

combinational circuit and the question is whether there is a circuit input x ∈ {0, 1}n

for which the circuit produces the all 1s output 1n. A circuit C has an input x that

produces the output 1n iff the following two circuits C ′
1, C

′
2 have a common action pair:

C ′
1 on input x first uses C and then checks whether the output of C (on input x) is 1n; if

is, C ′
1 outputs 1n, otherwise C ′

1 outputs 0n. The circuit C ′
2 always outputs 1n. So, x is a

satisfying input of C iff (x, 1n) is a common action pair of C ′
1 and C ′

2, which is iff C ′
1 and

C ′
2 have a common action pair at all.

We would like to reduce the common action problem of circuits to the common action

problem of the group G = 〈Gmod 3
3,1 (0, 1; #)∪{κ321}〉 by using methods similar to those of [4].
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However, those methods only show that the common action problem of G is NP-complete

when we restrict the question to pairs (x, y) with x ∈ 0{0, 1}∗ ∪ 0{0, 1}∗2. It seems likely

that the common action problem of G is NP-complete, but this remains a conjecture.

3.1.7 Summary

The general idea for a public-key cryptosystem proposed by Wagner and Magyarik in

1984, is an interesting subject for research. The original idea is too vague to be called a

cryptosystem, and it is an interesting challenge to make the idea precise in such a way as

to obtain a secure system. Also, the idea needs a better analysis; in particular, it is not

based on the word problem (as has been claimed so far) but on the word choice problem,

which is a less difficult problem and which is related to (NP ∩ coNP)-completeness of

premise problems. It seems possible to construct public-key cryptosystems based on a

combination of finite presentations and transformation groups. Such a system is described

- it is based on groups related to the Higman-Thompson groups. The security evaluation

of these schemes leads to interesting new complexity problems in combinatorial group

theory.

3.2 NTRU and Non-Deterministic Lattice Reduction

The most efficient passive attack on the original NTRU public-key cryptosystem, which

was proposed by D. Coppersmith and A. Shamir [10], is based on finding a short

enough vector in an integral lattice. We[41] show that NTRU lattice possesses a cyclic

automorphism group whose symmetry may be exploited. We present a method for reducing

bases of NTRU integral lattices based on this symmetry. In addition to these methods, we

use hill-descending techniques to combine new and proposed lattice-reduction algorithms.

This approach includes deterministic and non-deterministic components which may be

efficiently parallelized.

3.2.1 NTRU background

The NTRU cryptosystem was originally proposed by J. Hoffstein, J. Pipher, and J.

Silverman [23]. The system was considered to be a public-key cryptosystem by its

proposers even though correctly encrypted messages occasionally failed to decrypt. The

point of this distinction is that security claims for NTRU have been made based on

the assumption that it is indeed a public key system. Some of these claims have been

questioned (see [35]).
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Since its origin, NTRU has undergone several security and performance improvements.

Due to its fast performance and relatively small memory requirements, NTRU is suitable

for applications such as smartcards, mobile devices, and embedded technologies. As such,

NTRU has been accepted to IEEE P1363 family of standards and is currently being

considered for standard by the Consortium for Efficient Embedded Security (CEES).

The security of NTRU is not necessarily based on the difficulty of reducing the NTRU

lattice, but lattice reduction is currently one of the best known practical attacks. It

should be noted here that there is a more efficient attack introduced by Proos [35] based

on exploiting NTRU decryption failures. However, such an attack requires oracle calls (for

a complete description please refer to [35] and [25]).

Even though many changes to the NTRU encryption scheme have been made, the

attacks described here are attacks based on the scheme introduced in [23]. There were

at least two modifications proposed to enhance implementation efficiency but they may

affect security, too.

3.2.2 Notation and preliminaries

For a given positive integer m, let Zm denote the ring of integers modulo m. Let R denote

the quotient ring of polynomials with integer coefficients modulo the ideal (XN − 1); i.e.,

R = Z[X]/(XN − 1), and similarly, Rm = Zm[X]/(XN − 1). For j, k ∈ Z, let R{j, k}
denote the set of all polynomials in R with j coefficients equal to 1, k coefficients equal

to −1, and all other coefficients equal to 0. Also the following notation will be useful:

If x, y ∈ Z, then “x symod y” denotes the residue of x modulo y in the interval

[−dy
2
− 1e, by

2
c].

A polynomial in R can be represented as a vector whose coordinates correspond to the

polynomial coefficients. If v = (v0, . . . , vN−1) and w = (w0, . . . , wN−1), then denote the

concatenation of v and w by (v, w).

Let v = (v0, . . . , vN−1), w = (w0, . . . , wN−1) and c = (c0, . . . , cN−1) be polynomials in

R (or Rm) such that c = v · w. Then, the product can be expressed as a simple matrix

product C = V ·W as follows
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


c0

...

cN−2

cN−1




=




v0 vN−1 . . . v2 v1

...
...

. . .
...

...

vN−2 vN−3 . . . v0 vN−1

vN−1 vN−2 . . . v1 v0







w0

...

wN−2

wN−1




,

where, C = (c0, . . . , cN−1)
T , W = (w0, . . . , wN−1)

T , and V is a circulant matrix whose

bottom row is v = (v0, . . . , vN−1) in reverse order and each row of V is a left cyclic shift

of the row below. Let V to be V = cir(v).

An integral lattice L is a discrete subgroup of the additive group of Euclidean space

R
n. In particular the lattice under consideration is n−dimensional in R

n. Its elements are

all possible integral linear combinations of vectors {v1, . . . , vn} ⊂ R
n, such that the vi are

linearly independent over Z.

For n > 1, a lattice L of dimension n has infinitely many bases. In fact, if β is a basis

of a lattice L given by the columns of an n × n matrix B, then the columns of B ′ form

another basis of L if and only if B′ = TB for some unimodular integral matrix T . A

unimodular matrix is a matrix of determinant ±1.

If β and β′ are two bases of the same lattice whose vectors form columns of B and B ′

respectively, then | det B | = | det B′ |. Hence, the quantity | det B | is invariant for a lattice

L, and therefore independent of the choice of basis β. The | det B | is called the volume of

L, and denoted vol(L). If S is a sublattice of L, it easily follows that vol(S) = k · vol(L),

for some k ∈ Z.

The standard (Euclidean) norm of a vector v is denoted by ‖v‖. Assuming β =

{b1, . . . , bn} is a basis of a lattice L, define the weight of β by:

wt(β) = ‖b1‖ · ‖b2‖ · . . . · ‖bn‖.

If β and β′ are bases of a lattice L satisfying wt(β ′) < wt(β), then call β′ reduced

relative to β.

3.2.3 An outline of the NTRU algorithm

An instance of the NTRU public-key encryption scheme [23] is specified by the integer

parameters (N, p, q, df , dg, dr). In [23] the proposers suggest p = 3, q = 2k, and N ∈
{137, 251, 347, 503}. The parameters df , dg, and dr determine the structure of the scheme.

The message space is R symod p.
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Key generation:

Given R, Bob chooses f ∈ R{df , df − 1} and g ∈ R{dg, dg}. He then computes

the multiplicative inverse f−1
p of f in Rp, and similarly, the inverse f−1

q of f in Rq.

Finally, Bob computes the polynomial

h ≡ p · f−1
q · g (mod q) (1)

Bob’s public key information is now

{N, p, q, df , dg, dr, h}

and his private key is f .

Encryption:

Alice selects a random polynomial r ∈ R{dr, dr} and encrypts a message m by

e ≡ r · h + m (mod q)

Decryption:

In order to decrypt the received ciphertext e, Bob first computes

a ≡ f · e (symod q)

and then determines

b ≡ a (symod p)

Finally, Bob computes

c ≡ f−1
p · b (mod p)

Now c should be Alice’s original message m. In the rare case when m 6=
c, a decryption failure has occurred, and therefore a notion of incorrect

encryption/decryption must be introduced.

3.2.4 A lattice reduction attack on NTRU

The following attack was introduced by D. Coppersmith and A. Shamir [10]. Let B be

the following 2N × 2N matrix

B =

[
I O

cir(h) qI

]
(2)
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where I is the N ×N identity matrix, O the N ×N zero matrix, and

cir(h) =




h0 hN−1 . . . h2 h1

...
...

. . .
...

...

hN−2 hN−3 . . . h0 hN−1

hN−1 hN−2 . . . h1 h0




is the circulant matrix corresponding to the public polynomial h = h0 + h1x + · · · +
hN−1x

N−1, defined in the equation (1).

The columns of B span a particular integral lattice L. By the definition of B, it is

easy to show that the concatenated vector (f, pg) ∈ L. From the definitions, it is easily

seen that ‖(f, pg)‖ is the publicly known value
√

2(df + dgp2)− 1. The following classical

theorem of Minkowski [19], applied to the Euclidean norm, gives an upper bound to the

shortest vector in a lattice.

Theorem 3.2.1 (Minkowski’s Upper Bound). In a lattice L of dimension n the

shortest non-zero vector v satisfies:

‖v‖ < c
√

n n
√

vol(L)

where c is a constant.

So far, for large enough n, the best known approximation of c is 0.3196.

Since the standard choice for parameter p is 3, and since both df and dg are (by

definition) less than 1
2N , one immediately obtains that ‖(f, pg)‖ <

√
10N − 1. By applying

the Minkowski’s upper bound (Theorem 3.2.1) to the NTRU lattice L, it is clear that the

shortest vector in L has a norm less than c
√

2N 2N
√

vol(L) = c
√

2N 2N
√

qN = c
√

2Nq =

0.3196
√

2Nq. Since ‖(f, pg)‖ is normally smaller than the Minkowski’s upper bound, the

vector (f, pg) is likely to be a very short vector in L.

The “Gaussian” heuristic[23] provides a method for predicting the norm of the shortest

vector in a random lattice L of large dimension n. Specifically, the shortest vector of L is

approximately of norm

σ =

√
n

2πe
V

1

n ,

where n = dim(L) and V = vol(L). In particular, for the NTRU lattice L whose basis is

given by the equation (2), dim(L) = 2N and vol(L) = qN imply that

σ =

√
Nq

πe
.
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It is easily seen that
√

10N − 1 is usually slightly less than σ, therefore the vector

(f, pg) is a short vector in NTRU lattice L.

Experimental results confirm that whenever a vector τ ∈ L such that ‖τ‖ = ‖(f, pg)‖
was found, f could be always determined, up to rotational transformation which is

discussed in the next paragraphs. Call the vector τ a target vector. Therefore, by reducing

the basis of L sufficiently, an attacker may obtain the secret polynomial f if a vector of

norm ‖τ‖ can be found in L.

There exists yet another short vector in lattice L that is known in advance. For the

standard parameter choices, such a vector will have smaller norm than a target vector τ .

Unfortunately, this is of no advantage in finding a target vector τ .

Theorem 3.2.2. Let i = (1, . . . , 1︸ ︷︷ ︸
N

, 0, . . . , 0︸ ︷︷ ︸
N

). If L is an NTRU lattice of dimension 2N ,

then i ∈ L. Moreover, the norm of vectors i, and −i is
√

N .

Proof. Let B be a matrix whose columns are the basis for an NTRU lattice L. Adding

the first N columns of matrix B would produce vector i if the coefficients of h add up to

0, that is if h(1) = 0. However, g ∈ R(dg, dg) implies that g(1) = 0, which implies that

h(1) = pf−1
q (1)g(1) = 0. Thus, i can be expressed as an integral linear combination of the

columns of B, so, i ∈ L.

Refer to vectors {i,−i} as trivial short vectors. A trivial short vector is most likely

the shortest non-zero vector in L, clearly of smaller norm than Minkowski’s upper bound.

Hence, τ is most likely the shortest non-trivial, non-zero vector in an NTRU lattice.

A basis that contains a target vector is referred to as a resolution basis. The well-known

LLL algorithm[30] and its various improvements due to C. P. Schnorr and others, is

currently the fastest method for general basis reduction. C. P. Schnorr also introduced a

BKZ method [38] which, while possibly sacrificing polynomial runtime, produces a further

reduced basis. In this approach, a larger set of vectors is processed simultaneously. The

cardinality of this set of vectors is called the block size.

3.2.5 Symmetry of the NTRU lattice

The NTRU lattice possesses a non-trivial cyclic automorphism group. This symmetry

leads to a new cryptanalytic approach.

Let vector v = (v1, . . . , v2N ) = (u, w), where u = (v1, . . . , vN ) and w = (vN+1, . . . , v2N ).
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Denote the cyclic right shift of a vector x by r positions with rotater(x). Then, define

birotation of v by k positions as

birotatek(v) = (rotatek(u), rotatek(w)).

The following Theorem shows some of the nice properties of such birotations.

Theorem 3.2.3. Let L be an NTRU lattice. Then v ∈ L if and only if birotatek(v) ∈ L
for any integer k.

Proof. Let Pk be the N×N permutation matrix that performs a cyclic shift by k positions,

and let P be the following block matrix

P =

[
Pk O

O Pk

]

where O is the N ×N zero matrix. It is easy to see that

birotatek(v) = Pv (3)

Since v ∈ L, it can be expressed as a linear combination of columns of B, where B

is the 2N × 2N matrix as defined in (2), that is, there exists a vector x = (x1, . . . , x2N ),

with all integer coefficients, such that

v = Bx.

Multiplying both sides on the left by P yields

Pv = PBx = PBP−1Px.

Use (3) to obtain

birotatek(v) = PBP−1 · birotatek(x) (4)

On the other hand, since

Pk · cir(h) = cir(h) · Pk
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the following equality holds

PBP−1 =

[
Pk O

O Pk

][
I O

cir(h) qI

][
P−1

k O

O P−1
k

]
=

=

[
Pk O

Pk · cir(h) qPk

][
P−1

k O

O P−1
k

]
=

=

[
PkP

−1
k O

Pk · cir(h) · P−1
k qPkP

−1
k

]
=

[
I O

cir(h) qI

]
= B.

Finally, equation (4) states that birotatek(v) = B ·birotatek(x), that is, birotatek(v) ∈
L, since it can be written as a linear combination of columns of B.

For the converse, assume birotatek(v) ∈ L and observe that

birotateN−k(birotatek(v)) = birotateN (v) = v,

and so by the direct statement of this proposition it follows that v ∈ L.

An elementary result is summarized in the following Theorem. The proof is trivial,

following from knowledge of basic theory about lattices.

Theorem 3.2.4. Let L be any integral lattice, and suppose that vectors V =

{v1, v2, . . . , vn} form a basis for L. If w ∈ L then, for any i, 1 ≤ i ≤ n, the set of

vectors V ′ = {v1, v2, . . . , vi−1, w, vi+1, . . . , vn} forms a spanning set for a sublattice L′ of

L. If vectors in V ′ are linearly dependent over Z, then det V ′ = 0, dim(L′) < dim(L),

and L′ is a proper sublattice of L. When the vectors in V ′ are linearly independent over

Z, then det V ′ 6= 0, the sublattice L′ is of the same dimension as L, and V ′ forms a basis

of L′ which may or may not be a proper sublattice of L. In fact, L′ = L if and only if

vol(L′) = vol(L).

The implementation of the Theorem 3.2.3 is a core component of the proposed NTRU

lattice reduction technique. That is, the vector of largest norm in the basis B can be

replaced by a birotation of any vector of smaller norm. If this new set of vectors spans the

same lattice, then this basis is reduced relative to B. The algorithm in Table 1 illustrates

this process.
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Input: 2N × 2N matrix B (a basis of an NTRU lattice) with columns b1, . . . b2N

corresponding to the basis vectors, and m, n ∈ Z, such that ‖bn‖ < ‖bm‖
Output: 2N × 2N matrix B′ with weight less then the weight of B

(* BIROT)

B′′ ← B

i← 1

a← det(B)

START:

nth column of B′′ ← birotatei(m
th column of B′′)

b← det(B′′)

if b
a

= ±1 goto END

i← i + 1

if i < N goto START

B′ ← B

TERMINATE

END:

B′ ← B′′

TERMINATE

Table 1: BIROT algorithm

3.2.6 A hill-descending approach

It is known that the LLL algorithm is sensitive to the order in which the basis vectors

are presented. A systematic selection of permutations of the basis vectors, along with the

birotation reduction are the building blocks of a hill-descending approach.

Let L be an integral lattice and B the collection of all bases for L. Then, B is an orbit

under the action of the integral unimodular group SL(n, Z). That is, if B is a particular

basis for L, then B = {BT | T ∈ SL(n, Z)}. Now, the symmetric group Sn is a subgroup

of SL(n, Z), where permutation π ∈ Sn can be viewed as n× n permutation matrix.

Define an objective function ϕ : B −→ R to be ϕ(B) = ‖b‖/‖τ‖ for all B ∈ B, where b

is a shortest non-trivial vector in B, τ a target vector.

The hill-descending approach implements a walk B0 → B1 → . . .→ Br in the space of

bases of the lattice L, where ϕ(Bi) ≤ ϕ(Bi+1). Here, B0 is the basis of L defined in (2),

and success is achieved if Br is a resolution basis; i.e., if ϕ(Br) = 1.

28



Ordering of the basis vectors:

Let B = {b1, . . . , b2N} be a basis for NTRU lattice L, and let π0 ∈ S2N be the identity

permutation on 2N letters. Define the distance between two permutations α, β ∈ S2N to

be d(α, β) = k, if the two permutations differ in exactly k positions. Let

B(α, k) = {β ∈ S2N | d(α, β) = k }

denote the family of all permutations of distance k from a fixed permutation α. It follows

that

|B(α, k)| =
(

n

k

)
Dk

where Dk is the number of derangements on k letters. It is easy to see that B(α, 0) = {α}
and |B(α, 1)| = 0.

In the hill-descending algorithm, a random sample of permutations from B(π0, k), for

a fixed value of k is selected. These permutations are then applied to the ordering of the

basis vectors in B. An application of LLL for each permuted basis B ′ yields a value of

the objective function ϕ(B′). In practice, a basis B is represented in matrix form, and

permuting the basis vectors means permuting the columns of the matrix.

The algorithm:

Following is a description of a Las Vegas type method for resolving NTRU lattices.

The algorithm is based on a combination of BKZ-LLL and BIROT primitives, and can be

implemented in parallel.

The algorithm requires input parameters L and t, where L is an NTRU lattice basis

and t is the norm of a target vector τ , i.e. t =
√

2(df + dgp2)− 1. In the first stage, a

BKZ-LLL with blocksize s = 2 is applied to L to obtain an initial reduction B. Blocksize

2 guarantees that the execution time will be polynomial. Next, basis B undergoes a loop

of M parallel processes. At each PUi (Processing Unit i) the columns of B are permuted

according to a random permutation α ∈ B(π0, k). Such a permuted basis is supplied to

a local BKZ-LLL primitive, resulting in basis B ′
i. At the main PU, the algorithm then

examines the bases and selects among the B ′
i, the basis Bmin with minimal ϕ(B′

i). If

Bmin is reduced relative to B, the algorithm loops back to the parallel stage, setting the

input basis B to Bmin. In case that ϕ(Bmin) ≥ ϕ(B), the distance k is incremented by 1

before looping back to the parallel stage. However, when k reaches the maximum value

of 2N + 1, a BIROT routine is performed on B in order to escape the local minimum

of the hill-descending approach. Following the BIROT, the algorithm resets the k value
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Input: L an NTRU lattice basis, t the norm of target vector

Output: resolution basis of L

(* MASTER)

s← 2 (blocksize)

k ← 2 (distance)

B ← L

START:

for each processor j, 1 ≤ j ≤M , perform (* SLAVE j)

select Bmin such that ϕ(Bmin) = min{ϕ(Bi) | 1 ≤ i ≤M}
if v ∈ Bmin such that ‖v‖ = t then

TERMINATE

if ϕ(Bmin) < ϕ(B) then

B ← Bmin

goto START

k ← k + 1

if k ≤ 2N then

goto START

Bbirot ← BIROT(Bmin)

if wt(Bbirot) < wt(Bmin) then

B ← Bbirot

k ← 2

goto START

s← s + 1

goto START

Table 2: Parallel hill-descending algorithm - MASTER

back to 2. In the case that BIROT does not result in further reduction, the blocksize s is

increased by 1.

The algorithm is expected to run until it produces a resolved basis for the lattice L
spanned by L. This is a non-deterministic, Las Vegas type algorithm, and it is not expected

to invariably produce desired results. Its degree of success depends on the particular lattice

L.

The hill-descending (Las Vegas type) algorithm appears in Tables 2 and 3, and its

schematic diagram is shown in Figure 1.
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Input: Bj a lattice basis, distance k, block size s

Output: reduced basis of Bj

(* SLAVE j)

randomly select α ∈ B(π0, k) where π0 ∈ S2N is the identity permutation

apply α to the order of vectors in basis Bj

B′

j ← BKZ− LLLs(Bj)

return B′

j

Table 3: Parallel hill-descending algorithm - SLAVE

Generate random

permutation 
 a(1) of

distance k from the

identity and apply

it to columns of B


into B(1)


Generate random

permutation 
 a(2) of

distance k from the

identity and apply

it to columns of B


into B(2)


Generate random

permutation 
 a(M)

of distance k from


the identity and

apply it to columns


of B into B(M)


BKZ-LLL with

blocksize s


BKZ-LLL with

blocksize s


BKZ-LLL with

blocksize s


B(2)
B(1)
 B(M)


Set Bmin to be the

B(i) where phi
 (B(i))

is minimal for all i


B’(1)
 B’(2)
 B’(M)


phi(Bmin) <

phi
(B)


Set B to Bmin


Yes


k < 2N


No


Yes

Set Bbirot to

BIROT(Bmin)


Set k to k + 1

 No


wt(Bbirot)<wt(Bmin)


. . .


. . .


Set B to Bbirot

Set k to 2


Set s to s + 1

No


Yes


B is a

resolution


basis


BKZ-LLL with

blocksize 2


B


No


End
Begin

L


Yes


B


Figure 1: Scheme for the parallel hill-descending algorithm

3.2.7 Summary

A method for exploiting the symmetry of an NTRU lattice was introduced. This method

replaces large vectors in the basis with birotated vectors of smaller norm. Alone, it
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leads to reduced bases, but was significantly improved through parallel processing. By

using existing well-known lattice reduction techniques, in conjunction with the birotation

method, a new hill-descending approach introduces a walk through the space of bases which

ultimately leads to faster resolution when compared to existing lattice reduction methods.

Furthermore, performance is enhanced through the parallelization of critical components,

as introduced in the proposed algorithm. Although the hill-descending approach is more

effective than the previously explored approaches, its non-deterministic nature implies

variable performance and does not guarantee resolution.
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4 Private-Key Cryptosystems

The second major part of this dissertation deals with cryptanalysis of two private-key

cryptosystems. All analyzed cryptosystems are block ciphers.

Many hard mathematical problems as well as some exotic problems from other fields

can be in some way turned into a cryptosystem. The block cipher based on the Hopfield

neural network is a typical example. A necessary introduction to neural networks is

provided, then the block cipher is described, criticized, and cryptanalyzed.

Multimedia security is the underlying theme of the cryptanalysis of the remaining

symmetric cryptosystems. Three recent cryptosystems that were proposed to ensure

privacy of video streams were turned out to be fast but too simple to withstand basic

attacks.

4.1 A Block Cipher based on the Hopfield Neural Network

In a Hopfield neural network, an input message converges to one of the special messages

called attractors. It was shown that an overstoraged Hopfield neural network exhibits

stochastic error in convergence. In particular, the messages in the attraction domain of

an attractor are unpredictably related to each other.

Based on these facts, D. Guo, L.M.Cheng, and L.L.Cheng proposed a block cipher[20].

We[11] examine the security and efficiency of the proposed cryptosystem. Furthermore,

the cryptanalysis leads to an interesting mathematical problem: Given two matrices that

are conjugate of each other by a permutation matrix, determine this permutation matrix.

This section contains a solution to this problem, too.

4.1.1 Hopfield neural network

Firstly, consider a fully interconnected neural network of N neurons (labeled 0, 1, . . . , N −
1). The state of a neuron i at a time t is denoted Si(t), the initial state is denoted Si(0).

33



The next state of neuron i depends on the current states of all neurons as follows

Si(t + 1) = f

(
N−1∑

j=0

TijSj(t) + ϑi

)
,

where Tij is the synaptic strength between neurons i and j, ϑi is the threshold value of

neuron i, and f(·) is any non-linear function.

The Hopfield Neural Network (HNN) is a neural network with zero neuron threshold

(i.e. ϑi = 0 for every i = 1, 2, . . . , N − 1), and with T = (Tij) being a symmetric matrix.

J.J.Hopfield proved[24] that the energy function

E(t) = −1

2

∑

i,j

TijSi(t)Sj(t)

of such network is bounded during state evolution, therefore each initial state of the

network must converge to a stable state, which is a local minima of E(t). Call stable

states attractors.

From now on, consider the Hopfield neural network to be discrete (i.e. Si(t) ∈ {0, 1})
and clipped (i.e. Tij ∈ {−1, 0, 1}). The non-linear function f will be the sign function σ(·)
where

σ(x) =

{
1 if x ≥ 0

0 if x < 0
.

The state of the network at time t can be expressed as a row vector S(t) =

(S0(t), S1(t), . . . , SN−1(t)). Call an initial state S(0) a message. Let the function σ(·)
acts on vectors elementwise, then the next state formula of a Hopfield neural network can

be expressed in matrix form as follows:

S(t + 1) = σ(S(t)T ).

Call the HNNT network overstoraged if the number of attractors of this network is

2N or more. Overstoraged HNNs exhibit an interesting property of converging in few

iterations. Specifically, the larger the number of attractors the more likely it is that a

random input message to the network will cause it to converge in a single step, namely

S(t) = S(t + 1) for t ≥ 1.

This property is likely due to the large number of attractor domains spread out over

the entire message space, causing a random input message to be close (in the terms of

Hamming distance) to its attractor. The networks with the large number of attractors or

nearly equidistant attractors are more likely to converge in a single step for any input.
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Neural networks are known to have the non-linear mapping property. In addition,

the HNNT model possesses an interesting chaotic property. In particular, the relation

of any initial state S(0) to its attractor (stable state) is irregular-chaotic[20]. For the

maximum irregularity, the network requires equal concentrations of excitatory (Tij = 1)

and inhibitory (Tij = −1) synapses. That is,

∑

i

Tij = 0 and
∑

j

Tij = 0. (5)

With chaos comes also order. The following property can be easily proved: Let x be

any attractor of HNNT , and let Ax = {y |x = σ(yT )} be the domain of attraction for x.

Moreover, let P be an N ×N permutation matrix, and let T̂ = PTP−1. Then xP−1 is an

attractor of HNN
T̂

and {yP−1 | y ∈ Ax} is its domain of attraction.

Remains to say that HNNT neural network model (also called associative memory

network) is suitable for fast implementations - implementation and execution can be

performed in parallel.

4.1.2 The block cipher

Following is a brief description of the Symmetric Probabilistic Encryption Scheme Based

on the Chaotic Attractors[20]. The description here is somewhat simplified in order to

focus on the important parts of the cryptosystem. See the original proposal for the full

details.

Fix N and fix an N ×N matrix T over {−1, 0, 1} such that #”1” = #”-1” ≈ #”0” ≈
N/3 (where # means ”the number of”) in each row and each column of T . The matrix

T must be selected in such a way that the resulting Hopfield neural network HNNT with

synaptic strength matrix T and sign function σ(·) will be overstoraged. The matrix T and

σ(·) are public information.

Key generation: Choose an N ×N permutation matrix H and compute new synaptic

matrix T̂ = HTH̃, where H̃ denotes the transpose of H. Note that since H is a

permutation matrix, H̃ = H−1. Keyspace is of size N !.

Plaintext space: A subset of the attractors of the HNN
T̂

network. Each attractor is a

binary vector of length N .

Encryption: For a given plaintext x, randomly choose a binary vector y of length N from

the domain of attraction of x. The vector y will become the ciphertext. Since there
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are many ciphertexts corresponding to one plaintext and the selection is random,

the encryption is probabilistic.

Decryption: For a given ciphertext y (a binary vector of length N), set the initial state

of HNN
T̂

to be the given ciphertext. Then the HNN
T̂

network will converge to the

corresponding plaintext x. That is, in the network Ŝ(t + 1) = σ(Ŝ(t)HTH̃) with

initial state Ŝ(0) = y, as t→∞, Ŝ(t)→ x.

4.1.3 Critique, efficiency, and attacks

1. For the computational security of the cryptosystem, only those attractors of HNN
T̂

with large domain of attraction should be considered. The plaintext space is

therefore of size less than or equal to 2N . One immediate problem is to determine

which attractor has a domain of attraction large enough such that computational

searches over this domain are infeasible. By a property from a previous section,

there is one-to-one correspondence between domains of attraction of HNNT and

HNN
T̂
. Hence if the cardinalities of domains of attraction of HNNT are known in

advance (precomputed), this problem is negligible. In other words, the problem of

the cardinalities of domains of attractions is the same for HNNT and HNN
T̂
.

2. Another immediate problem is a realization of an encryption. For a given plaintext

(attractor) x, one needs to find y in the domain of attraction of x. This can be

accomplished in two ways. Either the domains of attraction are tablularized or the

suitable ciphertext will be determined by random searching through the whole binary

vector space of dimension N . The first approach requires huge storage and extensive

pre-computations, and therefore is not practical for reasonably secure values of N .

The second approach works as follows: For a given x, repeatedly and randomly

choose a binary vector y of length N and test whether y converges to x in HNN
T̂
.

Thus a single encryption requires several decryptions, making the encryption process

too slow. The number of decryptions while encrypting depends on the number of

plaintexts k and the sizes of the domains of attraction.

3. Chosen-ciphertext attack: In this scenario, an attacker should be able to choose N

ciphertext messages such that they converge to the attractor in just one step and

when put as rows to a matrix I, the matrix will be an identity matrix. The attacker

should put the corresponding plaintexts (as rows) to matrix V .

Mathematically speaking, let ei denote the N -bit vector with 1 at position i and 0’s

at all other positions. Suppose that every ciphertext ei (i = 1, . . . , N) converges to
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an attractor in just one iteration and for every such ciphertext ei the attacker can

obtain corresponding plaintext vi. That is, vi = σ(eiHTH̃) for every i = 1, . . . , N .

Let V = (vi), I = (ei), and let σ(·) acts on a matrix elementwise. Then

V = σ(IHTH̃).

Since H̃ = H−1 and both H and H−1 are permutation matrices, one obtains the

equation

V = σ(IHTH̃) = σ(HTH−1) = Hσ(T )H−1, (6)

where V is known and σ(T ) can be easily computed since T is known. In the next

section, it is shown how this equation can be solved for an unknown permutation

matrix H. Since the solution - the permutation matrix H does not have to be unique,

the attacker either obtains the secret key or its equivalence.

4.1.4 Conjugation by a permutation matrix problem

Definition. Let P be the set of all permutation matrices of the size N ×N . Let A, B be

two abstract matrices such that there exists P ∈ P and

B = PAP−1, (7)

is valid. We will call the equation (7) a conjugation by a permutation matrix problem. For

brevity, we refer to it as the PROBLEM.

For the record, the problem of finding permutation matrices P and Q in the equation

B = PAQ,

is equivalent to the well-studied graph isomorphism problem, where A and B represent

the corresponding adjacency matrices of some graphs. So far, there is no polynomial-time

algorithm for solving the graph isomorphism problem, and no one has proven that the

problem is NP-complete. In fact, it is believed that the problem is probably neither in P
nor in NP-complete classes of problems[27].

Notation. A natural map from the permutation group SN to the group of permutation

matrices is the following one: Let π ∈ SN . Then, the image of π in the group of

permutation matrices is the following N ×N matrix Pπ:

Pπ =




eπ(1)

...

eπ(N)


 =

(
eπ−1(1) · · · eπ−1(N)

)
,
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where ei represents the i-th row (or column) of the identity matrix. Note that this implies

that the matrix P T
π is the following N ×N matrix:

P T
π =




eπ−1(1)

...

eπ−1(N)


 =

(
eπ(1) · · · eπ(N)

)
= P−1

π = Pπ−1 .

For the simplicity of notation, we write P instead of Pπ.

Theorem 4.1.1. Let π be a permutation in SN from which a permutation matrix P is

constructed via the natural map. If the matrix A in the equation (7) contains an element at

position (i, j), then this element is moved in the matrix B to the position (π−1(i), π−1(j)).

Proof. Trivial.

Corollary 4.1.2. Let a(i1,j1), . . . , a(im,jm) be unique elements of the matrix A (and

consequently B) from the equation (7). If the set, consisting of the unique elements of

the multiset {i1, j1, . . . , im, jm}, is equivalent to the set {1, . . . , N}, then all the moves of

π are known.

Proof. Let a(i1,j1), . . . , a(im,jm) be unique elements of A. Then, by the Theorem 4.1.1,

a(ik,jk) is moved from position (ik, jk) in the matrix A to the position (π−1(ik), π
−1(jk))

in the matrix B, for all k ∈ {1, . . . , m}. Since the element a(ik,jk) is unique in both A and

B, then the values ik, jk, π
−1(ik), and π−1(jk) are all known. Thus, if the values 1, . . . , N

are in the multiset {i1, j1, . . . , im, jm}, then π−1(1), . . . , π−1(N) are known.

On the other hand, if the matrix A (and consequently B) does not contain unique

elements (as is the case with equation (6), where V and σ(T ) are matrices over {0, 1}),
then the matrix An (and consequently Bn) for some positive integer n likely does. Here,

note that

Bn = (PAP−1)n = PAnP−1.

Use this ”powering” method to obtain unique elements in the matrix An and apply

Theorem 4.1.1 and Corollary 4.1.2 to obtain the unknown moves of the permutation π

from which the matrix P is constructed. The remaining (possibly very few or none) moves

can be obtained by exhaustive search. A reader should note that the ”powering” method

significantly narrows down the exhaustive search space, even if the matrix A has strong

symmetry (e.g. circulant matrix).
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It should be noted here that powering both sides of the equation (7) may produce an

expanded solution space. In other words, a solution to the PROBLEM is also a solution

to Bn = PAnP T , but not necessarily vice versa. Once a solution is found to the powered

equation, the following helps determine all the solutions to the powered equation, from

which all the solutions to the PROBLEM can be obtained.

Firstly, suppose that T is a circulant matrix (as suggested in [20]).

Notation. If Q is a permutation matrix, let C(Q) denote the centralizer of Q over the

group of permutation matrices. More generally, if A is an n× n matrix, let C(A) denote

the set of all n× n permutation matrices that commute with A.

Theorem 4.1.3. If a permutation matrix Q is a solution to the equation (7), then the

matrix QR is also a solution, for all R ∈ C(A).

Proof. Let Q be a solution to the equation (7), i.e., B = QAQ−1. Let R be any element

from C(A). Then, AR = RA ⇒ A = RAR−1. Therefore, QR is also a solution to (7)

since

B = QAQ−1 = QRAR−1Q−1 = (QR)A(QR)−1.

Theorem 4.1.4. Let σ(T ) be a circulant matrix, and U be a permutation matrix

corresponding to the permutation cycle (1 2 . . . N) of length n. If a permutation matrix Q

commutes with U , then Q commutes with σ(T ).

Proof. By a result from elementary linear algebra[12], if σ(T ) is a right circulant matrix

with the first row c0, c1, . . . , cN−1, then

σ(T ) =
N−1∑

i=0

ciU
i.

Take a permutation matrix Q ∈ C(U). Then, Q commutes with 〈U〉 (a cyclic group

generated by U). Therefore, Q commutes with σ(T ) since

Qσ(T ) = c0QU0 + . . . + cN−1QUN−1 = c0U
0Q + . . . + cN−1U

N−1Q = σ(T )Q.

By the Theorems 4.1.3 and 4.1.4, if a single solution P to the equation (7) is obtained

when A is circulant, then N distinct solutions are immediately available, namely PQ where

Q ∈ 〈U〉.
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More generally, suppose T is an arbitrary matrix, not necessary circulant, but still

conforming to the rules in the equation (5). In this case, similar, but more complex

approach could be used.

Notation. A doubly stochastic matrix is a matrix over real numbers in which all the

entries are non-negative and each row and each column adds to exactly 1.

A classical theorem of Birkhoff[8] follows:

Theorem 4.1.5 (Birkhoff). A matrix A over a field is doubly stochastic if and only

if it is a convex combination of permutation matrices. That is, A is doubly stochastic if

and only if A = f1R1 + f2R2 + ... + fkRk for some permutation matrices Ri and some

nonnegative real numbers fi whose sum equals to 1.

Theorem 4.1.6. Let T be a matrix with row sums and column sums equal to 0. Denote

by m the sum of any row of σ(T ) and let M = 1
m

σ(T ) = f1R1 + f2R2 + ... + fkRk. If

a permutation matrix Q commutes with every Ri (i = 1, . . . , k), then Q commutes with

σ(T ). Therefore, if P0 is a solution to the equation (6) then any P ∈ (C(R1) ∩ C(R2) ∩
. . . ∩ C(Rk))P0 is also a solution.

Proof. The matrix T conforms to the equations in (5). It follows, by the definition of σ(·),
that all row sums and all column sums of σ(T ) are the same, say m. Then the matrix M =
1
m

σ(T ) is doubly stochastic. Thus by the Theorem 4.1.5, M = f1R1 + f2R2 + . . . + fkRk

as stated. Now, suppose a permutation matrix Q commutes with all Ri (i = 1, . . . , k).

Then, Q commutes with M since

QM = f1QR1 + . . . + fkQRk = f1R1Q + . . . + fkRkQ = MQ,

and therefore Q commutes with mM = σ(T ). Finally, if Q commutes with all Ri (i =

1, . . . , k) then Q is in the intersection of the centralizers of Ri’s.

By the Theorem 4.1.6, if one obtains a solution to the equation (7), as well as

the intersection of the centralizers of the permutation matrices from the Birkhoff’s

decomposition from the Theorem 4.1.5, one has obtained t solutions to the equation

(7), where t denotes the cardinality of the intersection. The Birkhoff’s decomposition

time-complexity is O(N4.5), assuming the improved Birkhoff-von Neumann algorithm by

Dulmage and Halperin[14]. Once a decomposition is obtained, the centralizers can be

calculated using polynomial-time approaches such as the ones by Sims[43] or Buttler[9]

that have time-complexities of about O(N 3.5). Even though generally the intersection of

subgroups problem is considered intractable in the sense that there is no polynomial-time
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algorithm in N , this problem is solvable for the relatively small permutation groups that

are suggested for use in [20].

4.1.5 Summary

Although the characteristics and phenomenons of Hopfield neural networks are interesting,

they do not always lead to straightforward cryptographic applications.

The 1999 paper of Guo-Cheng-Cheng that proposes the use of specific Hopfield neural

network as a basis for a symmetric block cipher is examined. It turns out that this

approach, although worthwhile studying, is impractical in the terms of the speed of

computation and communication. The cryptanalysis of various security aspects of this

cipher revealed a few severe weaknesses. In particular, the cipher is vulnerable to

ciphertext-only and chosen-ciphertext attack. And thus the analyzed cipher should not

be used in applications where such attacks are feasible.

The chosen-ciphertext attack requires determining a hidden permutation matrix at

some point. A solution for this conjugation by a permutation matrix problem is proposed.

Namely, practical methods to obtain a set of permutation matrices that are solution to

the mentioned problem are described.

4.2 Video Encryption Algorithms

Content security is an important issue in multimedia applications. In this section we[40]

perform a cryptanalysis of several encryption algorithms that have been proposed to

protect the privacy of MPEG video streams. In particular, we analyze the encryption based

on permuting the Huffman codeword list, and two selective encryption algorithms - VEA

and MVEA. Firstly, the MPEG-1 video encoding is described in the terms necessary for

understanding the encryption algorithms. All analyzed algorithms and their characteristics

are included. The cryptanalysis of some of the proposed MPEG-1 video encryption

algorithms then follows.

4.2.1 Multimedia security

Multimedia content is a combination of any of the following media: text, still images,

audio, animation, and video. Multimedia security deals with ways of protecting such

content. In general, this is achieved by methods that are heavily based on cryptography.
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These methods enable communication security, piracy protection (so called Digital Rights

Management), or both.

Communication security of multimedia content can be accomplished by means of

standard symmetric-key cryptography. In particular, viewing multimedia content as

a sequence of binary data, protection can be thought of as applying conventional

symmetric-key encryption techniques (such as AES) to the whole sequence. This method

is referred to as a naive algorithm. Unfortunately, due to a variety of constraints, applying

the naive approach to more complex multimedia streams (mostly video and audio) creates

significant computational overhead.

Communication encryption of video and audio content is therefore harder to

accomplish. It involves a careful analysis to determine and identify the optimal encryption

method when dealing with audio and video content. Current research is focused on

modifying and optimizing the existing cryptosystems for real-time audio and video content.

It is also oriented towards exploiting the specific properties of many standard video and

audio formats, in order to achieve desired speed and enable real-time streaming. This is

referred to as selective encryption[34].

The challenges of video encryption come from several facts. First, the size of a typical

MPEG compressed video file is often very large (for example, the size of a two hour

MPEG-1 video is about 1 GB). Second, the decoding (as well as decryption) needs to

be processed in real time (for example, the MPEG-2 video streams can be as large as

40 Mbps). Third, VCR-like functions such as fast forward or playback from any point

should be available and reasonably fast. In addition, there is more to video security than

just encryption. The already mentioned Digital Rights Management is an example of a

security requirement that goes beyond communication security.

Protecting multimedia content is a very important issue. On one hand, protection by

a naive algorithm provides maximum security, but requires a special, costly hardware for

real-time decryption. On the other hand, most of the multimedia applications need to

balance between security and cost of video streaming. So there is an apparent tradeoff

between security and the speed of streaming. The goal is to design a reasonably fast and

secure encryption method such that breaking this method requires an investment several

times higher than the value of the content.

Selective encryption is only one part of communication security. It is, however, a

crucial part, and thus studying these kind of techniques is extremely important.
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4.2.2 MPEG-1 video encoding

While a detailed description of the MPEG-1 video encoding is not provided, the following

paragraphs outline the core components of this process.

The MPEG-1 video encoding[15] scheme represents the video signal using the repetition

of group of pictures (GOPs). Each GOP is a sequence of selected I, P and B frames. Typical

GOP sequences are IBBBPBBB or IBBPBBPBB, but the relative frequency of I, P and B

frames may be application dependent. I frames are encoded as standard JPEGs, without

reference to other frames. Consequently, I frames are of the smallest compression ratio. A

P frame is encoded with reference to the previous I frame, containing only the difference

between these two frames. Since the time difference between these two frames is a fraction

of a second, the difference between blocks of pixels is very small. Therefore, P frames

have a much better average compression ratio than the I frames. Finally, B frames are

bidirectionally interpolated using the previous closest I/P frame and the following closest

I/P frame. The average compression ratio of B frames is usually the highest.

The encoding of I frames differs from that of the P and B frames. An I frame is

encoded as a standard JPEG still image. JPEG encoding is a complex process. The

JPEG encoding[26] is a lossy type of compression, a tradeoff between quality of the image

and compression ratio. For our purposes, it is sufficient to know that an image is first

divided into blocks of 8× 8 pixels. All JPEG encoding operations are then performed on

these blocks. The encoding starts with a Discrete Cosine Transformation (DCT), which

computes the so-called DC coefficient - the coefficient containing the crucial information

of the whole block, and 63 so-called AC coefficients. The next stages are quantization, the

lossy stage, and zig-zag sequencing. Finally, the block undergoes entropy encoding using

the Huffman code, where the codeword list is fixed.

4.2.3 VEA and MVEA algorithms

VEA and MVEA are MPEG-1 video encryption algorithms that were introduced in [2].

Provided is a description of the algorithms, followed by the cryptanalytic results.

Table 4 and Table 5 present the simplified pseudocode of the VEA and MVEA

algorithms, respectively. From the pseudocode, it is clear that VEA and MVEA are

almost the same. The only difference is the set of video stream bits that are encrypted.

In both cases, the algorithm works with macro blocks of size 16 × 16 pixels subsampled

into four 8× 8 blocks Y representing luminescence, and two chrominance 8× 8 blocks, Cr

and Cb. For a more detailed description, refer to [2].
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Input: key k of length m bits, video bit-stream v of length n

Output: encrypted video bit-stream w

(* VEA encryption)

for every bit i = 1, . . . , n in video bit-stream v do

1. if vi is a beginning of GOP, then j ← 0

2. else if vi is a sign bit of DC coefficient or a sign bit of DC

differential value of Y, Cr, or Cb block of I frame, then

(a) wi ← vi ⊕ kj

(b) j ← j + 1 (mod m)

3. else wi ← vi

Table 4: VEA encryption

As mentioned before, there is no need to to encrypt the video bit by bit. The VEA

and MVEA algorithms take advantage of this concept. That is, they perform encryption

on predetermined (fixed) bits of the video stream, and therefore fall into the category of

selective encryption algorithms.

One of the most significant properties of VEA and MVEA from [2] is the following:

One can encrypt a MPEG-1 video many times, and decrypt it in one step. Let Ek(P )

denote the VEA or MVEA encryption of plaintext P using key k. For any two distinct

keys k1 and k2, it holds that

Ek1
(Ek2

(P )) = Ek1⊕k2
(P ). (8)

Therefore the decryption can be performed in one step using the key k3 = k1 ⊕ k2.

This fact is very useful in the case when a key needs to be changed. The change is

cost-effective since the decryption process can be eliminated, unlike in other cases, where

decryption must be performed before obtaining new ciphertext. In our analysis of VEA

and MVEA, we show that this key-change has no impact on the security.

4.2.4 Observations and flaws

Let P denote the collection of compressed video bits for a single GOP that needs to be

protected. P can be represented as P = (p0, p1, . . . , pt−1), where, in the case of VEA,

pi for i = 0, . . . , t − 1 are all the sign bits of the DC coefficients, and all the sign bits

of the discrete cosine differential value of a Y, Cr, or Cb block of an I frame, in their
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Input: key k of length m bits, video bit-stream v of length n

Output: encrypted video bit-stream w

(* MVEA encryption)

for every bit i = 1, . . . , n in video bit-stream v do

1. if vi is a beginning of GOP, then j ← 0

2. else if vi is a sign bit of DC differential value of Y, Cr, or Cb

block of I frame, then

(a) wi ← vi ⊕ kj

(b) j ← j + 1 (mod m)

3. else if vi is a sign bit of differential value of motion vectors of

B or P frame, then block of I frame, then

(a) wi ← vi ⊕ kj

(b) j ← j + 1 (mod m)

4. else wi ← vi

Table 5: MVEA encryption

original order. When considering MVEA, the pi’s are all the sign bits of the discrete

cosine differential values of a Y, Cr, or Cb block of an I frame, and all the sign bits of the

differential values of the motion vectors of B and P frames, in their original order. The

authors of the original algorithms give an analytical explanation as to why encrypting only

these bits of the video stream leads to sufficient protection.

Let k be a key of length m bits. Again, k can be represented as a finite bit-stream

k = (k0, k1, . . . , km−1), where ki ∈ {0, 1} for every i = 0, . . . , m − 1. The key k should

be expanded to length t by repeatedly concatenating the bits k0, . . . , km−1 and taking the

first t bits of such concatenation. The VEA’s and MVEA’s encryption function Ek(P ) for

a single GOP is defined as

Ek(P ) = (c0, c1, . . . , ct−1) (9)

where ci = pi⊕ k(i mod m) for every i = 0, . . . , t− 1, or if the expanded key k is considered,

each ci is simply ci = pi ⊕ ki.

Consider the property in equation (8). It turns out that this property is quite useless

in the multimedia steeting, since the new key can be easily obtained: Suppose that the

original key k was compromised or needs to be changed for some reason. As was stated

before, decryption is not necessary to obtain a new ciphertext. Hence one only needs to

encrypt the original ciphertext Ek(P ) with a new key, say `, to obtain a new ciphertext.
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The new ciphertext can be then decrypted using the (expanded) key k ⊕ `.

Now, take any plaintext bit pi, for some 0 ≤ i < t. The old and new ciphertexts are

Ek(pi) = pi ⊕ ki, (10)

E`(Ek(pi)) = (pi ⊕ ki)⊕ `i, (11)

respectively, where k and ` are considered to be expanded keys. Values of both equations

represent a ciphertext, and so they are known to the attacker. By subtracting equation

(10) from equation (11), one can obtain `i. This can be done for any i, and thus one can

easily obtain the whole key `. Therefore, there is no security advantage in applying an

additional encryption to an already encrypted content.

We conclude our analysis of VEA and MVEA algorithms by observing that the

encryption function, as defined in equation (9), is exactly the definition of one of the

classical ciphers - the Vigenère cipher. It immediately follows that a known-plaintext

attack and a ciphertext-only attack are possible. For the latter attack, one can easily obtain

the frequencies of selected bits that need to be encrypted by examining other MPEG-1

video streams. According to the analytical explanation as to why encrypting only these

bits leads to sufficient protection[2], we believe that such frequency distribution cannot

be uniform, therefore it is possible to launch ciphertext-only attack. For explanation of

the attacks on the Vigenère cipher, see [44]. Also note, that because of the existence of

resynchronization points at the beginning of each GOP that forces the key to start from

its first bit, the length of the key k cannot be arbitrarily large.

4.2.5 An attack on the ”Huffman” cipher

The ”Huffman” cipher[1], is a light-weight MPEG-1 video encryption algorithm which

incorporates encryption and decryption with MPEG-1 video encoding and decoding,

respectively, in one step. First, the algorithm description from [2] and properties of this

algorithm are stated. The cryptanalysis of the algorithm follows.

Let H be the Huffman codeword list provided by the JPEG-1 standard, and let π be

a permutation of the list of codewords H which preserves the length of codewords, i.e.,

let π be a permutation over H such that |w| = |π(w)| for ∀w ∈ H, where | · | denotes the

length (number of bits) of a given codeword. Call the permuted list (the image of π) H ′.

The MPEG-1 video encryption and decryption is then embedded in compression and

decompression, respectively, as follows:

- Encryption: during the MPEG-1 video compression process, H is replaced with H ′.
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- Decryption: during the MPEG-1 video decompression, for every word w ∈ H ′,

π−1(w) is used as the real Huffman codeword value.

The characteristics of the algorithm are:

• No overhead is added – The encryption computation time is decreased by combining

MPEG-1 compression and encryption (by replacing Huffman codeword list H with

H ′). The same applies to decompression and decryption. In other words, these

processes do not result in extra computation time.

• The same compression ratio is achieved – Because of the property that for every

w ∈ H : |w| = |π(w)|, the compressed and encrypted output from the MPEG-1

encoding process will have exactly the same size as if encryption was not included.

The first observation is that given encrypted video content and its corresponding

original content, the known-plaintext attack can be applied. Thus, by examining I frames

and their encrypted equivalents, it is not at all hard to determine the permutation π which

serves as a key in this cipher.

A ciphertext-only attack involves exploiting the properties of the Huffman code. By

the construction of the Huffman code, shorter codewords are assigned to symbols of

more frequent input. Consequently, input symbols which rarely appear are assigned long

codewords.

There are two fixed Huffman codeword lists used in standard JPEG encoding. The

first codeword list, summarized in Table 6, is used to encode the DC coefficients, while

the second list, summarized in Table 7, is used to encode the AC coefficients.

length of codewords 2 3 4 5 6 7 8 9

number of codewords 1 5 1 1 1 1 1 1

Table 6: Huffman codeword list for DC coefficients

There are only 5! = 120 possible permutations for the first Huffman codeword list.

However, there are

2! · 3! · 3! · 2! · 4! · 3! · 5! · 5! · 4! · 4! · 123! ≈ 2718

possible permutations of the second list, leading to an extremely large keyspace. By

ignoring permutations involving long codewords (length 16), that is, by ignoring rare AC

coefficients, the keyspace of the second list can be reduced to

2! · 3! · 3! · 2! · 4! · 3! · 5! · 5! · 4! · 4! ≈ 238
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length number

of codewords of codewords

2 2

3 1

4 3

5 3

6 2

7 4

8 3

9 5

10 5

11 4

12 4

15 1

16 123

Table 7: Huffman codeword list for AC coefficients

allowing for a computationally feasible exhaustive search. In this case, we start by selecting

the permutation π such that it fixes all the codewords of length 16. Then there are roughly

238 possibilities for completing the permutation such that |w| = |π(w)| for every w ∈ H.

Experiments showed that this attack on a 512×512 pixel image (4096 blocks) resulted

in decryption failure of only 4 blocks, roughly 0.1% failure. All other blocks were decrypted

successfully and allowed for almost no degradation of the original image. In addition, the

incorrectly deciphered blocks can be approximated from their surrounding blocks. The

reconstructed 512× 512 pixel image, as produced by this attack, is in Figure 2.

4.2.6 Summary

Protecting multimedia content is a very important issue. On one hand, protection by a

naive algorithm provides maximum security, but requires a special, costly hardware for

real-time decryption. On the other hand, most of the multimedia applications need to

balance between security and cost of video streaming. So there is an apparent tradeoff

between security and the speed of streaming. The goal is to design a reasonably fast and

secure encryption method such that breaking this method requires an investment several

times higher than the value of the content.

Selective encryption is only one part of communication security. It is, however, a crucial
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Figure 2: Reconstructed JPEG’s Lena picture

part, and thus studying these kind of techniques is extremely important. Cryptanalysis of

two selective MPEG-1 video encryption algorithms and one light-weight MPEG-1 video

encryption algorithm based on permuting the Huffman codeword list was performed. All

three of these methods were designed for efficiency, but unfortunately, as it was illustrated,

they all lack security.
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