
Slovak University of Technology
Faculty of Electrical Engineering and Information Technology
Department of Applied Informatics and Computing Technology

Discrete Logarithm Problem in Degree Six
Finite Fields

Pavol Zajac

Dissertation

submitted for the degree of Philosophiae Doctor, PhD.

Supervisor: prof. RNDr. Otokar Grošek, PhD.

Program: 9.1.9 Applied mathematics Bratislava 2008

Declaration

This thesis is a presentation of my original research work, with due reference to the
literature.

Bratislava, February 2, 2008 Pavol Zajac

There is nothing concealed that will
not be disclosed, or hidden that will
not be made known.

Luke 12:2

Acknowledgements

I would like to thank my thesis supervisor Professor Otokar Grošek for the guidance
and help in the research work. My gratitude belongs also to all who contributed to this
project with expert advice or software implementation.

Contents

List of Tables ii

List of Figures iii

Notation and abbreviations iv

Chapter 1. Introduction 1

Chapter 2. Preliminaries 5
2.1. Remarks to algebraic numbers and ideals 5
2.2. Smooth numbers and smoothness probability 6
2.2.1. Smooth integers 6
2.2.2. Smoothness probability 7
2.2.3. Smooth algebraic integers 8

Chapter 3. Discrete logarithm problem and its applications in cryptography 9
3.1. Definition of the discrete logarithm 9
3.2. Overview of the methods to find discrete logarithms 10
3.2.1. Shanks algorithm 11
3.2.2. Collision methods 11
3.2.3. Pohlig–Hellman algorithm 12
3.2.4. Index calculus methods 13
3.3. Cryptographic applications of the DLP 15
3.4. Motivation for XTR 16

Chapter 4. XTR overview 18
4.1. XTR parameters 19
4.2. Trace representation 20
4.3. Representation conversions 21

Chapter 5. The Number Field Sieve 23
5.1. The NFS algorithm overview 24
5.1.1. Parameter selection 24
5.1.2. Sieving 25
5.1.3. Linear algebra 25
5.1.4. Postprocessing 26
5.2. Using NFS to solve DLP in Fpn 26
5.2.1. Virtual logarithms 26
5.2.2. Schirokauer maps 28
5.2.3. Linear algebra 30
5.2.4. Individual logarithms 32

CONTENTS i

5.2.5. Practical implementation for Fp6 33

Chapter 6. NFS complexity and polynomial selection 36
6.1. Implementation choices influencing NFS 36
6.2. Selection of the smoothness bound 38
6.3. Remarks on polynomial selection 40
6.4. Multiple polynomials 42

Chapter 7. Remarks on sieving 44
7.1. Sieving techniques for the NFS 44
7.2. Logarithmic estimates, small factors and tolerance 46
7.3. Generalized line sieve 50
7.4. Implementation of the 3D sieve for XTR-DL solution 53
7.4.1. Block sieving 55
7.4.2. Further implementation remarks 58
7.5. Large prime variant 58

Chapter 8. Experimental results 61
8.1. Influence of the polynomial f1 on the smoothness density 61
8.1.1. Scope of the experiments 62
8.1.2. Experimental results 63
8.2. Optimal sieve region 67
8.2.1. Smoothness probability in a square region 67
8.2.2. Shape of the sieve region 68
8.2.3. A comparison of 2D and 3D sieve 69
8.2.4. A practical selection of the sieve region size 71
8.3. Sieve tolerance 73
8.4. Sieving experiments 76
8.4.1. Preliminary experiments 76
8.4.2. Record solution 77
8.4.3. Sieving with large prime method 78
8.4.4. Solution of the linear system for p40 79
8.4.5. Individual logarithms for p40 80
8.4.6. Summary of sieving results 83

Chapter 9. Conclusions 86

Bibliography 88

List of Tables

7.1 NFS output by z. 59

8.1 Number of degree 6 irreducible polynomials. 62

8.2 Correlation of smoothness probability w.r.t. polynomial selection for fixed M
and different values of B. 64

8.3 List of TOP-10 polynomials for B = 224, M = 32, 2D case. 65

8.4 List of TOP-10 polynomials for B = 224, M = 32, 3D case. 66

8.5 List of BOTTOM-10 polynomials for B = 224, M = 32, 2D case. 66

8.6 List of BOTTOM-10 polynomials for B = 224, M = 32, 3D case. 66

8.7 Smoothness probability in a square region. 67

8.8 Practical comparison of 2D, 3D, and 4D sieve. 70

8.9 Time to sieve a rectangular sieve are. 72

8.10Character maps corresponding to smooth elements from equation (8.3). 81

8.11Virtual logarithms of character maps. 81

8.12Virtual logarithms of selected ideals. 81

8.13Smoothness bound and factor base size. 83

8.14Sieve polynomials and sieve regions. 84

8.15Sieving times and equation probabilities. 84

8.16Linear system size and (estimated) times for Lanczos algorithm. 84

8.17Sieving times compared with linear algebra time. 85

8.18NFS time compared to Pollard’s rho. 85

8.19Extrapolation of sieving results for higher values of p. 85

ii

List of Figures

6.1 Comparison of functions pLp6

(
1/3, 6(2/3)2/3

)
and Lp6

(
2/3, (2/3)1/3

)
. 39

6.2 Comparison of pLp6

(
1/3, 6(8/9)1/3

)
and Lp6

(
2/3, (8/3)1/3

)
. 40

7.1 Small prime sieve contributions. 50

7.2 Sieving algorithm with ideal lists. 56

8.1 Smootness probability distribution with respect to M for different smoothness
bounds B and first 1000 irreducible polynomials. 63

8.2 Histogram of smootness probability distribution with respect to polynomial
choice (first 1000 irreducible polynomials) for M = 32 and B = 212. 64

8.3 Comparison of sieve regions bounded by a fixed norm. 68

8.4 Comparison of smooth norm bound for different sieve region dimensions. 70

8.5 Comparison of norms near the sieve space origin. 71

8.6 Comparison of smoothness densities in 2D and 3D region. 72

8.7 Experimental setup for p32. 74

8.8 Optimal tolerance setup. 75

iii

Notation and abbreviations

Z The set of all integers.
Z>0 The set of all positive integers.
Zn The set of congruence classes modulo n, Z/nZ.
Q The set of all rational numbers.
Fpn A finite field with characteristic p and degree n.
K = Q(α) A number field.
OK The ring of integers of a number field K.
f, f(x) A polynomial.
g ∈ G A generator of a cyclic finite group G.
i, j, k, m, n Integers.
p, q Primes.
α, β Roots of polynomials.
ξ An algebraic number.
p, q Prime ideals.
B A set of prime ideals (a factor base).
(ξ) The principal ideal of ξ, ξOK .
N(ξ), N(p) The norm of ξ, p.
Tr(ξ) The trace of ξ.
D(f), D(K) Discriminant of polynomial f , number field K.
Lx (α, c) Subexponential complexity function, defined by equation (2.4).

2D,3D,4D Two-, three-, four- dimensional space
CRT Chinese Remainder Theorem
DL Discrete Logarithm
DLP Discrete Logarithm Problem
DSA Digital Signature Algorithm [81]
ECM Elliptic Curve factorization Method
IFP Integer Factorization Problem
GIPS Billion (Giga) Instructions Per Second
NFS Number Field Sieve
MIPS Million Instructions Per Second
RSA Cryptosystem of Rivest, Shamir, Adleman [90]
XTR Efficient and Compact Subgroup Trace Representation, see Chapter 4
XTR-DL Discrete Logarithm in XTR group

iv

CHAPTER 1

Introduction

Algorithms and protocols of asymmetric cryptography are mostly based on two (conjec-
turally) difficult mathematical problems. First of them is the problem of factoring large
integers (used e.g. in RSA [90]). The second one is the problem of computing discrete
logarithms in finite groups (used e.g. in DSA [81]). There are more of the difficult
problems that can be used in cryptography, e.g. based on logarithmic signatures [75].
However, none of them has gained enough popularity to replace the existing algorithms.

The integer factorization problem (IFP) can be defined in general as follows: Given
composite integer n find two integers p, q > 1, such that n = pq. In cryptography, we
are interested only in difficult cases of factorization, i.e. where p and q are large primes.
There are many algorithms that solve general IFP. They can be split in two groups:
general-purpose algorithms that can factor any integer n; and special-purpose that can
factor only special integers, e.g. smooth numbers.

When assessing the strength of a cryptosystem, our prime concern is the actual and
asymptotic complexity of the fastest general-purpose algorithm. A special-purpose al-
gorithm can usually factor an integer faster then general-purpose one, when certain
conditions are met. On the other hand, the set of integers for which these conditions
are met, even if infinite, is usually sparse. Thus, it is possible to avoid the use of such
numbers when selecting cryptosystem parameters. When a new special-purpose algo-
rithm is found, we can change the parameters of cryptosystems or protocols affected.
On the other hand, a new general-purpose factoring algorithm with lower asymptotic
complexity can lead even to the total break of all cryptosystems based on the hardness
of the problem.

Similar remarks apply to the discrete logarithm problem (DLP). DLP can be defined
as follows: Given a prime p, and two numbers a, b such that a ≡ bx (mod p), where
x is an integer, find x. Modular exponentiation is fast, so when we are able to find
parameters such that DLP is difficult, we can build asymmetric cryptosystems based
on DLP. It is more difficult to divide algorithms for solving DLP to general-purpose
and special-purpose ones, as DLP definition can be extended to any finite cyclic group
and thus also the level of generality.

The IFP and DLP are clearly quite different. Thus it can be surprising that the Number
Field Sieve is nowadays the fastest general purpose algorithm to solve both IFP and
DLP. Clearly, the details of the algorithm differ depending on the area of application,
but the general principle and asymptotic complexity is essentially the same. On the
other hand, we can view the Number Field Sieve not as a single algorithm, but as a class
of algorithms, or a generic method. As such, all descriptions of the NFS hide many of
actual implementation details and leave a lot of space to apply different heuristics. It

1

1. INTRODUCTION 2

is conjectured that these heuristics do not influence the asymptotic running time. The
opposite is true for the actual running time. A careful tuning of parameters, and the
utilization of implementation heuristics can save a lot of computational resources.

My first research experience with subexponential methods to solve IFP and DLP started
more than 5 years ago, as a preparation for my master thesis. The topic of my master
thesis switched to Elliptic Curve Cryptography, but the interest in NFS remained. Thus
it was natural to consider it as a topic of my PhD study and research. In the time of the
choice (2004), a lot of progress had been done on the field of DLP in Fp, such as [52].
In that time however, it was not known whether NFS, or some method with similar
complexity, can be practically applied to a DLP in field extensions Fpn , with medium
sized characteristic p.

One of the practical motivations to solve the DLP in these fields is inspired by XTR
based cryptosystems [70, 63]. XTR uses a subgroup of F∗p6 with prime order q dividing

p2− p + 1 (called an XTR group). Its elements are represented by their traces, and the
efficient arithmetic is developed to allow a fast exponentiation. XTR-DL problem is to
find the unknown exponent d from Q = Gd, where G,Q are known XTR traces.

The XTR-DL problem can be solved in XTR group by generic methods with asymptotic
complexity O(q1/2). If q is chosen as large as possible, i.e. p2−p+1, then the complexity
becomes O(p). Clearly, the computation becomes infeasible very fast with growing p.
On the other hand, XTR-DL can be transformed (in a polynomial time) to an instance
of the DLP in the finite field Fp6 . Our goal was to apply the NFS algorithm to solve this
problem, and subsequently the original XTR-DL problem. Meanwhile, a new algorithm
[55] was published, which presumably can solve the DLP in any finite field. However,
we have not seen any practical results for fields of degree six.

Most of the problems in the application of NFS arise from the fact that fields of degree
six must use NFS with two degree 6 polynomials (with joint degree 12). The size of the
polynomial is too large for any p in a practical range for experiments. Optimal degree
of the (single) NFS polynomial is

d =
(
31/3 + o(1)

) (
ln x

ln ln x

)1/3

,

where x is the field size. This means d = 6 for degree six fields with characteristic of
more than 100-bits, which is outside of scope of our computational resources.

The research summarized in this thesis has accomplished at least these basic goals:

• a practical implementation of the NFS was created that can solve DLP in degree
six finite fields, and subsequently the XTR-DL problem;

• the three and higher dimensional sieving was explored;
• many experiments were concluded to provide a basis for selecting optimal pa-

rameters and heuristics in the NFS implementation;
• areas explored in this thesis can have consequences in other areas of NFS appli-

cations;
• DLP in a field Fp6 with a 40-bit characteristic p (240-bit field size) was solved.

1. INTRODUCTION 3

Unlike most of the pure mathematical research, this thesis place heavy emphasis on ex-
periments. Unfortunately, the experimental area of Applied Mathematics is a somewhat
unclear territory, and it is even rejected by some of the pure mathematicians. However,
in topics covered by this thesis a theoretical approach is complicated by three basic
problems. The first one is a very broad fundamental theory required, covering algebraic
number theory, probability, algorithm complexity, etc. The second one is that the NFS
algorithm (and related problems) is quite well-researched from the theoretical point of
view, with gaps related to very difficult areas of mathematics like the Riemann hy-
pothesis. The third one is that a lot of theoretical results are probabilistic and/or
using some specific conditions, leading to sometimes unexpected effects in practice.
Thus our approach is to use the known (or new/conjectured) theoretical results, and
explore the applications in the experimental manner. Our experimental results can later
generate further theoretical research, especially if some of the results are unexpected,
or not completely covered by the theory. Another important aspect of the experimental
research is that the results can be understood and further utilized by a broader audience
of technical experts, especially in cryptography.

Structure of this thesis is as follows: Chapter 2 contains some of the specific mathemat-
ical preliminaries. These are mainly in forms of specific remarks connected to further
work, as there is already an extensive amount of literature covering the theoretical side
of the work. Chapter 3 provides a state of the art background on the topic of the discrete
logarithm problem, basic algorithms for the solution of the DLP, and its applications in
cryptography. Parts of this chapter were published in [106]. Chapter 4 provides a state
of the art on XTR and its applications, and provides the background on transformation
of XTR-DL problem to DLP in degree six finite field.

Chapter 5 gives the basic background on the Number Field Sieve. First part of the
chapter provides the overview of the method. In the next part, a short mathematical
background on the method is provided, along with an algorithm description from the
practical point of view.

Chapter 6 contains a discussion of NFS complexity and its parametrization. Basic com-
plexity estimates for applications of NFS to Fp6-DLP are elaborated. Various applicable
NFS variants and different implementation options are summarized and discussed. Core
of the discussion is devoted to the selection of a sieve polynomial in Fp6-DLP case.

Chapter 7 covers topics connected with sieving. Background information on sieving is
provided, along with NFS specific implementation remarks. Our older [113], and newer
[115] sieve algorithm is presented, along with implementation recommendations and
basic results. Chapter contains remarks on some of the sieve-specific topics, like the
logarithmic estimates of norms, the effective line sieving and the use of the large primes.
A new algorithm using large primes is proposed, but it is not elaborated in more details,
as its usefulness for our immediate goal was limited.

Chapter 8 contains detailed experimental results. Special notice is given to an influence
of a sieve polynomial on the smoothness density. Some of the results were published
in the article [116]. Section 8.2 contains discussion and experimental results concern-
ing the choice of the optimal sieve region. It provides supportive arguments for the
use of 3D sieve in case of using NFS to solve DLP in Fp6 . Section 8.3 examines the

1. INTRODUCTION 4

behavior of a randomized version of the sieve, and the impact of the tolerance param-
eter on the number of equations obtained from the sieve and the speed of the sieve.
Recommendations for optimal sieve parameters based on the experimental results are
provided. Section 8.4 contains the final experimental results (partly presented in [114]).
The largest computational experiment conducted was the solution of the DLP in Fp6

with 40-bit characteristic p. The total time to find an XTR-DL in the corresponding
XTR group, is much faster than if Pollard’s rho algorithm (or similar group-size based
methods) was used. Sieving results are summarized and extrapolated to provide initial
estimates for larger fields.

Selected parts of this work were previously published (or accepted for publication) in
[106, 113, 115, 116, 114]. Our research was partially supported by grants VEGA
1/3115/06 and ESF SORO/JPD3-038/2005, and by the National Security Authority of
Slovak Republic. Expert suggestions and comments of the thesis supervisor Professor
Otokar Grošek, and of Professor Ladislav Satko contributed to the theoretical aspects of
the project. Realization part was eased by the help of Mgr. Marek Sýs, Ing. Vladislav
Novák, and Ing. Matúš Jókay. Author would also like to thank Professor Igor Semaev
for important comments and suggestions leading to significant improvements in the
quality of this work.

CHAPTER 2

Preliminaries

The understanding of the Number Field Sieve algorithm requires mathematical prelimi-
naries from many parts of mathematics, especially from Number Theory (both Algebraic
and Analytic). Effective implementation of the NFS requires also a particular insight
into computer science related topics, such as cache friendly algorithm implementation,
distributed computing, etc. In this chapter we focus on some basic mathematical pre-
liminaries related to NFS.

Throughout the work, we use standard notions of groups, fields and algebraic numbers.
We refer the reader to Chapter 2 of [77] for a short summary of the group and field
related topics. For a finite field reference, we recommend the book [73], and for algebraic
number theory, especially from the algorithmic side, we recommend the book [23].

The Number Field Sieve from algebraic and implementation point of view is described
in Chapter 5. In Section 2.1, we focus on some practical aspects of the required al-
gebraic number theory. Although the algebraic number theory is needed for a correct
implementation of the NFS algorithm, most of the results in this work can be under-
stood with only a basic knowledge. In Section 2.2 we further summarize preliminaries
from analytic number theory, concerning the smooth numbers. They are used in es-
timating the asymptotic complexity of NFS, and in the reasoning behind some NFS
implementation options.

2.1. Remarks to algebraic numbers and ideals

Let K denote an algebraic number field Q(α), with α a root of a monic irreducible
polynomial f of degree d. Ring of algebraic integers of K will be denoted OK . Algebraic
integers in general do not have unique factorization. Thus ideals of OK are used instead.
More specifically, we usually work in module Z[α] only. Points (a0, a1, . . . , ad−1), ai ∈ Z
either represent an algebraic integer ξ =

∑d
i=0 aiα

i, or the principal ideal (ξ) = ξOK .
This ideal is then factored to prime ideals. In practice however, only the norm N(ξ) is
factored. If pi|N(ξ), the corresponding ideal pi is determined by a common root of f(x)

and a(x) =
∑d

i=0 aix
i modulo pi. If index [OK : Z[α]] > 1, a special care must be taken

for ideals over primes dividing the index. To simplify the implementation, we can avoid
such fields altogether.

For a sake of simplicity, let us consider only unramified prime ideals. Classically, ideals
are processed in the two-element representation. If ideal p corresponds to a monic
irreducible factor r(x)|f(x) mod p, then its two element representation is (p, r(α)).
Degree of the ideal is deg r, and its norm is pdeg r. Ideal p can also be seen as a
submodule P of Z[α] with known basis. All elements of P have norm divisible by the

5

2.2. SMOOTH NUMBERS AND SMOOTHNESS PROBABILITY 6

norm of the ideal p. Let r(x) = xs +
∑s−1

i=1 rix
i. Then the basis of P is (basis vectors in

rows)

L(P) =

p 0 · · · 0 0 · · · 0
0 p · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

r0 r1 · · · 1 0 · · · 0
0 r0 · · · rs−1 1 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · rd−s rd−s+1 · · · 1

There are other useful basis representations, such as Hermite Normal Form (HNF, see
section 2.4.2 of [23]) or LLL-reduced basis [66]. Using a suitable basis of ideal, we can
quickly identify all elements of a bounded subspace of Z[α] belonging to a given ideal.

Module representation of an ideal is also used in the lattice sieving [86]. One ideal q
with large norm q is fixed, and then instead of sieving module Z[α], we sieve module q
with smaller ideals. Afterwards we choose different q. Pollard in [86] points out that by
optimal application of this method it is possible to find 83 % of NFS equations for only
8.6 % of work. However, this estimate was done, if the sieve space was two dimensional.
As we show further, to solve XTR-DL problem we require three dimensional sieve.
The lattice sieve adaptation to three dimensions have specific problems, such as lattice
reduction required for computing bases in different q-modules. Still the lattice sieve is
useful for computing individual discrete logarithms with descent method (see Section
5.2.4). Further notes on sieving are summarized in Chapter 7.

2.2. Smooth numbers and smoothness probability

The Number Field Sieve algorithm is based on smooth numbers. For some well-chosen
bound B we are able to find particular numbers (norms of algebraic integers) with prime
divisors not exceeding B. We call these integers B-smooth. Their number is larger than
the number of primes below B. Moreover, it is fast to factor integers, when we know
(a-priori) that they are smooth. Using the sieve, we can also identify smooth integers
from some (large) set of integers. The effectiveness of the NFS then depends on the
smoothness probability among random or specifically constructed integers.

2.2.1. Smooth integers. A positive integer n ∈ N can be written uniquely as a
product of prime powers n =

∏c
i=1 pei

i , ei > 0, pi > pj if i < j, pi prime. Thus for any
n we can define function:

pf : N× N→ N, pf(n, i) =

{
pi, if i ≤ c;
1, otherwise.

, (2.1)

where c is the number of prime factors of n. Function pf returns i-th prime factor
ordered from the largest prime factor.

Another useful function is a valuation function val : N× N→ N,

val(n, p) = max{e ∈ N0|n ≡ 0 (mod pe)}. (2.2)

2.2. SMOOTH NUMBERS AND SMOOTHNESS PROBABILITY 7

Definition 2.2.1. Let n ∈ Z and let B > 0. If pf(|n|, 1) ≤ B, then n is called a
B-smooth number.

Definition 2.2.2. Let n ∈ Z and let 0 < B < B1. If pf(|n|, 1) ≤ B1, and pf(|n|, 2) ≤ B,
then n is called a (B1, B)-semismooth number.

Smooth and semismooth numbers play an important role in the NFS algorithm. It
is easy to factor B-smooth integers, when B is small, and equivalently to compute
valuations val(n, p) for p < B. In many IFP/DLP solving algorithms, we must find
more B-smooth integers than the number of primes less than B. After factoring and/or
computing valuations, it is then possible to write a system of equations leading to a
solution of original IFP/DLP.

Definition 2.2.3. Let n ∈ Z and let B > 0. Let there exist such k, that pf(|n|, i) > B,
for each i < k, and pf(|n|, i) ≤ B, for each i ≥ k. Then

∏c
i=k pf(|n|, i)ei is called a

B-smooth part of n. Primes pf(|n|, i) for i = 1, . . . , k− 1, are called large (prime) factors
of n.

2.2.2. Smoothness probability. The number of smooth numbers and their dis-
tribution is important in the estimates of the NFS complexity. The number of y-smooth
numbers in the interval [1, x] is given by the function Ψ(x, y). There are many analytic
and numeric results concerning computation of function Ψ. Good overview and a prac-
tical method for computing tight bounds for Ψ is presented by Bernstein in [11]. An
important result for the NFS complexity is the asymptotic behavior of Ψ. Dickman in
[30] observed that

lim
y→∞

Ψ(yu, y)

yu
= ρ(u), for u > 0. (2.3)

Here ρ is a continues function satisfying ρ(u) = 1 for 0 < u ≤ 1 and uρ(u) =
∫ u

u−1
ρ(t)dt

for u > 1. A first approximation is ρ(u) ≈ u−u. A more general results for semismooth
integers can be found in [9].

The number Ψ(x, y)/x denotes a probability that randomly selected integer from the
interval [1, x] (with uniform distribution) is y-smooth. We will call a probability that a
randomly selected integer from the set M is y-smooth a smoothness probability (with
respect to y and M).

The smoothness probability depends on the smoothness bound and the size of the
numbers involved. In the NFS context a family of functions is used:

Lx (α, c) = exp
(
c(ln x)α(ln ln x)(1−α)

)
, (2.4)

where α, c ∈ R, 0 < α ≤ 1, c > 0. It follows from [21, 29] that a random positive
integer ≤ Lx (α1, c1) is Lx (α2, c2)-smooth with probability

Lx

(
α1 − α2,−c1

c2

(α1 − α2) + o(1)

)
(2.5)

for x →∞. Asymptotic complexity of the NFS is based on this estimate [61].

2.2. SMOOTH NUMBERS AND SMOOTHNESS PROBABILITY 8

2.2.3. Smooth algebraic integers. Let α be a root of polynomial f ∈ Z[x] irre-
ducible over Z. Then K = Q(α) is an algebraic number field. The ring of integers of K
will be denoted OK .

Let ν ∈ OK . In general, ν cannot be uniquely factored in OK , which complicate the
notion of smooth algebraic integer. Instead of factoring algebraic numbers directly, we
switch to ideals of OK .

An algebraic number ν ∈ OK defines the principal ideal (ν) = νOK . As an ideal of OK ,
it can be factored uniquely (up to permutation) into a product of prime ideals

(ν) =
c∏

i=1

pei
i , with ei > 0, N(pi) ≥ N(pj) for i < j.

We can define functions pf and val for algebraic numbers/pricipal ideals and prime
ideals in similar manner like in Equations (2.1) and (2.2). The order of prime ideals is
not unique, since there are more prime ideals with the same norm, i.e. N(pi) = N(pj)
for some i, j. Thus we must choose some arbitrary order of prime ideals in the definition
of function pf.

Definition 2.2.4. We say that an algebraic integer ν ∈ K is B-smooth, if the corre-
sponding ideal decomposition of principal ideal (ν) has N(p1) ≤ B.

In algebraic number fields, the absolute value of the norm of ν is the same as the norm
of principal ideal (ν). We denote it just by N(ν) ∈ Z>0. Thus we can find unique
factorization N(ν) =

∏c
i=1 pei

i , with factors in descending order from the largest factor
p1.

If ν is B-smooth, then clearly its norm is also a B-smooth integer. The converse is not
true in general, due to higher degree prime ideals. E.g. if a prime ideal p of degree 2
lies over prime p >

√
B, then its norm N(p) = p2 > B.

In the NFS algorithm it is customary to use only degree 1 ideals, and thus the smooth-
ness of algebraic number ν is equivalent to smoothness of its (absolute value of) norm
N(ν). From the practical point of view, the smoothness of N(ν) is easier to evaluate
than smoothness in sense of Definition 2.2.4. Thus in practical situations we consider
all algebraic numbers with smooth norm to be smooth.

In algebraic number fields we can also define the notion of smoothness probability.

Definition 2.2.5. Let M be a set of algebraic integers, M ⊂ K. The probability that
randomly chosen ν ∈ M is B-smooth is called a smoothness probability with respect to
M , and B respectively.

Smoothness probability can be estimated by using either Equation (2.3) or (2.5), after
we have suitable upper bound on norms of algebraic integers from M . More details on
smoothness probability in number fields of degree 6 is provided in Chapter 6.

CHAPTER 3

Discrete logarithm problem and its applications in
cryptography

3.1. Definition of the discrete logarithm

A classical definition of the discrete logarithm problem (DLP), and the notion of discrete
logarithm (DL) originate in number theory. DLP can be simply stated as follows: Given
three integers a, b, n find the (least non-negative) integer x, such that a = bx (mod n).
If such an integer exists, we call it the discrete logarithm of a w.r.t. base b modulo n,
denoted by logb,n a.

DLP was later generalized in group theory. Every finite cyclic group with n elements
is isomorphic to the additive group Zn. Clearly, DLP can be transformed to a problem
of finding isomorphism between Z∗n and Zϕ(n).

Definition 3.1.1. Let (G, ·) be an arbitrary finite cyclic group of order n. Let α be
the generator of G. The generalized discrete logarithm problem (GDLP) is the following:
Given an element β ∈ G, find the unique integer x, 0 ≤ x < n, such that αx = β. The
integer x is called the discrete logarithm of β to the base α, denoted by x = logα β.

In this case GDLP is equivalent to finding an isomorphism between any finite cyclic
group G and Zord G. Thereafter, if not specified, we always assume the generalized
discrete logarithm problem, and shortly write DLP. A subgroup S of a finite cyclic
group G is also a cyclic group. Thus we can find discrete logarithms to the base given
by a generator of S. It is well known that the properties of the function logα(x) in
a group of order n are similar to the properties of the logarithmic function for real-
numbers:

logα xy = (logα x) + (logα y) mod n, (3.1)

logα xz = z(logα x) mod n, (3.2)

where x, y ∈ 〈α〉 and z is an arbitrary integer. If γ is an arbitrary generator of G, we
can write

logγ α(logα β) = logγ β mod n. (3.3)

If we are able to compute both discrete logarithms of α, β in base γ, we can compute
logα β as a solution of congruence (3.3). If β belongs to a subgroup S ⊂ G generated by
α, the logarithm can always be computed. We do not even need to know the value of
γ, as long as both logarithms are in the same base. In this case, γ is omitted from the
logarithm notation. Thus log α simply means a discrete logarithm of α to some fixed,
but not specified base. Also, even if not explicitly specified, discrete logarithms always
represent modulo n classes.

9

3.2. OVERVIEW OF THE METHODS TO FIND DISCRETE LOGARITHMS 10

In the case of a finite field Fpn , the multiplicative group is cyclic. Thus we can compute
a discrete logarithm of any non-zero field element w.r.t. some generator g of F∗pn .
Definition 3.1.1 also allows to take some additive cyclic subgroup of Fpn , and to compute
discrete logarithms in this group. E.g. for group (Fp, +) this leads to solve the equation
xa = b mod p, with unknown x. This problem is however easy to solve.1 Thus in the
sequel, the notion discrete logarithm in a finite field refers always to discrete logarithms
in the multiplicative group of a finite field.

3.2. Overview of the methods to find discrete logarithms

Methods to solve the discrete logarithm problem can be divided into two main classes.
Group-independent methods work for any finite cyclic group. Group-dependent meth-
ods can only be applied to certain types of groups.

The complexity of group-independent methods is determined by the factorization of the
group order. If the factorization of the group order n is known, it is possible to compute
discrete logarithms in subgroups of prime order. Using Chinese Remainder Theorem
(CRT) we finally compute discrete logarithm modulo n. This is the main idea of the
so-called Pohlig-Hellman method, presented in section 3.2.3.

Even if the order of the group is unknown, it is still possible to compute discrete
logarithms (and group order). In this case we should be able to estimate bounds of
the interval in which we expect the actual logarithms. Complexity of all known group-
independent methods is exponential (in number of bits of n, resp. the maximal of
pi|n).

An example of group-dependent methods is the application of Extended Euclid algo-
rithm to compute the solution of xa = b mod p, and thus effectively solve DLP in
(Fp, +). This algorithm has polynomial complexity (in number of bits of p). However,
no polynomial algorithm for DLP solution is known to exist in multiplicative subgroup
of a finite field. Still, the DLP can be solved with subexponential complexity in a full
multiplicative group of any finite field. The complexity of these methods depend on
the size of the whole field, even if we try to solve discrete logarithms in its (relatively)
small subgroup. Different complexity estimates, when comparing a problem from the
subgroup point of view, and from the field point, can be used for a better selection of
parameters for DL-based cryptosystem [96]. This is also one of the key ingredients used
by XTR, as shown in Chapter 4.

It is important to know possible methods of solving the DLP, and their complexity
estimates, to assess the security of DLP-based cryptosystems. The security of system
can be improved by increasing the size of the keys, resulting in a larger group size
q and/or field size pn. On the other hand, the actual implementation is then more
expensive. Given the complexity estimate, we can trade off key-sizes and still the
system cannot be broken by solving the DLP (according to the current knowledge).

1This is not true for additive groups in general, e.g. it is difficult to solve DLP in a group of points
of some elliptic curves.

3.2. OVERVIEW OF THE METHODS TO FIND DISCRETE LOGARITHMS 11

Increasing the key size of the system is only reasonable, if there is no polynomial time
algorithm for solving the underlying DLP. The question of existence of such algorithm in
general, and in multiplicative groups of Fpn is still open, although it is widely believed
that no such algorithm exists on conventional computers. On the other hand, Shor
[103] has published a polynomial time algorithm for solving the DLP on the quantum
computer. From the practical point of view, this algorithm is unusable for breaking
the currently used DLP-based cryptosystems, as we are unable to construct quantum
computer with quantum registers large enough to perform the actual computation.

3.2.1. Shanks algorithm. Shanks [102] (see also [77], section 3.6.2) proposed
an algorithm for solving the DLP that is based on time-memory trade-off in exhaustive
search. It is also called baby-step giant-step algorithm. Its idea comes from the following
observation. When β = αx and the order of α is n, then we can write x = im+ j, where
m = d√ne, 0 ≤ i, j < m. Then αx = αimαj, giving us β(α−m)i = αj.

INPUT : α ∈ G having order n, β ∈ G
OUTPUT: x = logα β

(1) LET m ← d√ne.
(2) Create table of T = 〈(j, αj)〉 FOR j = 0, 1, . . . , m− 1 (baby-step).
(3) LET γ ← β.
(4) FOR i = 0 . . .m− 1:

(a) IF (j, γ) is in table T RETURN x = im + j.
(b) ELSE γ ← γ · α−m (giant-step).

This algorithm has both time complexity and memory demands bounded by O(
√

n).
The trade-off between time and memory can be further refined by another choice of m
in step (1). By another choice of m we can also speed up the algorithm, if we know the
interval in which to search for the x. In this case, it is also possible to compute discrete
logarithms, even if do not know the exact size of the group.

3.2.2. Collision methods. Pollard’s ρ- and λ-methods represent another class of
exponential algorithms for solving the GDLP [87]. Algorithms of this class are based on
finding ”collisions” in one or more pseudorandom sequences. They are non-deterministic
in nature, but yield good practical results.

Pollard’s ρ-method uses one pseudo-randomly iterated sequence in the underlying finite
group. As the number of points is finite, the sequence becomes cyclic in some step.
At this point, we can compute the discrete logarithm. The name of the method comes
from the visualization of this process, which looks like the Greek letter ρ.

Next we give more details of this method. We are searching for logα β where α ∈ G
is an element of order n. We form a sequence y1, y2, . . . of triples yi = (xi, ai, bi) by
iteratively applying function f : 〈α〉 × Zn × Zn → 〈α〉 × Zn × Zn,

f(x, a, b) = (αkβlxm,ma + k,mb + l)

3.2. OVERVIEW OF THE METHODS TO FIND DISCRETE LOGARITHMS 12

where k, l, m ∈ Zn are given by x belonging to a particular partition Sj of G (all
partitions should have roughly equal size and it should be easy to verify to which
partition x belongs to). Function f satisfies the property

xi = αaiβbi ⇒ xi+1 = αai+1βbi+1 .

We know the single point (1, 0, 0) which satisfies this property (if we knew another one
we could compute DL directly). This is a starting point of the sequence. When we find
the cycle, we can find ys, yt, such that their first coordinates are the same (i.e xs = xt).
Then

αasβbs = xs = xt = αatβbt .

From this αas−at = βbs−bt . Now if gcd(bs− bt, n) = 1 (which has a high probability), we
can compute logαβ = (bs − bt)

−1(as − at) mod n.

A computer implementation of the ρ-method is very simple. It is usually implemented
using Floyd’s cycle finding algorithm [36]. It does not require any substantial memory
overhead, since we only need to store two triples yi and y2i. An alternative faster cycle
detection is due Brent [17]. Time complexity estimates of the ρ-method are bounded
by O(

√
n).

Pollard’s λ-method uses collisions of two pseudo-random sequences (sometimes called
kangaroos). One of them is a reference sequence (”tame kangaroo”), starting from
known point t0 = αs and second one (”wild kangaroo”) starts from a point w0 = β = αx,
where x is the unknown logarithm.

The sequences are iterated using the pseudorandom function a. This gives us two se-
quences ti+1 = ti · αa(ti) and wi+1 = wi · αa(wi) respectively. There is a high probability
(due to birthday paradox) that these sequences will collide, i.e. ti = wi′ . The visualiza-
tion of the sequences looks like the Greek letter λ.

In the point of collision we can compute x from the equation

s + δti = x + δwi′ (mod n),

where δ is remembered distance of the sequence δti+1
= δti + a(ti). To be able to detect

the collision we must store the points of the sequences. To save the memory, we store
only some distinguished points (easy to check due to some property) and do not check
the whole sequences.

This method can be modified for finding discrete logarithms in a given interval, i.e.
x ∈ [a, b], where a and b are known, even if the order n is unknown. λ-method can
be run with time complexity 2

√
b− a + O(log n), if we know that x ∈ [a, b]. The

required memory storage is small, and the computing can be implemented in more
parallel computers with almost linear speedup.

3.2.3. Pohlig–Hellman algorithm. Algorithm proposed by Pohlig and Hellman
[85] can lower the complexity bound of general DLP solving methods, when the fac-
torization of the order of α is known. When order n = p1

e1p2
e2 · · · pn

en , then we can
compute single xi = logα β mod pei

i .

We find xi’s using the following algorithm:

3.2. OVERVIEW OF THE METHODS TO FIND DISCRETE LOGARITHMS 13

INPUT : G, n, α, β, prime p, exponent e
OUTPUT: logα β mod pe

(1) j ← 0.
(2) βj ← β
(3) WHILE j ≤ e− 1

(a) δ ← β
n/pj+1

j

(b) FIND k such that δ = αkn/p (DLP in subgroup)
(c) aj ← k

(d) βj+1 ← βjα
−ajpj

.
(e) j ← j + 1

(4) RETURN xi =
∑ei−1

j ajp
j.

After computing xi’s we can combine the partial results with Chinese remainder theorem
to x = logα β. Computation of xi’s is a less complex problem, as we solve the DLP in
subgroups with a smaller order pi.

Overall complexity of the algorithm is given by the complexity of DLP in the subgroup
of order q, where q is the largest prime factor of n. We can use an estimate O(

√
q)

as a good approximation of real complexity. This algorithm has important practical
consequences. In a cryptographic application we require that it is hard to solve the
DLP. Hence the order n of the cyclic group must have a large prime factor.

3.2.4. Index calculus methods. The former algorithms did not impose any spe-
cific restriction on the group G in which we tried to solve the DLP. On the other side,
we can apply index calculus (IC) methods only for solving the DLP in full multiplica-
tive group of finite fields Fpn . We can transform some of the generalized DLP in other
groups to DLP in multiplicative group of finite fields, but usually we get fields too large
for IC methods to be effective.

Index calculus methods are sometimes called factor base methods, by the most signif-
icant step in the algorithms. These methods are similar to that used for factorization
(QS, NFS). In general the algorithms based on IC methods have subexponential com-
plexity, with constants dependent on the field and heuristics used.

The main idea of IC methods is as follows: Choose an appropriate factor base S =
{p1, . . . , pk}, such that most of the group elements of G can be factored over S. IC
based algorithms first find discrete logarithms of elements in S, and these can be then
used to compute discrete logarithms in G.

3.2.4.1. IC methods in Fp. IC methods work for arbitrary field, but we describe only
how it works in a prime field Fp. Let g be a generator of F∗p and let t ∈ F∗p. We are

looking for integer l, such that gl ≡ t (mod p), or in other words we are looking for
l = logg t.

We can write the general index-calculus method in F∗p in the following steps:

3.2. OVERVIEW OF THE METHODS TO FIND DISCRETE LOGARITHMS 14

INPUT : p prime, g generator of Z∗
p , t ∈ Z∗

p

OUTPUT: l = logg t

(1) Choose the smoothness bound B and create the factor base S = {pi|pi ≤
B, pi is prime}.

(2) Search for relations.
Choose random number r, 1 ≤ r < p − 1. If we can factor gr mod p over S,
then we can write an equation

r ≡ r1 logg p1 + · · ·+ rk logg pk (mod p− 1),

where logg p1, · · · , logg pk are unknowns. Store equations in the growing system
of equations repeating the step until enough equations are found for system to
be solvable.

(3) Linear algebra.
Solve the system of equations from previous step and compute unknowns

logg p1, . . . , logg pk.
(4) Find the discrete logarithm.

Choose random integers R, 1 ≤ R < p− 1, until the number gRt mod p can
be factored over S. Using equation

loggt ≡ −R + τ1 logg p1 + · · ·+ τk logg pk (mod p− 1)

and values computed in previous step we can find the actual logg t.

If the parameters are properly chosen (according to asymptotic estimates based on
smoothness probability), then the most time consuming step is the search for relations.
On the other hand, this task can be easily distributed to many computers, unlike the
linear algebra step. Complexity of these two steps can be to a small degree balanced
by a careful choice of parameters, especially the smoothness bound B. Once we have
found the discrete logarithms of the factor base, only the last step is required to find
any other discrete logarithm in F∗p.

The above algorithm is only a scheme that requires many implementation details, like
the choice of a factor base, factoring technique used, how to search for equations fast
or how to solve linear algebra.

The complexity of the algorithms is bound with the choice of factor base. Asymptoti-
cally optimal factor base size is given as Lp (1/2, c + o (1)), where c is a constant, and
L is defined by equation (2.4). Constant c is mainly influenced by the factorization
methods used in the second step. If we use fast smoothness testing, overall complex-
ity can be written as Lp

(
1/2,

√
2
)
. If we use trial division, complexity will rise up to

Lp (1/2, 2).

3.2.4.2. Evolution of IC methods. Index calculus methods in general number fields
are based on Adleman’s algorithm [1]. A specialized application for fields of character-
istic 2 is described by Coppersmith in [25], later improved and implemented by Gordon
and McCurley [47]. This method is also called a polynomial sieve, generalized version

3.3. CRYPTOGRAPHIC APPLICATIONS OF THE DLP 15

is due to Gao and Howell [41]. Using this algorithm, Thomé [107] was able to find
discrete logarithms in the field F2607 .

Randomized index calculus method presented above is based on the original ideas of
Coppersmith, Odlyzko and Schroeppel [27]. These methods were superseded in Fp by
the application of the Number Field Sieve method [46]. NFS decreases the asymptotic
complexity to Lp (1/3, c) by using algebraic numbers and sieve methods instead of ran-
domized checking. A record solution was presented by Weber [109, 110]. Overview of
classical index calculus methods and NFS is also provided in [95].

A long time, there was an Lx (1/3, c) algorithm to solve DLP only for fields of large prime
characteristic Fp (x = p), and for fields of very small characteristic, mostly F2n (x = 2n).
Constant c under asymptotic settings for general prime field is c = (64/9)1/3 .

= 1.9229 for
an original Schirokauer’s algorithm [92]. This bound was later improved by Matyukhin

[76] to c =
(

96+26
√

13
27

)1/3 .
= 1.902. An algorithm for special primes p with much lower

constant c = (32/9)1/3 .
= 1.526 was presented by Semaev [98].

A variant of NFS for fields Fp that was presented by Joux and Lercier [52] is more
efficient from the implementation point of view. They have also provided a method
to replace Coppersmith’s algorithm for fields of small characteristic in [54], repeating
and improving the previous record of [107]. Together with results of [55], these algo-
rithms provide Lx (1/3, c) algorithm for all finite fields. A variant of [52] with multiple
polynomials was presented by Commeine and Semaev [24], with smaller constant c. Un-
fortunately, the field sizes with a significant impact of different c’s are out of a practical
range to compare the methods.

Our work targeting XTR-DL problems require solving discrete logarithms in field Fp6 .
In this case, algorithm of [55] can be applied. Its asymptotical behavior is known, but
for the fields, where this algorithm is feasible, some assumptions in complexity estimates
are not yet valid (namely the degree of polynomial used). As we show in this work,
after solving some specific issues, it is possible to implement this algorithm, and solve
the corresponding XTR-discrete logarithms.

3.3. Cryptographic applications of the DLP

In 1976 Whitfield Diffie and Martin Hellman published important article New directions
in cryptography [31]. It was in the time of rapid growth of computing and communi-
cation technology. New communication possibilities required stronger cryptography to
ensure privacy. This could be accomplished by many new symmetric ciphers, e.g. DES
that was just in the standardization phase [80]. Symmetric cryptography requires that
both participants share one secret key K. There has to be a secure way to exchange
this key. Contemporary ways, e.g. travel in person or exchange by trusted couriers,
were too costly and impractical for general use.

Diffie and Hellman proposed a solution – Diffie-Hellman key agreement scheme – that
was based on a concept of one-way functions. A function f is a one-way if, for any
argument x in the domain of f , it is easy to compute the corresponding value f(x), yet,
for almost all y in the range of f , it is computationally infeasible to find x such that

3.4. MOTIVATION FOR XTR 16

y = f(x) for any given y. As we have seen, one of the conjectured one-way functions is
exactly the modular exponentiation, under the condition that the corresponding discrete
logarithm problem is infeasible.

The first published discrete logarithm based key agreement scheme was Diffie–Hellman
key agreement scheme [31]. Algorithms and protocols extending the basic scheme are
used in many applications, e.g. in SSH authentication. If the exchange is performed
using arithmetic of field Fp, both parties must exchange at least 2 log p bits in every
session. We suppose that public parameters are precomputed and fixed for many ses-
sions. Thus increasing the size of the parameter p, while increasing security, increases
also the communication overhead (as well as complexity of multiplications).

The hardness of computing discrete logarithms can be used also in public-key cryptog-
raphy. ElGamal’s cryptosystem [33] is an example of a discrete logarithm based public
key encryption system. More important is variant of ElGamal’s cryptosystem used for
digital signatures, the Digital Signature Algorithm (DSA). It is now standardized under
the name Digital Signature Standard (DSS, FIPS186-2, [81]). Parameters of DSA are
prescribed by the standards, with the bit-size of the field characteristic p at least 1024
bits. Due to the Pohlig-Hellman attack (see section 3.2.3), we also require that order of
the multiplicative group F∗p has a large prime factor q. A subgroup of this order is used
for generating the signature. The complexity of the signature generation depends on
both field parameter p and the size of the used cyclic group q. Bit-size of p determines
the speed of a single multiplication or squaring operation. Number of squaring opera-
tions in modular exponentiation is given by the bit-size of q. Length of the signature
is 2 log q. Better estimates on complexity and recommended key sizes can be found in
[83].

3.4. Motivation for XTR

Cryptographic algorithms based on the intractability of the DLP usually work in a
multiplicative group F∗p, or its suitable subgroup. It is possible to replace this group
with another cyclic group, where DLP is a difficult problem. It should be at least as
difficult to compute, as in a standardized DSA algorithm. A multiplicative group of
F2n is often used due to a faster field arithmetic. Nowadays, it is recommended to use
the Elliptic Curve Cryptography (ECC) [82] with arithmetic operations defined in a
group of points of an elliptic curve. However, not all elliptic curves are suitable for
cryptography, and the parameter selection is quite tedious. ECC is also one of the
reasons to study the discrete logarithm problem in (higher degree) finite fields, as for
some curves it is possible to transform an Elliptic Curve DLP to a DLP in a finite field
[78].

If we consider DSA algorithm, the signature is compressed to two coordinates, with
total of 2 log q bits. While field security is affected by the subexponential methods (we
have to significantly increase p), group security grows exponentially with the size of q.
Thus we want to have a group representation and arithmetic dominated by q instead of
p, if possible. As shown in Chapter 4, there is indeed a practical solution, called Efficient
and Compact Subgroup Representation (XTR). Field Fp is replaced by extension field
Fp6 , but the elements are represented as traces in Fp2 . Arithmetic works directly with

3.4. MOTIVATION FOR XTR 17

this traces in efficient manner. This allows a reduction to a 1/3 of original bit sizes,
and even better performance gain (XTR is estimated to be 8-times faster). As we will
show further, the experimental evidence indicate that XTR is more secure (in terms of
cost function) than classical DL-based system (over Fp, or F2n) of equivalent field size.
A similar comparison works against RSA.

CHAPTER 4

XTR overview

Diffie-Hellman key exchange, DSA, ElGamal encryption, and many cryptographic pro-
tocols are based on the exponentiation in the full multiplicative subgroup of a finite
field. This is, however, not an optimal solution. As pointed in Section 3.2 the complex-
ity of the generic solution of the discrete logarithm problem for a cyclic group is given
by O(q1/2), where q is the largest prime factor of the group size. On the other hand,
complexity of the DLP in the finite field is also given by O(Lx (1/3, c)), where x = pd is
the field size. While DLP in groups with 160-bits q are already well outside the reach
of the whole current computing power, DLP in fields with 1024-bit size are believed to
be solvable within next 10 years. There is a large discrepancy between secure 160-bits
of group size, and almost insecure 1024-bits of field size. Whole multiplicative group
with bit-size same as the field size is very inefficient from the performance-to-security
point of view.

Schnorr has suggested in [96] to use a subgroup of relatively small prime order (160-bits
compared to 1024-bits) instead of the full multiplicative group. This leads to speedup
in the modular exponentiation, as the exponent is at most dlog2 qe bits long. Another
saving is achieved in the size of the signature and in the verification step. Even if we use
only a small subgroup of the finite field, arithmetic operations still work on the whole N -
bit representations of field elements. To also compress field element representation and
the complexity of arithmetic operations, we can use XTR or another similar systems.

In this chapter we present a basic overview of the XTR. This name is derived from the
acronym ECSTR — Efficient and Compact Subgroup Trace Representation. In short,
XTR is a system enabling us to achieve security of the field Fp6 by using elements and
arithmetics of Fp2 . XTR was published by Lenstra and Verheul in [70]. It is an evolution
of the older system from [18], the first system that allowed 1 : 3 reduction of discrete
logarithm based cryptosystems. Other systems are known with similar properties, like
Lucas-based cryptosystems [16], cubic field system GH [45], or CEILIDH [91].

In fact, Rubin and Silverberg have generalized the idea into a concept of Torus-Based
Cryptography [91]. Torus-based and similar cryptosystems work in field extensions
Fpn using arithmetic on elements of algebraic torus Tn(Fp) of dimension ϕ(n). These
systems have n log p bits of security when exchanging ϕ(n) log p bits of information.
Thus they are more efficient than classical Diffie-Hellman by a factor of n/ϕ(n).

We must note that XTR is not based on algebraic tori directly, although it can be
derived from it [91]. XTR has more efficient arithmetic than CEILIDH, but it is not

18

4.1. XTR PARAMETERS 19

possible to efficiently implement the multiplication operation (only exponentiation).
Furthermore, it is not possible to generalize XTR to higher fields1.

Torus-based approach leads further to new index-calculus based method to solve DLP
directly on algebraic tori [48]. This method, however, does not apply to XTR as defined
originally over Fp. Thus, the security of XTR is based directly on difficulty of solving
discrete logarithm in the field Fp6 .

Using [70, 63] we now show, how XTR parameters are generated, how modular expo-
nentiation is computed using XTR, what is the security of XTR-based cryptosystem,
and how to convert the XTR parameters back to Fp6 .

4.1. XTR parameters

The finite field Fp6 can be generated as a field extension in three ways:

(1) As a degree 6 extension of Fp;
(2) As a degree 3 extension of Fp2 , with Fp2 being degree 2 extension of Fp;
(3) As a degree 2 extension of Fp3 , with Fp3 being degree 3 extension of Fp.

Representation (2) is used by the XTR system, although the real field elements are
not represented at all. On the other hand, representation (1) is more useful for discrete
logarithm computation. Although we have many possible ways of representing the arith-
metic in the finite field Fp6 , it is still only a single finite field (using field isomorphism).
It is possible to change the representation in polynomial time.

The full multiplicative group of a finite field Fp6 has p6− 1 elements. We can factor the
group size at least into

p6 − 1 = (p− 1)(p + 1)(p2 + p + 1)(p2 − p + 1).

The subgroup of size p− 1 is the multiplicative group of the subfield Fp, the subgroup
of size p2 − 1 = (p − 1)(p + 1) is the multiplicative group of the subfield Fp2 , and the
subgroup of size p3 − 1 = (p− 1)(p2 + p + 1) is the multiplicative group of the subfield
Fp3 . Subgroup G with order p2 − p + 1 is thus the proper subgroup of F∗p6 , i.e. has no
elements from the subfields except neutral element.

Let q|p2 − p + 1, q is prime. Then there exists g ∈ G generating subgroup 〈g〉 ⊆ G of
order q. Group G is called XTR supergroup, and group 〈g〉 is called XTR (sub)group.
If q = p2 − p + 1, then these two groups are identical.

Group G was chosen, because it is possible to represent its elements and arithmetic very
effectively using traces of elements of G in Fp2 . The reason to choose q < p2 − p + 1
is again in efficiency. If a typical field size is around 1024-bits, the characteristic p has
about 170 bits. Then p2 − p + 1 has around 340 bits, and we require only 160-bits q,
which is much smaller.

In order to be able to use the fast XTR arithmetic described further in Section 4.2,
the prime p should be 2 mod 3. In this case p2 − p + 1 = 0 mod 3, thus we always
have both XTR subgroup and supergroup. In this case the system is vulnerable to a so

1XTR in Fp30 would allow us to represent elements of Fp30 using only 8 Fp elements.

4.2. TRACE REPRESENTATION 20

called subgroup attack. The attacker forces (or uses fault attack to obtain) signature
of an element of XTR supergroup G, which is not an element of XTR subgroup, but
of some another subgroup of G with low order s. Then he knows the secret parameter
modulo s. Direct attack can be mitigated by group membership verification. However,
verification of XTR subgroup membership is considerably slower than verification of
XTR supergroup membership.

To render these attacks ineffective, we can either choose q equal to (p2 − p + 1)/3
(with impact to signature size, or using small exponents), or we can use p such that
(p2− p + 1)/3 has only 2 large factors of the similar size (one of them is q). Algorithms
for parameter selection used for cryptographic applications are described in detail in
the Section 3 of [63].

From the cryptanalytic point of view, we are interested in parameters that are weak,
and can be used in DLP computation experiments. The DLP in finite fields Fp with p
having 160 decimal digits (ca. 530 bits) have already been computed [56], using method
of [52]. This would give us an expectation that DLP in Fp6 , with p having 88 bits is
also solvable, even if we chose secure q near to p2 − p + 1. For research purposes, given
p, we are interested in cases where q is as high as possible, i.e. q = (p2 − p + 1)/3, and
focus on solving the DLP in corresponding field using the Number Field Sieve.

4.2. Trace representation

Let p ≡ 2 (mod 3). Then x2 + x + 1 is irreducible over Fp, and its roots α and αp form
an optimal normal basis for Fp2 over Fp. From αi = αi mod 3 it follows that

Fp2 = {x1α + x2α
2 : α2 + α + 1 = 0, x1, x2 ∈ Fp}.

This representation leads to effective multiplication in Fp2 , and to free computation of
Frobenius automorphism xp = xp

1α
p + xp

2α
2p = x2α + x1α

2.

Trace is linear map from extension field E into its subfield F . It is computed as a sum
of conjugates over F . The conjugates over Fp2 of h ∈ Fp6 are h, hp2

, and hp4
. Thus

TrFp6/Fp2 (h) = h + hp2

+ hp4

.

Further on, we will not use the subscript in trace notation, and the trace will always be
over Fp2 .

XTR supergroup G has order p2 − p + 1, thus we can compute conjugates of g ∈ G
as gp2

= gp−1, and gp4
= g−p, so that Tr(g) = g + gp−1 + g−p. Norm of element g (in

Fp2) is a product of conjugates, thus for every g ∈ G, N(g) = ggp−1g−p = 1. Finally,
characteristic polynomial of g over Fp2 can be computed as

(x− g)(x− gp−1)(x− g−p) = x3 − Tr(g)x2 + Tr(g)px− 1 ∈ Fp2 [X].

This polynomial is fully determined by Tr(g). The same holds for any power of g: for
any integer n the conjugates of gn are the roots of

x3 − Tr(gn)x2 + Tr(gn)px− 1 ∈ Fp2 [X],

and the latter polynomial is fully determined by Tr(gn).

4.3. REPRESENTATION CONVERSIONS 21

Basic XTR principle is that given Tr(g) we can effectively compute Tr(gn). In cryp-
tographic protocols g, gn ∈ Fp6 can then be replaced by Tr(g), T r(gn) ∈ Fp2 . Repre-
sentation is then reduced to one third of the original. Using Algoritm 2.3.7 of [70] it
is indeed possible to compute Tr(gn) given Tr(g), and much faster than computing gn

from g. It is thus possible to use XTR in any cryptographic algorithms using group
exponentiation by choice of suitable p, q, and Tr(g).

In an XTR system, the parameters p, q, and Tr(g) are public, precomputed, and (usu-
ally) shared among many users. In static system, user Alice generates randomly her
secret key d, 0 < d < q, and publishes her public key Tr(gd). In Diffie-Hellman key
exchange, Alice and Bob generate random a, b privately, and publicly exchange Tr(ga),
and Tr(gb) respectively.

From the cryptanalytic point of view, we are interested in the problem opposite to XTR
exponentiation, XTR-discrete logarithm (XTR-DL) problem:

Definition 4.2.1 (XTR-DL). Let p, q, and Tr(g) be XTR system parameters, i.e. p, q
are prime, G is a subgroup of order p2−p+1 of Fp6 , and g ∈ G is a generator of subgroup
of G of order q.

XTR-discrete logarithm problem is to compute d ∈ Zq for any given Tr(gd).

To solve the XTR-DL problem, it is useful to revert the trace representation back to
Fp6 , and to solve the corresponding DLP in this field (we suppose that XTR group
security is high enough). It is not known, whether it is possible to solve XTR-DL with
some index-calculus method acting directly on trace representations.

4.3. Representation conversions

Let XTR-DL instance be given in notation of Definition 4.2.1. Let us suppose that we
are able to compute discrete logarithms in the whole multiplicative group of Fp6 . Let x
be a generator of F∗p6 . We will use notation a = log y to correspond to the least positive
integer a, such that xa = y. The order of XTR group is q, thus it suffices to compute

d =
log gd

log g
mod q. (4.1)

We do not need to know the generator x, nor the exact value of the discrete logarithms
in Fp6 , but only their mod q values. However, we must convert traces Tr(g), Tr(gd)
back to corresponding elements g, gd, in the chosen Fp6 representation.

Let Fp6 be represented as a vector space with the base T = {1, θ, θ2, . . . , θ5}. Here θ is
a root of the degree 6 polynomial f(x) irreducible over Fp. Elements g, gd are the roots
of the polynomial

F (c, x) = x3 − cx2 + cpx− 1, (4.2)

where c = Tr(g), or c = Tr(gd) respectively. The polynomial (4.2) has all its roots in
Fp6 . We can compute them using linear polynomials (algorithms in [73], pages 103–107).
Other possibility is to use algorithm from Section 4.3 of [73].

4.3. REPRESENTATION CONVERSIONS 22

Having fixed a representation of an element α ∈ Fp2 ⊂ Fp6 , we can find 3 roots of poly-
nomial F (Tr(g), x), and 3 roots of polynomial F (Tr(gd), x). These roots are conjugates
of g, and gd over Fp2 . As such, we can write them in the form

gp2i

, gdp2j

, i, j = 0, 1, 2.

Let a be any root of F (Tr(g), x), and b any root of F (Tr(gd), x). Then clearly

d ∈ {di =
log b

log a
p2i mod q|i = 0, 1, 2}. (4.3)

The exact value of d can thus be determined by computing two discrete logarithms
in Fp6 modulo q, and at most 5 exponentiations in XTR group. All operations in
transforming the problem from XTR-DL to DL problem in Fp6 are fast. We are thus
only interested in an effective algorithm for computing discrete logarithms modulo q in
Fp6 , given by arbitrary field representation. The asymptotically fastest algorithm is the
Number Field Sieve. However, to our best knowledge, until now it was not known how
it can be practically implemented in extension fields of the degree 6. In this thesis, we
present a practical implementation of the said algorithm, a comparison with other NFS
applications, and address various specific issues related to the algorithm.

CHAPTER 5

The Number Field Sieve

The Number Field Sieve (NFS) is currently the fastest method (asymptotically) to solve
the discrete logarithm and integer factorization problems. The complexity of factoring
and DL methods is customarily given in terms of function Lx (α, c)1 defined by equation
(2.4). This function can be seen as an interpolation between exponential complexity
(α = 1) and polynomial complexity (α = 0). As such, problems in this complexity class
are called subexponential.

The NFS algorithm was first introduced by Pollard in 1988 [86], in the context of
factoring special integers of the form x3 + k. It is interesting that the method was
inspired by ideas of Coppersmith, Odlyzko and Schroeppel [27], originally presented
in the context of discrete logarithms. Two main versions of the NFS for factoring are
known: a version for factoring numbers of special form called Special Number Field
Sieve (SNFS) [67]; and the method for general integers called General Number Field
Sieve (GNFS) [20]. The main distinction is in the polynomial selection phase, leading
to a different constant in complexity estimates. SNFS factors special integer N with
complexity LN(1/3, c), where c = (32/9)1/3 ≈ 1.5262 GNFS factors any integer N
with c = (64/9)1/3 ≈ 1.9229 Improvements of Coppersmith [26] have lowered this
constant to c ≈ 1.9018 . . . It was shown by Schirokauer [94] that it is possible to lower
the constant c further for integers N of low weight. The difference between GNFS and
SNFS is clearly visible in practical implementations. While the current GNFS record for
factoring RSA numbers [111] is the factoring of 663-bit integer, there was a recent record
of factoring 1017-bit integer using SNFS [6]. Lenstra [64] estimates that factoring 768-
bit RSA moduli is approximately 500-times more difficult (in practice) than factoring
1024-bit special number (and 1024-bit RSA 1000-times harder than 768-bit RSA).

Adaptation of the NFS to compute discrete logarithms was first presented by Gor-
don [46]. This adaptation was meant for computing discrete logarithms in field Fp,
with large prime characteristic p. Gordon’s method had asymptotic complexity given
by Lp(1/3, c), c ≈ 2.0800 . . . Constant c was lowered by Schirokauer [92] to c =
(64/9)1/3 ≈ 1.9229 . . . The method was later modified and implemented by Joux and
Lercier [52]. They present an inovation called virtual logarithms, later more precisely
described by Schirokauer [93]. The conjectured asymptotic complexity of this algo-
rithm is again Lp(1/3, (64/9)1/3). While the previous algorithms could only compute a
single discrete logarithm per computation, the method with virtual logarithms have a
pre-computation stage, and the individual logarithm computation stage. The improved
version of the method is presented by Commeine and Semaev [24]. Precomputation

1More precisely, in asymptotic estimates Lx (α, c + o(1)) is used, with the o(1) term for x →∞.

23

5.1. THE NFS ALGORITHM OVERVIEW 24

has complexity Lp(1/3, c), c ≈ 1.9018 . . . , and individual logarithms can later be found
with Lp(1/3, 3

1/3) cost.

Different methods apply when trying to solve the discrete logarithms in extension fields
Fpn , with n > 1. If the characteristic is fixed (usually small, the most common being
p = 2) and n tends to infinity, the best available algorithm is the function field sieve
[2, 5, 51]. Its complexity is also Lpn(1/3).

However, until recently, the best available approach for the intermediate case Fpn , with
medium to large p, had complexity Lpn(1/2) [3, 4]. This is also the case of XTR-DL
problem, which reduces to a DL problem in the field Fp6 . Different methods have been
proposed for these fields. Granger and Vercauteren use torus-based approach [48]. A
practical realization of this algorithm led to a record computation in a field with 556-bit
field size [53]. Joux and Lercier [54] proposed a family of algorithms which are based on
the function field sieve, with complexity Lpn(1/3). These results however do not apply
to XTR over prime fields (as described in Chapter 4), but influence the complexity of
XTR defined over extension fields, i.e. in fields Fp6n [74].

Joux et. al. at CRYPTO 2006 [55] presented possible ways of modifying the NFS to
solve DLP in all remaining finite fields. The variants of NFS depend on the relative size
of p and n. For p large compared to Lpn(2/3), a new polynomial selection algorithm is
used. For p small compared to Lpn(2/3), a sieve must be performed over elements of
degree higher than one. In the case of fields Fp6 , we have p < Lp6(2/3) for p < 2383.
Thus we are interested in the variant with higher degree elements. Results from a
numerical experiment in Fp3 with 40-digit p (394-bit field size) are presented in [55].
Only a standard sieve was used. Up to date, we are aware of no (public) XTR-DL
records or even published XTR-DL computations using this variant of NFS algorithm,
or a public implementation of higher dimensional sieving algorithm.

5.1. The NFS algorithm overview

The Number Field Sieve is in fact not a single algorithm, but a family of related al-
gorithmic methods. There are many variants and optional parameters that influence
the practical implementation of the NFS. In general, NFS (for both DLP in integer
factoring) is characterized by these basic steps:

(1) Parameter selection.
(2) Sieving.
(3) Linear algebra.
(4) Postprocessing.

Another distinct characteristic of the NFS algorithm is that it operates with algebraic
numbers. The main goal of the NFS is to collect enough relations among algebraic
integers and/or their images under certain homomorphisms.

5.1.1. Parameter selection. The performance of the NFS can be influenced by
various parametric choices. The most important are the choice of a sieve polynomial(s),

5.1. THE NFS ALGORITHM OVERVIEW 25

a smoothness bound and a sieve region shape. Other parameters are concerned with a
sieving method, the use of the large primes, factoring techniques, etc.

The polynomial selection depends on the problem we are trying to solve. SNFS poly-
nomial selection uses a special form of the number N we want to factor. GNFS and
classical NFS for DLP in Fp try to find a polynomial with small coefficients and a small
root modulo N or p respectively. The method of [52] suggests to use two polynomials
with small coefficients and common root in Fp. The method of [55] just extends the pre-
vious method to find two polynomials with a common root in Fpn . Various polynomial
selection methods are further explored in Section 6.3.

Selection of other parameters is given by asymptotically optimal estimate. However,
this estimate contains o(1) term in the exponent. The practically optimal parameter
set is usually determined experimentally (e.g. using preliminary sieving, or numeric
methods to estimate the smoothness density).

5.1.2. Sieving. The goal of the sieving step is to identify smooth elements of the
sieve region. A näıve method would be to trial divide all elements of the sieve region.
This takes O(B/ ln B) steps per every sieve region element. By employing the sieve, we
can reduce this to O(ln ln B) steps per sieve region element [62].

This phase of the algorithm is (under asymptotically optimal parametric setting) the
most time consuming phase of the algorithm. However, it can be easily distributed to
many computers running in parallel. It is also not very resource-intensive. The sieving
algorithm is common for many NFS variants (including SNFS/GNFS for factoring, and
NFS for DLP). The factoring and DLP variants differ in further processing of (semi-
)smooth elements. In the XTR case, we have to implement a higher dimensional sieve,
as presented in Chapter 7. Its concept is similar to a classical sieve, but there are some
specific details concerning higher dimensional elements, e.g. the possible polynomial
factorization.

5.1.3. Linear algebra. The sieving phase is used to collect a large set of linear
equations. The set of equations obtained is very sparse. Such a large sparse system
can be solved by using combinations of Structured Gaussian elimination [84, 52] and
the conjugate gradient [49], Lanczos [60] (see also [27, 84] for implementation details)
and Wiedemann methods [112]. Overview of this methods and their implementation
is provided in [59]. We have used custom developed software (adaptation of [105]) to
solve linear system, and as such it was not a primary object of our research. However,
to finalize our largest sieving experiment, we had to further optimize the Lanczos solver,
and adapt a specific version of Structured Gaussian Eliminations. Our experiments are
described in more details in Section 8.4.4.

The linear algebra step is very resource intensive (takes a lot of memory), and is very
difficult to run in parallel. It is thus a bottleneck of the whole NFS method. Sometimes
a suboptimal set of parameters (a smaller factor base and a larger sieve region) is used
to reduce the size of the linear system. This leads to a longer sieving time, but the
sieving time cost can be transferred to many computers running in parallel. The extend

5.2. USING NFS TO SOLVE DLP IN Fpn 26

of this trade-off is severely limited by the decreasing smoothness probability in extended
sieve regions.

5.1.4. Postprocessing. Postprocessing is a very specific phase of the NFS com-
putation. In the factoring applications, the square root of certain algebraic numbers
have to be found. Once it is computed, we have a chance to find factorization of N . If
not successful, we can try another solution of the linear system.

In the case of discrete logarithm computation, original methods [46] used a special
relation involving the unknown logarithm. Method [52] bring a new notion of virtual
logarithms [93], which are simply the direct solutions of the linear system from linear
algebra phase. The specific logarithm is computed in the post-processing phase. We
construct a specific equation involving the unknown logarithm on one side, and a semi-
smooth part on the other side. Virtual logarithms in the smooth part are known. Any
additional virtual logarithms of large prime factors in the semi-smooth part can be
computed by constructing more special equations, until we reach an equation with only
a single large factor. This, so called descent method, is explained later.

5.2. Using NFS to solve DLP in Fpn

5.2.1. Virtual logarithms. There are many variants of NFS, that can be used or
adapted to compute a required discrete logarithm in Fpn . We are using the method of
”virtual logarithms” [52, 93] based on Schirokauer’s maps [92]. The main advantage of
the method is that both the sieving phase and the linear algebra phase are independent
of the concrete individual logarithms computed, thus can be executed only once for a
given finite field. The final algebraic description of the method was presented in [55] as
follows.

Let α1, α2 ∈ C be roots of two distinct monic polynomials f1, f2 ∈ Z[x] irreducible over
Z. Then K1 = Q(α1), K2 = Q(α2) are two algebraic number fields. Let t be a common
root of f1, f2 in Fpn , which does not belong to any proper subfield of Fpn . This means
that both f1 and f2 have a common irreducible factor f0 of degree n over Fp. Let OK

denote a ring of integers of the field K. Let φj : OKj
→ Fpn , φj(

∑
aiα

i
j) =

∑
ait

i

mod p, for j = 1, 2. These two mappings are ring homomorphisms with common image
Fpn .

Let ξ1 =
∑

aiα
i
1 ∈ OK1 have a smooth norm N(ξ1) =

∏
p

ej

1,j, with p1,j < B. Then
the corresponding principal ideal (ξ1) = ξ1OK1 can be uniquely factored as a product
of prime ideals lying over primes p1,j (ξ1 is a B-smooth algebraic integer). Let g be a
generator of F∗pn and q be a (large) prime dividing |F∗pn | = pn−1. Let the decomposition
of the principal ideal generated by a smooth algebraic integer ξ1 ∈ K be

(ξ1) =
∏

p
v1,j

1,j . (5.1)

Let h1 = h(K1) be the class number2 of the field K, and let gcd(q, h1) = 1. Using
decomposition (5.1), we can write

2We do not need to compute the class number in practice.

5.2. USING NFS TO SOLVE DLP IN Fpn 27

ξh1
1 = u1

∏
π

v1,j

1,j , (5.2)

with u1 a unit and π1,j ∈ OK , (π1,j) = ph
1,j. We can apply mapping φ1 to this equation

and obtain equation in Fpn :

φ1(ξ1)
h1 = φ1(u1)

∏
φ1(π1,j)

v1,j , (5.3)

and after taking logarithms in F∗pn we get a linear equation

h1 logg φ1(ξ1) = logg φ1(u1) +
∑

v1,j logg φ1(π1,j) (mod pn − 1). (5.4)

Let us suppose further that ξ2 =
∑

aiα
i
2 ∈ OK2 is also a B-smooth algebraic integer.

Using similar steps as above we can find an equation:

h2 logg φ2(ξ2) = logg φ2(u2) +
∑

v2,j logg φ2(π2,j) (mod pn − 1), (5.5)

From the definition of φj we get

φ1(ξ1) = φ2(ξ2) =
∑

ait
i. (5.6)

Combining equations (5.4), (5.5), and (5.6), we get an equation

h−1
1 logg φ1(u1) +

∑
v1,jh

−1
1 logg φ1(π1,j) =

h−1
2 logg φ2(u2) +

∑
v2,jh

−1
2 logg φ2(π2,j) (mod pn − 1). (5.7)

We will denote by xi,j unknown numbers3 h−1
i logg φi(πi,j). Every xi,j corresponds to a

single ideal pi,j with norm pi,j < B, and is called a virtual logarithm of the ideal pi,j.

Every pair of B-smooth integers (ξ1, ξ2) leads to a similar equation (5.7). The set of
unknown virtual logarithms of ideals (with the norm below B) is always the same,
and is limited to O(B) elements. Unfortunately, units u1, u2 in every equation are
generally different, as well as their virtual logarithms h−1

i logg φi(ui). We can overcome
this problem by decomposing each unit into fundamental units. However, in this case
we need to know both fundamental units, and the class number of the field. This is
a difficult problem for most of the degree 6 number fields. Another possible solution
is to use Schirokauer’s logarithmic maps as described in section 5.2.2. In this case we
are limited to a computation modulo a (large) prime factor of (pn − 1). In our case
(XTR-DL computation), it is actually simply the group order q.

3As shown further in section 5.2.2, algebraic numbers πi,j are multiplied by a suitable well-defined
unit, but still represent the same prime ideal.

5.2. USING NFS TO SOLVE DLP IN Fpn 28

In each case, we are able in computationally efficient way to replace terms h−1
i logg φi(ui)

in equation (5.7) by a linear combination (modulo q) of a small number of ”virtual”
unknowns Λj:

h−1
i logg φi(ui) =

∑
j

λi,j(ξi)Λi,j (mod q) (5.8)

Finally, we get an equation

∑
j

λ1,j(ξ1)Λ1,j +
∑

j

v1,jx1,j ≡
∑

j

λ2,j(ξ2)Λ2,j +
∑

j

v2,jx2,j (mod q), (5.9)

with unknown virtual logarithms of maps Λi,j, and unknown virtual logarithms of ideals
xi,j. We call equation (5.9) a smooth equation.

A set of all prime ideals in OKi
lying over primes pi,j < B is called an algebraic factor

base, denoted Bi. Let c1 = |B1|, and c2 = |B2|. The number of prime ideals with
the norm smaller than B can be bounded by O(B). The number of unknown virtual
logarithms of maps is bounded by the degree n of the number field. We have at most
c = c1 + c2 + 2n = O(B) different unknowns in the set of equations.

The most important part of the efficient NFS implementation is the fast method to
identify pairs of smooth algebraic integers ξ1, ξ2. The most common technique is to
employ some kind of a sieving algorithm (which gave the NFS its name). We dedicate
Chapter 7 to a description of our sieving algorithm, as well as general remarks concerning
the issues connected with the sieving.

We need to find O(B) smooth pairs to construct more than c linearly independent
smooth equations. Virtual logarithms are then non-trivial solutions of this linear system.
By combining equations (5.5), and (5.8), and using computed virtual logarithms Λi,j,
xi,j we can finally compute discrete logarithms of special elements of F∗pn :

logg φ2(ξ2) = logg

(∑
ait

i
)

=
∑

j

λ1,j(ξ1)Λ1,j +
∑

j

v1,jx1,j (mod q), (5.10)

To compute discrete logarithms of arbitrary elements of F∗pn , we can use the so called
descent technique described in Section 5.2.4.

5.2.2. Schirokauer maps. Let us suppose that unknown units u1, u2 in equation
(5.7) are both q-th powers, i.e. ui ∈ (O∗

Ki
)q. Then clearly logg φi(ui) = 0 (mod q).

On the other hand, if units u1, u2 are not q-th powers, we would like to transform the
equation (5.7) (in a computationally efficient way) to another smooth equation with
only q-th powers of units.

To accomplish this, we can employ Schirokauer’s logarithmic maps [92, 93]. Let us
work in a single number field K defined by a root α of a polynomial f . For an element∑

aiα
i we can compute these maps as follows:

5.2. USING NFS TO SOLVE DLP IN Fpn 29

(1) Let factorization of f(x) over Fq (we suppose that q does not divide D(f), i.e.
q is not ramified in K) be:

f(x) ≡
∏

fi(x) (mod q).

(2) Compute e = lcm(qdeg fi − 1).
(3) Compute l (

∑
aix

i) = (
∑

aix
i)

e − 1 mod f(x) mod q2.
(4) Let l (

∑
aix

i) /q =
∑

λix
i.

(5) Output vector λ = (λ1, λ2, . . . , λn), λi ∈ Zq.

Using this algorithm we get more logarithmic maps than required: n instead of r =
r1 + r2− 1, where n = r1 +2r2 is a degree of K, r1 is the number of its real embeddings
and 2r2 is the number of its imaginary embeddings. The difference is not significant
when n = 6.

The maps are logarithmic, i.e. have the property λi(ξ1 ·ξ2) = λi(ξ1)+λi(ξ2). Also, a unit
u is q-th power if and only if λ(u) = 0. We can find a specific set of units ν1, ν2, . . . , νr,
such that

λi(νj) =

{
1, if i = j;
0, if i 6= j.

Thus we can write any unit as

u = ζq

r∏
i=1

ν
λi(u)
i , (5.11)

with ζ also an unspecified unit.

In equation (5.2) we can multiply elements π1,j by a well-defined unit to obtain

π′1,j = π1,j

r∏
i=1

ν
−λi(π1,j)
i ,

such that λ(π′1,j) = 0. Now we can rewrite equation (5.2) to ξh1
1 = u′1

∏ (
π′1,j

)v1,j , with
h1λ (ξ1) = λ (u1). Using (5.11) we get finally

ξh1
1 = ζq

r∏
j=1

ν
h1λj(ξ1)
j

∏ (
π′1,j

)v1,j . (5.12)

Applying mapping φ1 and taking logarithms mod q, we get

logg φ(ξ1) =
r∑

j=1

λi(ξ1) logg φ(νj) +
∑

j

v1,jh
−1
1 logg φ

(
π′1,j

)
. (5.13)

Note that the virtual logarithms of units Λi,j from equation (5.8) correspond to logg φ(νj),

and the virtual logarithms of ideals xi,j correspond to h−1
1 logg φ

(
π′1,j

)
. The underlying

algebraic numbers are in fact never computed, as we are only interested in actual values
of Λi,j, and xi,j mod q required to compute unknown discrete logarithms in Fpn . These
values are found directly as a solution of the set of smooth equations.

5.2. USING NFS TO SOLVE DLP IN Fpn 30

5.2.3. Linear algebra. After finding enough smooth pairs (ξ1, ξ2) we can construct
the matrix equation

(L1|V1)

(
Λ1

x1

)
= (L2|V2)

(
Λ2

x2

)
(mod q), (5.14)

where L1, L2 are matrices with rows containing Schirokauer maps, and V1, V2 are ma-
trices with rows containing ideal valuations vi,j. We must solve this system to find
unknown virtual logarithms Λ1, Λ2, x1, x2. We are looking for a non-trivial solution, i.e.
a solution with a property

(L1|V1)

(
Λ1

x1

)
6= 0 (mod q). (5.15)

To solve this system, we transform it to the following form:

(L1|V1| − L2| − V2)

Λ1

x1

Λ2

x2

 = 0 (mod q). (5.16)

A non-trivial solution of the system (5.14) is a set of virtual logarithms (with an un-
known base). It must lie in a null space of the matrix A = (L1|V1| − L2| − V2).

Let us suppose that we are able to find a smooth element γ ∈ OK1 , such that φ(γ) = g
is a generator of F∗p6 . We can then construct an equation

logg φ2(γ) = 1 =
∑

j

λ1,j(ξ1)Λ1,j +
∑

j

v1,jx1,j (mod q). (5.17)

If we add this equation to the linear system (5.14), or (5.16) respectively, we can force
the solutions of individual logarithms to be in base g. In our experiments we were
working with just the system (5.16) without any additional equations for the generator
(it was never required).

Matrix A is a large sparse matrix with O(B) rows and columns. Let us suppose that
we have found more smooth equations than we have unknown virtual logarithms, and
the matrix A has a non-trivial null space. The entries in columns of A containing
Schirokauer maps are usually all non-zero blog2 qc-bit numbers. The number of non-
zero entries in columns containing valuations is inversely proportional to the norm of
a corresponding prime ideal, i.e. wH(Apj

) ∼ O (B/N(pj)). Non-zero valuations are
usually only numbers ±1, or small positive or negative numbers (their number in a
column is again inversely proportional to a corresponding power of the prime ideal’s
norm). The number of non-zero entries in a row is R = 2n + ω(N(ξ1)) + ω(N(ξ2)),
where ω denotes the number of distinct prime divisors of a number. A typical bit size of
the norm of a smooth ξ is log2 Bn. Most of the prime ideals have norm with the bit size
near log2 B. Thus we can expect that ω(N(ξ)) = O(n), and also R = O(n) << O(B).

5.2. USING NFS TO SOLVE DLP IN Fpn 31

To solve the linear system we decided to use the Lanczos algorithm as follows.

Algorithm 1. Lanczos algorithm

Input: Symmetric r × r matrix B, column r-vector w 6= 0.

Output: Column n-vector x, such that Ax = w.

(1) Compute:
(a) w0 = w.
(b) v1 = Bw0.
(c)

w1 = v1 − v1 · v1

w0 · v1

w0.

(2) For i = 2 . . .:
(a) If wi = 0, set j = i, exit to step 3.
(b) Compute vi+1 = Bwi.
(c) If vi+1 · vi = 0, algorithm FAILS.
(d) Compute

wi+1 = vi+1 − vi+1 · vi+1

wi · vi+1

wi − vi+1 · vi

wi−1 · vi

wi−1.

(3) Compute and report

x =

j−1∑
i=0

wi · w
wi · vi+1

wi

There exists some j ≤ r, for which wj = 0 and algorithm terminates. There are however
two main problems with Algorithm 1. First of all, the matrix A is not a symmetric
square matrix, but a general r × c matrix. Moreover, we want to solve an equation
with zero right hand side. Instead of the original equation Ax = 0, we can generate
random r-vector y, and compute Ay = y′. Now let us solve the equation Ax′ = y′, in
an unknown x′. The solution yields Ax′ − y′ = 0, or Ax′ − Ay = 0 respectively. I.e.
x = x′ − y is the solution of the original equation. To solve Ax′ = y′, we can multiply
both sides by AT . A solution x′ of AT Ax′ = AT y′ is most likely also the solution of
Ax′ = y′. Now B = AT A is a symmetric m ×m matrix, and w = AT y′ is a non-zero
column n-vector, thus we can solve Bx′ = w by Algorithm 1.

To take advantage of the sparsity of A, we never compute B directly. Instead of com-
puting vi+1 = Bwi in the Algorithm 1, we compute vi+1 = AT (Awi) using two sparse
matrix-column multiplications. The complexity of the method then depends mostly on
the number of iterations in Step 2, and the cost of the sparse matrix-column multipli-
cations. If matrix A has full column rank, then the number of iteration in Step 2 is c
(the number of columns). The number of finite field operations required for the sparse
matrix-column multiplications is proportional to the number of non-zero elements of A,
so the total complexity of Lanczos algorithm is O(crR), where R is the average number
of non-zero elements in a row. The linear algebra step of the NFS thus requires O(nB2)
steps.

5.2. USING NFS TO SOLVE DLP IN Fpn 32

The main disadvantage of the Lanczos algorithm is the fact, that it cannot be paral-
lelized in an efficient manner on a distributed network of computers. Another prohibitive
part of the algorithm is the storage required for the matrix A. We can see, that the
memory complexity is also determined by the number of non-zero elements of A, i.e.
is O(rR). To reduce the complexity of the Lanczos algorithm, we try to reduce the

original matrix A to some smaller but still sparse matrix Â. We remove some of the
rows and columns in such a way, that the solution x̂ of Âx̂ = 0 (mod q) can be used
to compute the original x (in a efficient way). This process is similar to the Gaussian
elimination.

The classical Gaussian elimination is not suitable for a special system arising in the NFS,
because it does not take advantage of the sparsity of the system, and its special statistical
properties. There is a large number of specific adaptations of Gaussian elimination
which take into account a specific structure of matrix A. The method was introduced
under the name Structured Gaussian Elimination (SGE) by LaMacchia and Odlyzko
[58]. A refined version of this method from [59] first splits the matrix A into a heavy
part (dense columns) and a light part (sparse columns). Then specific row reductions
(such as removing entire columns with a single non-zero entry as well as corresponding
rows) are performed. The number of non-zero coefficients in the light part should never
increase. A different type of SGE is used by Joux and Lercier [52], which uses weight
change estimation to select pivots during the SGE process. We have implemented
yet another specific type of SGE. Details of our SGE adaptation as well as optimized
Lanczos solver used for finding virtual logarithms in our ”record” solution are described
in Section 8.4.2.

SGE is usually very fast (depends on the used heuristics). The result of SGE is a

significantly smaller sparse matrix Â. Matrix Â is usually denser than A, but still very
sparse (number of non-zero entries in a row is small in comparison to the number of

columns). Thus the complexity of solving Âx̂ = 0 (mod q) by the Lanczos algorithm
is significantly smaller than solving original problem Ax = 0 (mod q). After finding a

non-trivial solution of Âx̂ = 0 (mod q), we can either proceed directly to the individual
logarithm phase (Section 5.2.4) with a smaller set of known virtual logarithms; or more
preferably we can backtrack SGE, and find a non-trivial solution of the whole Ax = 0
(mod q). The total cost of SGE + Lanczos + backtrack can be controlled by the
parametrization of the SGE. We should stop SGE, if it starts to increase the value
of crR (number of field multiplications in the Lanczos solver), or when the additional
processing cost required to decrease it by 1 is higher than the field multiplication cost
in the Lanczos solver.

5.2.4. Individual logarithms. Let f0(x) be a polynomial of degree n irreducible
over Fp, and let f0|f1 and f0|f2 in Fp[x]. Let t be a root of f0(x). Represent Fpn as
Fp[t]/(f0(t)).

Our aim is to find an unknown discrete logarithm of an element y ∈ Fpn . Let h ∈ Fpn

be the element corresponding to the algebraic number with the largest smooth norm
found during the sieve phase. Using equation (5.10), and computed virtual logarithms,
we can compute the discrete logarithm of h.

5.2. USING NFS TO SOLVE DLP IN Fpn 33

Let z = yihj for some i, j 6= 0. We can write z in the form

z =

∑
ait

i

∑
biti

, (5.18)

such that both ξa =
∑

aiα
i
1 and ξb =

∑
biα

i
1 have B1-smooth norms, with B1 =

Lpn

(
2/3, (1/3)1/3

)
. We could also use lifts to K2 (change t to α2) instead, but the

corresponding norms would be higher. If we are able to find logarithms of a =
∑

ait
i

and b =
∑

bit
i, then we can also compute the logarithm of y using equation

logg y = 1/i(logg a− logg b− j logg h) mod q. (5.19)

According to [55], to find the fractional representation (5.18), it is possible to use the
lattice reduction (LLL algorithm) as follows: Apply the LLL algorithm to the following
lattice (vectors in columns):

L =

z tz · · · tn−1z p tp · · · tn−1p
1 0 · · · 0 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · 0

.

Field elements in the first line are represented as column vectors of their coordinates.
In the reduced lattice, every column represents coordinates of both the numerator a
(upper half), and the denominator b (lower half). If n is not too large, we expect to
find a short vector with the L0 norm

√
p, i.e. the corresponding norm in K1 is O(p3).

Now we can find decomposition of (ξa) and (ξb) respectively, and write corresponding
equations (5.10). Part of the equation can be simplified using known virtual logarithms.
Any ideal with the norm above B will represent a new unknown virtual logarithm we
need to find.

Let q be a prime ideal with norm q and an unknown virtual logarithm. We can use the
special-q sieve with the new smoothness bound B2 < q to find a semi-smooth equation
similar to (5.9). The special-q sieve means that we sieve a lattice defined by the ideal
q. Every sieved algebraic integer generates a principal ideal divisible by q. Thus, its
virtual logarithm is in every equation (5.9) found by the special-q sieve.

New unknown virtual logarithms produced by the additional sieving define a new virtual
logarithm we need to compute. During the special-q sieve we only allow large prime
factors below qc, c < 1. Thus we can descend to smaller and smaller special q’s. Finally,
we can reduce the problem finally to a semi-smooth equation, where only special q is
larger than B. We compute the corresponding q, and backtrack the descent. Commeine
and Semaev in [24] give optimal parameter choices for reductions, and show why the
algorithm stops, along with its complexity.

5.2.5. Practical implementation for Fp6. The algebraic notation of the NFS can
be quite confusing from the implementation point of view. We give here a simplified
description of the NFS for the case Fp6 with related comments and remarks for every
step of the algorithm.

5.2. USING NFS TO SOLVE DLP IN Fpn 34

INPUT: Primes p, q|p6 − 1.

(1) Find suitable polynomials:
(a) Find a monic degree 6 polynomial f1(x) irreducible over Fp, with small

coefficients.
(b) Let f2(x) = f1(x) + p, or f2(x) = f1(x)− p.
(c) Check that discriminants D(f1) and D(f2) are not divisible by q.

More discussion on polynomial selection is provided in Section 6.3. The ideal
arithmetic is simplified in the case, when for both fields K1 and K2 (defined by
roots of f1 and f2 respectively) OK = Z[α]. This can be checked while generating
the factor base.

(2) Let B = Lp6

(
1/3, (8/9)1/3

)
.

The chosen formula for B is derived from the asymptotic optimum as dis-
cussed in section 6.2. It is possible to specify a different value of B, which can
be chosen from quite a broad interval. However, for smaller B the smoothness
density decreases, and we need a larger sieve region. In practice, if B is chosen
too small, or too large, it is not possible to find enough smooth equations. The
choice of B can further be influenced by the implementation constraints, e.g. by
the memory constraints.

(3) Construct factor bases. For each prime pj < B compute

f(x) ≡
k∏

i=1

fi(x) (mod pj).

We add ideal pj,i, represented by two element representation (pj, fi(α)), to

the corresponding factor base. The ideal has degree deg fi and norm pdeg fi

j .

Ramified primes, i.e. the primes where f(x) mod pj have multiple factors,
are slightly more difficult to process. As their number is limited, we can skip
them during the sieve. For efficiency reasons we do not sieve with prime ideals
with norm smaller than some Bmin. If we sieve only elements of degree 2, only
the ideals of degree at most 2 can appear in any usable smooth equation. If B is
too large, it is possible to precompute only a part of the factor base, and fill in
the rest during the sieve.

(4) Compute sieve bounds X, Y, Z, and sieve the region of triples (x, y, z) ∈ [−X,X]×
[−Y, Y] × [1, Z]. Every triple corresponds to a pair of algebraic integers (x +
yα1 + zα2

1, x + yα2 + zα2
2). Sieve reports only triples (x, y, z) that correspond to

smooth pairs having gcd(x, y, z) = 1, and D = y2 − 4xz is not square in Z.

We have implemented a sieve that is not deterministic (see Chapter 7). Thus
the reported points have only a certain probability of corresponding to smooth
integers. This probability must be high, otherwise the postprocessing (computing
norms, factoring and computing valuations) would be too costly. We are checking
gcd and D to avoid linearly dependent relations. Our siever also produces a
partial factorization of the corresponding norms for every reported point to speed
up the postprocessing.

5.2. USING NFS TO SOLVE DLP IN Fpn 35

(5) For every triple (x, y, z) construct equation (5.9) by computing corresponding
Schirokauer’s maps, and exact ideal valuations. If the number of equations is less
than the number of unknown virtual logarithms, either extend the sieve region,
or terminate the algorithm with FAIL.

Computation of Schirokauer’s maps is described in Section 5.2.2. Ideal valu-
ation can be usually computed directly from the prime decomposition of a norm
N(x + yα + zα2). Let the norm’s prime decomposition contain pe

i . Ideals
over pi in ideal decomposition of (x + yα + zα2) can be found by computing
r(X) = gcd(f(X), x + yX + zX2) mod pi. If r(X) has degree 1, it determines
exactly one degree 1 ideal (pi, r(α)) appearing in the e-th power. If r(X) is irre-
ducible of degree 2, it again determines a single degree 2 ideal (pi, r(α)) appearing
in power e/2 (e must be even). A more complicated situation can appear if r(X)
can be factored mod pi or in the case of ramified primes. It is thus better to
compute exact ideal valuations by using Algorithm 4.8.17 of [23].

(6) Find non-trivial solution of the system of equations modulo q. Store computed
”virtual logarithms”.

(7) Compute individual logarithms as described in Section 5.2.4.

In the XTR case, we should transform the XTR representation to a repre-
sentation Fp[t]/(f1(t)) as described in Section 4.3.

CHAPTER 6

NFS complexity and polynomial selection

6.1. Implementation choices influencing NFS

The implementation of the NFS, and even the estimation of its cost for a specific
purpose, is quite a complicated task. A large and detailed analysis of the cost of
factoring RSA-1024 can be found in [69, 62]. A real-time performance is influenced
by many implementation options, which (are believed to) influence the NFS only in
the o(1) term in Lp6 (1/3, c + o(1)) complexity notation. Even this o(1) term is very
important for the cost and security estimates, as it usually distinguishes possibilities of
a publicly available software tool and a special ”record” implementation. Among these
options applicable to DLP in Fp6 are:

(1) Choice of the polynomials. The (asymptotically) optimal polynomial degree is
usually given by a real number that must be rounded. It is not clear, whether it
is better to use two algebraic sides, or a single rational and one or more algebraic
sides. In the nowadays implementable case of Fp6 , a polynomial with larger de-
gree than optimal must be used. It is compensated by the higher dimensional
sieve, but the exact relations are not yet fully understood. It is possible to choose
the sieve polynomials from a large pool of irreducible polynomials, and there are
many methods suggested for polynomial selection, including non-monic polyno-
mials. Remarks on polynomial selection for XTR-DL solution are summarized
in Section 6.3.

(2) Choice of the smoothness bound. The asymptotically optimal smoothness bound
B is well-known. However, in a practical implementation quite a wide interval
for actual value of B is possible [104]. This also complicates complexity extrap-
olations based on the existing NFS records. Experiments in [62] show that the
parameter B used for RSA-512 factorization [22] was below optimal value, and
the direct extrapolation leads to a wrong parametric setting for RSA-1024.

Sometimes a smaller value of B is required due to the implementation con-
straints, such as the limited memory for the siever, or for the linear algebra
phase. On the other hand, choosing slightly larger values of B can even speed
up the sieve and improve the efficiency of the Structured Gaussian elimination
[52].

(3) Choice of the sieving region. All elements in the optimal sieve region should have
norms bounded by a certain constant derived from B. The shape of the planar
region with smallest possible number of points required to sieve is however quite
complex [104]. In practice only a rectangular region is used.

36

6.1. IMPLEMENTATION CHOICES INFLUENCING NFS 37

(4) Smoothness detection methods. The cost of the norm computation for all el-
ements of the sieve region is quite large, as well as the cost of multiplica-
tion/division of large numbers. Thus logarithmic estimates are used instead
of an exact smoothness detection (see Section 7.2). Small primes are usually
excluded from the sieve due to the efficiency reasons, as well as higher powers
of ideals. The smoothness detection must balance the precision of the logarith-
mic estimates, and various error factors coming from the excluded factor base
elements.

(5) Large primes and semismooth equations. A large number of equations of type
(5.9) in the sieve region is almost smooth, i.e. contain only one (or small number)
of prime factors only slightly larger than the smoothness bound B. These primes
can easily be detected during the sieve and used to construct semi-smooth equa-
tions [67]. They were successfully employed in most of the factoring applications
of the NFS [22]. However, the use of the large primes for DLP is questionable
[52]. We discuss large primes in more details in Section 7.5.

(6) Lattice sieve. In the DLP solution, the large primes extend the set of unknowns
for the linear system. Thus we must find at least two semismooth relations
with the same large prime, for this prime to be useful. Even if we cannot find
another occurrence of the large prime directly during the sieve, we can usually
construct relations containing this prime by the lattice sieve [86, 44]. Only
a specific sublattice (given by the chosen prime ideal) is sieved. The lattice
sieve can be used not only for large primes, but also for ideals from the factor
base. The efficiency of the lattice sieve is decreased in the case of higher degree
polynomials, as the norms on the sublattice grow faster [12]. A fast lattice
reduction algorithm is required, which provides a problem when sieving higher
degree elements.

(7) Optimal higher dimensional sieve region. The norms of the elements grow not
only with the absolute value of its coefficients, but also with the growing de-
gree. The shape of the optimal sieve region in higher dimensions is thus more
complicated as in the two dimensional case. Another problem is the ratio of
computing required to sieve the higher dimension to the number of relations
found by extending the sieve region to this dimension.

(8) More than two algebraic fields. The method of Coppersmith [26] uses a single
rational side and multiple algebraic sides to decrease the constant c in the as-
ymptotic complexity estimate. It is possible to extend the NFS in Fp6 to use
more than two algebraic fields (with a similar reasoning as in [24]). It is how-
ever not quite clear, if it is not more efficient to just extend the factor base in
the original setting. The method can only be efficient if different (non-sieve)
effective smoothness test can be employed [62].

(9) A different smoothness detection and factorization techniques. Sieve methods for
smoothness detection are quite convenient on the network of connected multi-
purpose computers. There are also special-purpose hardware designs that exploit
the nature of sieving [10, 100, 101]. The NFS variant of Coppersmith requires
a fast method of detecting factors below some fixed bound. A suitable method
to apply is the Elliptic Curve Factoring method (ECM) [71]. Already a special-
ized hardware employing ECM (along with sieving) has been proposed [42]. A

6.2. SELECTION OF THE SMOOTHNESS BOUND 38

different approach is to use factoring based on product/remainder trees [13, 14],
but this approach does not yet seem practical.

6.2. Selection of the smoothness bound

For a successful NFS computation, we must find at least the same number of equations
as the number of ideals having norms below B, plus some small number for unknowns
from character maps. Gathering more than the minimal number of equations can lead
to a more efficient linear algebra phase if Structured Gaussian Elimination is employed.
For the sake of simplicity we assume that the number of required equations is B.

The probability of an algebraic number being B-smooth is given by the size of its norm.
Let smoothness bound be chosen as B = Lpn(1/3, c1), and let all norms of the sieved
elements be bounded by Nmax = Lpn(2/3, c2). Then the probability of element being B-
smooth is given by Lpn (2/3− 1/3,−c2(2/3− 1/3)/c1) [21], with negligible error term
for large enough p6. We are sieving two fields at once for smooth equations. If we
consider the smoothness probability in both fields to be independent, then we have
to sieve on average Lpn (1/3, c1 + (2/3)c2/c1) elements (all with norms below Nmax) to
obtain the required B equations.

Minimal running time can be obtained if c1 = (2/3)2/3, and c2 = (2/3)1/3. In this case
the NFS complexity is Lpn

(
1/3, 2(2/3)2/3

)
. This is obtained by choosing square region

with each side equal to B, or skewed region with the same area. Norms in this region
are below the bound Nmax only in some special cases, such as SNFS, where special
polynomial with small coefficients can be constructed. In the general case (GNFS) the
constant c2 must be chosen higher due to the limits imposed by the polynomial selection.
The asymptotically optimal constants in this case are c1 = (8/9)1/3, c2 = (8/3)1/3, so
the final complexity becomes Lpn

(
1/3, 2(8/9)1/3

)
.

The matrix constructed after the sieving phase is sparse with O(B) non-zero elements.
The asymptotic complexity of the linear algebra step is thus the same as of the sieving
step. In practice it is easy to execute the sieving step in parallel, but not the linear
algebra step. Thus we are forced to choose as low B as possible, and compensate the
lower smoothness probability by sieving a larger sieve region. However, in a larger sieve
region the norms of elements rise above limit Nmax. In our practical experiments, the
norm growth in degree 6 fields is too steep, and we are unable to find enough smooth
equations already for a halved smoothness bound.

Let us consider the choice of B in the case of Fp6 more precisely. Let polynomials
on both sides have degree 6. The polynomial f1 has only small coefficients (with a
negligible effect on the norm), while the polynomial f2 has a large coefficient of the
order p. Elements in the form x + yα1 + zα2

1 have norms bounded by max{x6, y6, z6}.
Elements in the form x + yα2 + zα2

2 have norms bounded by max{x6, py6, p2z6}, if the
size of the sieve region is large enough (see also the remarks in Section 8.2).

Let us suppose that we choose smaller smoothness bound B = Lp6

(
1/3, (2/3)2/3

)
,

like in SNFS. If we sieve the classical 2D region, with B × B elements, norms in
K1 are bounded by N1(p) = Lp6

(
1/3, 6(2/3)2/3

)
, which is well below the required

6.2. SELECTION OF THE SMOOTHNESS BOUND 39

20

40

60

80

20 40 60 80 100

logp

Figure 6.1. Log-log comparison of M2(p) = pLp6

(
1/3, 6(2/3)2/3

)
(darker curve) and Lp6

(
2/3, (2/3)1/3

)
(lighter curve) in logarithmic scale.

Crossover point is near p = 280.

Lp6

(
2/3, (2/3)1/3

)
. Norms in K2 are bounded by N2(p) = pLp6

(
1/3, 6(2/3)2/3

)
, which

is above Lp6

(
2/3, (2/3)1/3

)
for p > 280. For a very large p, this problem is compensated

by a different polynomial selection algorithm. If we compare the function N2(p) with
the function Lp6

(
2/3, (8/3)(1/3)

)
(from GNFS settings), we get that the limit on norms

is observed for p < 2570, even with some additional tolerance (see Figures 6.1 and 6.2).
On the other hand, even for small p’s the SNFS bound is very tight, and as we have
tried experimentally, the corresponding choice of B does not work in practice.

A better model is obtained, if we work with more than just norm bounds and asymptotic
estimates. The smoothness probability in the sieve region is not distributed uniformly.
Norms near the origin, and along specific lines determined by the real roots of sieve
polynomials, are small, thus leading to a higher smoothness probability. On the other
hand, norms in K2 are already large near the origin leading to a lower overall smoothness
probability than expected. The asymptotic estimate is not really accurate for small
p’s, as shown by experiments in Section 8.2.1. The recommended method to choose
the best B is to conduct smaller preliminary sieving near the origin, as well as near
the boundaries of the sieve region, and fine-tune the choice of B and the region size

6.3. REMARKS ON POLYNOMIAL SELECTION 40

20

40

60

80

100

120

140

20 40 60 80 100

logp

Figure 6.2. Comparison of functions pLp6

(
1/3, 6(8/9)1/3

)
(darker curve)

and Lp6

(
2/3, (8/3)1/3

)
(lighter curve) in logarithmic scale. Crossover point

is near p = 2570.

experimentally. However, in our experiments, we were unable to significantly decrease
B from its original choice B = Lp6

(
1/3, (8/9)1/3

)
.

6.3. Remarks on polynomial selection

The polynomial selection is a critical part of the Number Field Sieve when used for
factoring large integers. Special integers (e.g. Cunningham numbers, C±(b, n) = bn±1),
can be efficiently factored using Special Number Field Sieve (SNFS) with asymptotic
complexity Ln

[
1/3, (32/9)1/3

]
, i.e. the constant in the complexity formula of SNFS is

c ≈ 1.523. Classical version of the (General) Number Field Sieve method has c ≈ 1.923,
and NFS variant with multiple polynomials has c ≈ 1.902 [26].

The different constant is due to a different possible polynomial selection. SNFS uses the
specific form of the number being factored to construct a suitable sieve polynomial with
only small coefficients. On the other hand, GNFS is limited in the polynomial selection
phase to polynomials with larger coefficients. An optimal deterministic algorithm for
choosing these polynomials is not known.

6.3. REMARKS ON POLYNOMIAL SELECTION 41

Classical method of polynomial selection is presented in [20]. Let N be a value we want
to factor. Optimal degree of the sieve polynomial is given by

D =
(
31/3 + o(1)

) (
log N

log log N

)1/3

. (6.1)

In practical situations we usually ignore the o(1) term and instead round the result to
the nearest integer.

Set m = dN1/(D+1)e, and write N in the base m:

n = cDmD + cD−1m
D−1 + · · ·+ c0.

This determines a polynomial f(x) = cDxD + cD−1x
D−1 + · · ·+ c0, with f(m) = N . For

every coefficient 0 ≤ ci < m.

A better method of polynomial selection for MPQS was presented by Murphy and
Brent in [79]. It was further modified for GNFS by Kleinjung [57]. The experimental
polynomial selection was used in 512-bit RSA factorization [22]. The method was fully
applied in all subsequent GNFS factoring records, e.g. RSA-576 factoring record [38].
The largest coefficient of the polynomial in all these methods has an absolute value

O(N
1

D+1).

Alternative method of polynomial selection for computing discrete logarithms in Fp was
suggested by Joux and Lercier [52]. They do not recommend using ”algebraic” and
”rational” sides, i.e. one polynomial with degree D and another one with degree 1.
Instead, two polynomials of degree D and D + 1 are used. The polynomial of degree
D + 1 has extremely small coefficients, and the polynomial of degree D is computed
using LLL algorithm. It has again coefficients of the order O(p1/(D+1)). Degree D is
chosen to be smaller than in the case with a rational side. Commeine and Semaev
in [24] present a multiple polynomial variant of NFS, where they recommend another
polynomial selection method with a rational side.

The algorithm to compute discrete logarithms in extension fields [55] uses another type
of the polynomial selection. In extension fields we cannot use rational side. As we
need (at least two) polynomials with a common root in Fpn , they must have a common
irreducible factor of degree n. Let D be a degree of the polynomial computed from the
field size pn using equation (6.1). If D ≤ n, we use two polynomials of degree n. One
is any degree n polynomial f1(x) irreducible over Fp with extremely small coefficients.
The other polynomial is simply one of the two polynomials f2(x) = f1(x)±p. If D > n,
i.e. if p is too large, a polynomial selection involving lattice reduction can be used [55].
This polynomial selection works as follows:

(1) Select a polynomial f0 of degree n with small coefficients.
(2) Choose a constant W , and let f1(x) = f0(x + W).
(3) Polynomial f2 of degree D with f1|f2 is found by reducing the lattice (generating

vectors are polynomial coefficients written in columns):

L =
(

f1(x) xf1(x) · · · xD−nf1(x) p px · · · pxD
)

6.4. MULTIPLE POLYNOMIALS 42

The optimal size of the coefficients in f1, f2 is achieved in the case when W n ≈ pn/(D+1).
In our experiments n = 6. The need for larger degree D of sieve polynomials occurs only
for very large p’s that are out of our range for practically implementable experiments.

We have conducted a series of experiments to determine the optimal selection of the
polynomial f1, as described in Section 8.1. These results show that the selection of
polynomial f1 has a significant impact on the smoothness density in small regions near
origin. However, the actual sieving region is much larger, and so the final impact
of the choice of f1 does not justify too complicated selection algorithm. Instead we
concentrate on the polynomial f2, and the simplicity of the implementation. The first
selection criterium was that [OK1 : Z[α1]] = [OK2 : Z[α2]] = 1 (to avoid fractional
ideals). In further practical experiments we have observed, that norms in OK2 tend to
grow faster if discriminant D(f2) is higher. As we needed to compute D(fi) anyway (to
determine [OKi

: Z[αi]]), we have used it as a second criterium for polynomial selection.
From the set of suitable polynomial pairs (f1, f2) we choose a pair with the lowest D(f2).

6.4. Multiple polynomials

The two polynomials f2(x) = f(x)±p are not the only possible choice with comparable
size of the coefficients. We can consider the choice of any f2(x) = f(x) + ph(x), with
deg h < deg f, where coefficients of h(x) are small in absolute value (typically equal to
±1). On the other hand, the norms of algebraic numbers in fields defined by h(x) with
higher degree are larger (in absolute value).

These polynomials can be useful to implement a multiple polynomial variant of NFS.
Classical multipolynomial NFS to solve discrete logarithms in Fp is described in [24].
It is possible to adapt the method also for Fpn . A general outline of the new method is
as follows:

(1) Let f(x) be a monic polynomial of degree n irreducible over Fp. Let K0 = Q(α),
with α ∈ C, f(α) = 0.

(2) Let fi(x) = f(x) + phi(x), i = 1, 2, . . . with deg hi < deg f ; all hi’s are distinct
with small coefficients in absolute value. Let fi(βi) = 0, βi ∈ C, and let Ki =
Q(βi).

(3) For each i = 1, 2, . . . find points in the sieve region that correspond to smooth
algebraic numbers in field K0 as well as in the field Ki.

(4) If the number of smooth points accumulated using Ki is smaller than the size
of the factor base in this field (plus small constant for logarithmic maps), the
results of sieving Ki should be discarded.

(5) Create the system of equations similar to equation (5.9) with left-hand side
corresponding to factorization of elements from K0, and right-hand side to fac-
torization of corresponding elements from Ki’s which were not discarded in step
4.

(6) After computing the solution of the system of equations, individual logarithms
of Fpn can be computed using the descent method.

In the linear system unknowns correspond to prime ideals in K0 and in every Ki used
plus O(1) logarithmic maps or virtual unit logarithms (we need at most n of them

6.4. MULTIPLE POLYNOMIALS 43

for each Ki). Let the size of factor base for Ki be ci. Suppose that we have ri points
(a0, . . . , at) corresponding to elements

∑
ajα

j,
∑

ajβ
j
i smooth in both K0 and Ki. Then

we can create ri new equations at the cost of ci + n unknowns. If ri < ci + n, the NFS
with the given Ki is unsuccessful. If for some j we get rj > cj + c0 + 2n, we do not
need more Ki’s, just the Kj. Thus using multiple polynomials is only suitable if the
expected NFS output is above the maximal ci but below the minimal ci + c0.

As it is difficult to precisely estimate the NFS output, we should start with sieving K1

given by one of the f2(x) = f(x) ± p. Using the number of smooth equations found,
we can estimate the number of Ki’s required. It should be taken into account that for
hi(x) with higher degree, the norms of algebraic numbers are larger. Thus the expected
number of equations found is lower. This can be compensated by setting different
smoothness bound B for each Ki, or K0 respectively.

CHAPTER 7

Remarks on sieving

The Number Field Sieve algorithm requires a fast identification of all B-smooth integers
from within a larger set of (related) integers. A related task was solved already in
Ancient Greece by Eratosthenes of Cyrene. Sieve of Eratosthenes [50] in its basic form
allows enumeration of all primes up to a fixed bound N .

The classical method of Eratosthenes starts by writing all odd numbers from 3 up to
N . The first new prime is 3, and all its multiples are crossed out. The first uncrossed
number is the next prime, and the process is repeated until we identified all primes
up to N . More modern variants are examined in [89]. Their complexity is a matter
of time-memory trade-off. Either we use O (N) within O

(
N1/2(log log N)/ log N

)
bits

of memory, or O (N/ log log N) operations and N1+o(1) bits of memory. Atkin sieve
[8] is a sieve variant based on quadratic forms with complexity further reduced to
O (N/ log log N) additions and N1/2+o(1) bits of memory.

Enumeration of B-smooth numbers within N consecutive numbers (for B < N) can be
implemented by an algorithm similar to the Sieve of Eratosthenes. We initialize the
sieve array with N elements, such that i-th cell will have value i. We find the first value
p, 1 < p < B , and mark positions p, 2p, . . . Instead of crossing numbers, we divide out
memory cell content by p (all its powers). At the end of the sieve, all cells with value
1 identify B-smooth numbers. The algorithm can be easily extended to any sequence
of successive values of a polynomial, using the fact that f(x) ≡ f(x + p) (mod p). A
more complex description and algorithms can be found in the Chapter 3 of [28]. An
evolution of the sieving algorithms in the context of integer factoring is described in
[88].

7.1. Sieving techniques for the NFS

Sieving algorithm used in the NFS solves the following problem:

Problem 1 (2D sieve). Given a polynomial F ∈ Z[x, y], a smoothness bound B, and a
sieve region S ⊂ Z× Z, determine the set {(x, y) ∈ S|F (x, y) is B-smooth}.

Transformation between classical NFS and Problem 1 is usually quite straightforward.
If α is a root of monic irreducible polynomial f , then the norm of algebraic number
x − yα is given as N(x − yα) = ydeg ff(x/y) ∈ Z[x, y]. The same holds for the second
algebraic number field used. If the NFS have rational side, values of polynomial x−ym
are tested for smoothness. Sieve can either be used only on one side of the equation,
and the second side is tested by fast factoring methods (e.g. ECM, [71]). Or both sides
can be tested by a single polynomial (x−ym)ydeg ff(x/y), or ydeg f1+deg f2f1(x/y)f2(x/y)

44

7.1. SIEVING TECHNIQUES FOR THE NFS 45

respectively. It is also possible to directly construct a homogenous polynomial used for
sieving, as described in Section 12 of [20].

An original implementation of the sieving algorithm within NFS is described in [15]. A
good description of the sieve algorithm implementation can also be found in [34]. These
are also good resources concerning many implementation heuristics, that can speed up
the sieve, such as using logarithmic estimates, excluding small primes from the sieve,
etc. We describe them in more detail in Section 7.2, with some remarks concerning the
choice of the sieve tolerance (see also Section 8.3 for an experimental approach).

Some of these optimizations lead to use of not only smooth equations, but partially
smooth equations with one or more large factors. These large factors are usually easily
found as a by-product of the sieve. Large primes are often used in factoring experiments
[72, 19, 32]. On the other hand, DLP records were computed without large primes
using larger factor bases than usual [52]. We were trying to employ large primes as
well (see Section 8.4.3), to reduce some complexity connected with large factor bases.
However, the results were not satisfactory. Our remarks to the large prime method are
summarized in Section 7.5.

In our experiments, we are using NFS to determine discrete logarithms in Fp6 . As we
show later (see Section 8.2), we were forced to abandon the classical 2D sieve as defined
by Problem 1. In this case, we must sieve algebraic integers in the form x + yα + zα2.
However, their norm is again given by a polynomial function even if more complicated
than before. In fact, we can generalize Problem 1 to any number of dimension:

Problem 2 (d-dimensional sieve). Given a polynomial F in d variables with integer
coefficients, a smoothness bound B, and a sieve region M ⊂ Zd, determine the set
{a = (a0, a1, . . . , ad−1) ∈M|F (a) is B-smooth}.

A basic d-dimensional sieve algorithm is described in Section 7.3. A more practical
variant used in actual NFS computations is described in section 7.4. This variant
is similar to a classical 2D-sieve, which can help to extend the existing software and
hardware sievers to accommodate higher dimensions.

On modern computer architectures, specific care must be taken when the algorithm
often accesses the memory. The time required to access a particular memory element
depends on the locality issues. Elements often accessed (or whole blocks) are loaded into
the cache with faster access time. In the case of a random access across a larger memory
region, the average time needed is higher. A sieve algorithm is very memory intensive,
and the memory is accessed ”pseudo-randomly”, as the distance between consecutive
marks depends on the prime used. There are many cache friendly implementation
techniques that can reduce the average memory access time, such as specific block
sieving [108], or sieving based on bucket sort [7]. We have implemented a similar
scheme described in more details in Section 7.4.1.

A particularly important variant of the sieve is the lattice sieve. The first motivation
was to skip pairs (x, y) with gcd(x, y) = 2, as it can save 25 % of the work. This can
be done by sieving only 3 sublattices with x ≡ 1 mod 2, or y ≡ 1 mod 2. In the sieve,
we start with the first odd point divisible by p, and continue in the strides of doubled
length 2p. Pollard in [86] suggested a more efficient method: Sieve only a lattice where

7.2. LOGARITHMIC ESTIMATES, SMALL FACTORS AND TOLERANCE 46

every point has the norm divisible by a certain large q. Norms of the sieved elements
can be reduced by the factor q, but they grow faster on the lattice. Thus the sieve
region should be much smaller than in classical sieve, but multiple q’s must be taken
[44, 12]. A more efficient version of the lattice sieving was presented in [39].

There are other options how to find enough smooth elements for the NFS. A classical
version of the sieve takes only one sieve polynomial F . Another possibility is to use
multiple polynomial version of the GNFS [26, 35]. One approach is to combine sieve
(on one side) with fast method of determining smoothness, e.g. ECM [71], or new
method proposed by Bernstein [13]. In case of Fp6 DL computations, this can be quite
a promising variant, due to a large discrepancy of smooth densities in the two algebraic
fields used.

A specific related topic are the proposals of various specific sieving machines for fac-
torization purposes, from TWINKLE [99, 68], Bernstein’s proposal [10], to TWIRL
[100, 101]. Recently more new designs were proposed: SHARK [40], combination
of TWIRL and ECM [42], or a more realistic design of [43]. As the sieving part for
factoring and discrete logarithm problems are essentially the same, it seems possible
to quickly adapt such a machine to solve the equivalent DLP problem. In the case of
XTR-DL, such machines should be adapted to a 3D sieve, but as we show in Section 7.4,
the algorithm can be formulated in a very similar manner to a classical 2D sieve. Thus
the machine design adaptation should be easy in comparison with the overall machine
design effort.

7.2. Logarithmic estimates, small factors and tolerance

Although the asymptotic complexity of the sieve is already relatively small, the sieve
region in the NFS is quite large, as well as the integers sieved. Effective implementa-
tion requires many optimizations. The computation of the norm can be a very costly
operation, especially if higher degree polynomials are used. Another costly operation is
the division, especially when norms concerned are large.

To get rid of the division, we can replace the sieved integers with their logarithms.
Division of integers is changed to subtraction of real numbers. If we were working with
exact real numbers (which is not really possible on the digital computer), we would
compute the logarithm of the norm for each point in the sieve region and place it in the
associated counter. During the sieve we would subtract logarithms of norms of prime
ideals. At the end, each point with the counter containing 0 would have a smooth norm.
Instead of computing with exact values of logarithms (norms inside the sieve region,
and of the prime ideals), we round them to some precision. The logarithm base and
rounding precision is usually chosen in such a way that an 8-bit arithmetic is sufficient1.
Another convenient choice is to use the number of bits, nb(x) = blog2 xc+ 1. If we are
already working with imprecise numbers, we can additionally relax also the computation
of the norm. Instead of computing its exact value, we just try to estimate its logarithm
by faster methods, e.g. by interpolation, etc. In our experiments, we have computed

1We have used full 32-bit integers, as there was enough memory, and access to 32-bit integers is
faster than to 8-bit integers on modern architectures.

7.2. LOGARITHMIC ESTIMATES, SMALL FACTORS AND TOLERANCE 47

exact norms only near the origin, all other norm logarithms were estimated from the
size of point coordinates, i.e. log |N (

∑
aiα

i) | ≈ 6 log max{ai}.
The sieve algorithm thus uses an array s, that is associated with a specific set A of
algebraic numbers. For every ξ ∈ A, the corresponding array element is initialized
by the estimated logarithm of its norm, i.e. s[ξ] ≈ | log N(ξ)|. During the sieve, we
subtract log N(pi) for each prime ideal pi from the factor base that contains ξ. We
expect that the array value s[ξ] after the sieve is near zero for most of the smooth ξ’s.
If RN is a random variable modelling rounding and norm estimation errors, and Ri are
random variables modelling rounding errors for log N(pi), then the final error is given
by a random variable

R = RN −
∑

pi|N(ξ)

Ri. (7.1)

If we knew distributions of RN and Ri’s, we could create a statistical test with given
error α to identify smooth values based on the realization of R. In practice, the situation
is less complicated, as the rounding can be accustomed to a desired effect.

Suppose that we sieve with all prime ideals with the norm below B, and with all their
powers. Suppose that the original norm estimate is an upper bound, i.e. s[ξ] ≥ log N(ξ)
for all ξ. Subtract values blog N(p)c during the sieve. Then every ξ ∈ A with s[ξ] <
log B is B-smooth. However, not all smooth ξ’s are detected, e.g. if the norm estimate
is too high, or if cumulative rounding errors are greater than log B.

The situation is different, if we use the lower bound for the norm, i.e. s[ξ] ≤ log N(ξ),
and we subtract values dlog N(p)e during the sieve. Then every ξ ∈ A that is B-smooth
will have s[ξ] < log B. However, some of the ξ’s with s[ξ] < log B are not B-smooth,
due to rounding errors, and possibly due to too low norm estimate. This situation is
however more favorable as the previous one, because smooth numbers are scarce, and we
do not want to miss any of them. A penalty in this case is the number of falsely reported
smooth numbers, for which we must compute the exact norm and its factorization. As
a side-product we can use almost-smooth numbers, that were found, in a large prime
variant of NFS (see Section 7.5).

There are some other factors, that complicate the real-world situation:

(1) higher powers of ideals are usually not sieved at all,
(2) lower bound for the norm is harder to compute in some areas (corresponding to

real roots of the sieve polynomial),
(3) we do not sieve with some of the primes (with small norms) for efficiency reasons.

E.g. the number 2 divides every second point in the sieve region, number 3 every
third, etc. Updating the sieve with small primes is thus very costly. On the other
hand, their logarithms are very close to zero (can even be rounded down to 0).

So in fact, if we want to use these optimizations, we cannot avoid stochastic behavior
of the sieving algorithm. The detection of the smooth numbers is based on the premise,
that the smooth number is more likely to have small final s[ξ] than a general number,
but it still can be greater than 0 (or log B). In practice, we set a fixed tolerance value

7.2. LOGARITHMIC ESTIMATES, SMALL FACTORS AND TOLERANCE 48

T . We ignore all points with s[ξ] > T (even if there is a small chance they may be
smooth). Points with s[ξ] ≤ T are further processed, the exact value of the norm is
computed and it is factored to find out, whether N(ξ) is really smooth (this can be
done in the postprocessing, after the whole sieve is executed, or in the second run of
the sieve).

Let us examine the influence of leaving out small primes in more detail. If we sieve
only with primes pi > Bmin, then the final sieve value is s[ξ] = r + sBmin

. Here r is a
contribution of rounding errors (a realization of the random variable R from (7.1) with
contributions of all pi ≤ Bmin left out), and sBmin

is an approximation of the logarithm
of Bmin-smooth part of N(ξ). We would like to impose some bounds on sBmin

, so we
can quickly identify (potentially) smooth numbers. We will simplify the situation by
requiring Bmin = 2b, for some small b.

Let m be a random k-bit integer, with large k. We denote by sb(m) a 2b-smooth part
of m. Let Sb be a random variable, and its value is the number of bits of sb(m) for m
chosen from uniform random distribution (on the interval [2k−1, 2k − 1]). If we know
the cumulative distribution function of Sb, we can choose error of estimate α, and set
the tolerance T to (1−α)-percentile of Sb (if we take only the influence of small primes
below 2b into account).

If b << k, we can expect that also sb(m) < 2k, and the parameter k can be safely
ignored. For any m we can write

sb(m) =
∑

p
ei
i |m

ei log pi. (7.2)

To find the distribution of Sb, we must compute Pr (sb(m) < x) for a randomly chosen
integer m. We will simplify the situation by intensionally ignoring higher powers of
small integers (i.e. set all ei = 1). Let Pi be a probability, that prime pi is a divisor of
a random (large) integer m. Clearly Pi = 1/pi. The average value of Sb is then

E(Sb) =
∑

pi<2b

log2 pi

pi

. (7.3)

To compute approximation of this sum2, we can replace summation through primes by
summation through all integers, if we use additional probability 1/ ln j (approx.) that
a given integer j is prime:

E(Sb) ≈
2b−1∑
j=2

log2 j

j
· 1

ln j
. (7.4)

We can model these two probabilities (integer is prime, and divides a random m) into a
single random variable Xj. Xj has value 1 with probability 1/(j ln j), and 0 otherwise.

Thus the sum
∑2b−1

j=2 xj log2 j for random realization xj of Xj should approximately

2The similar idea is used in [97]

7.2. LOGARITHMIC ESTIMATES, SMALL FACTORS AND TOLERANCE 49

model the values sb(m) for a randomly chosen m, i.e.

Sb =
2b−1∑
j=2

xj log2 j. (7.5)

Its mean is as derived before in equation 7.4. Moreover we can compute its variance as

σ2 (Sb) =
2b−1∑
j=2

σ2(Xj)(log2 j)2 =
1

(ln 2)2

2b−1∑
j=2

ln j

j
−

2b−1∑
j=2

1

j2

 . (7.6)

By approximating sums with integrals, and simplifying the results by omitting insigni-
ficant terms we can find approximate values of (7.4) and (7.6) by

E (Sb) ≈ (b− 1) (7.7)

σ2 (Sb) ≈ (b− 1)2

2
(7.8)

A suitable well-known random distribution with the same mean and variance is Erlang
distribution with parameters k = 2, λ = 2/(b− 1). Its cumulative distribution function
(CDF) is

F (x; k, λ) = 1−
k−1∑
i=0

e−λx(λx)i/i! (7.9)

Using this formula, we can now compute e.g. that expected average contribution from
small factors up to 27 = 128 is 6 bits, and from small factors up to 28 = 256 is 7 bits.
The 99-percentile for S7 based on this approximation is 19.9 bits, and for S8 it is 23.2
bits.

We have made many simplifications in the process of approximation of Sb, as well as
in choosing distribution function based on just the mean and variance. To justify the
results, we performed a statistical experiment. 10000 integers of bit size 100, 200 and 300
were generated (with uniform random distribution). Smooth parts of integers divisible
by primes only up to 128, and 256 respectively, were found by the trial division. A
comparison of theoretical and practical results is summarized in Figure 7.1. The results
for different bit sizes were very similar, thus were merged them under a single Sb result.
The CDF of Erl (2, 2/(n− 1)) is a good approximation for the real distribution of Sb

only in the upper part (for larger 2b-smooth parts). Small smooth parts are affected by
rounding of logarithms, and repeated factors, which were not considered in the estimate.
As we are interested in the upper bound for smooth parts, we can conclude that the
estimate is suitable to set the sieve tolerance.

When choosing the sieve tolerance, our goal is to minimize the number of smooth points
that are incorrectly ignored (with s[ξ] > T), while also minimizing the work-factor re-
quired for postprocessing. The cost of the post-processing is in practice influenced by

7.3. GENERALIZED LINE SIEVE 50

Figure 7.1. A comparison of practical values of Sb with theoretical ap-
proximation Erl (2, 2/(b− 1)). Chart depicts measured and expected frac-
tion of 10000 numbers with smooth parts up to b bits, for b = 7, 8 respec-
tively.

the cost of the norm estimates, the sieving, and the time spent on precise norms com-
putation and factorization for false positives. These values are mostly implementation
specific. In Section 8.3 we provide experimental results leading to our final choice of
the tolerance value.

7.3. Generalized line sieve

Experiments show that in the case of Fp6 and a practical range of p’s, the density of
smooth algebraic numbers a + bα is not sufficient enough to lead to a solvable set of
equations. We are then forced to use either special techniques to find and pair large
factors (outside of the factor base), or to use algebraic numbers with higher degree.

This means that we sieve algebraic integers in the form of a polynomial
∑d−1

i=0 aiα
i. The

optimal dimension based on experiments seems to be d = 3 for Fp6 (see Section 8.2
for more thorough discussion). Different fields can have another optimal value for d,
working hypothesis is that d should be near n/2.

If we want to effectively sieve algebraic numbers in higher dimensions, we need to adapt
the sieving algorithm. Both the line and lattice sieve can be transformed to their d-
dimensional variants.

Let us suppose, that we have enough memory to store s[ξ] for the whole d-dimensional
sieve region. We can find a (reduced) basis of d-dimensional subspace of Z[αi] for

7.3. GENERALIZED LINE SIEVE 51

every ideal from the factor base. Then we can enumerate all points of any given ideal
within the sieve region and mark it within the d-dimensional array in the memory.
We call this type of algorithm a full sieve. In practice, however, the memory size is
limited and the random memory access is expensive (causing a number of CPU wait
cycles). That’s why various types of segmentations of the sieve region are required for
effective implementation. A generalized line siever processes the d-dimensional space
in a sequence of lines. The lattice sieve fixes a sublattice of the whole d-dimensional
region. Then it sieves this sublattice either with a line siever (if the sublattice is large),
or with a full siever if the sieve array for the whole sublattice can be fitted into the
memory.

Lattice sieve in higher dimensions requires a fast algorithm to find a reduced basis of an
ideal (within given sublattice/order). Deterministic algorithms (such as [39]) working
in 2-dimensional space cannot be used for higher dimensions. We can however use LLL
algorithm [66] for the reduction, but it is slower (see also Chapter 2 of [23]).

As the sieve based on a direct enumeration of points in ideals (within the sieve region) is
not practical, we focus on extending the line sieve algorithm, to provide both scalable,
cache friendly and distributable algorithm. First idea is a recursive implementation
usable for general dimension that works by constricting the sieve space to subspaces
of lower dimension until we are able to apply the line sieve. This algorithm is more
suitable for higher dimension d and nearly hypercube-shaped region.

First, we must find all ideals over small primes by factoring a sieve polynomial f(x)
modulo primes pi < B. Let

f(x) = fi,1(x) · · · fi,r(x) (mod pi),

where deg fi,j = δi,j are the degrees of respective prime ideals. Algebraic numbers

lying in ideal pi,j corresponding to fi,j(x) =
∑di,j

k=0 bkx
k, can be written as a Z-linear

combinations of rows of the n×n matrix (where n is the degree of the number field/the
degree of f(x)).

Li,j =

p 0 0 . . . 0
0 p 0 . . . 0

. . .
b0 . . . bδ−1 bδ 0 . . . 0

. . .
0 . . . 0 b0 . . . bδ 0
0 . . . 0 b0 . . . bδ

, (7.10)

where δ = δi,j. The norm of the ideal pi,j is pδ
i . Let us suppose that we want to

sieve algebraic integers in the form
∑d−1

i=0 aiα
i, i.e. the d-dimensional subspace of Z[α].

Any ideal with δ > d will contain only those points from this subspace, that have all
coordinates divisible by p. Thus we only use ideals with δ ≤ d in the sieve. Factor base
is a set of all these ideals.

7.3. GENERALIZED LINE SIEVE 52

We associate a single d-dimensional vector with each ideal in the factor base. It rep-
resents a chosen point of the associated ideal. During the sieve, we will constrict d-
dimensional space into (d− 1)-dimensional, etc., until we reach a single line. The idea
of the algorithm can be written in a recursive way:

Algorithm 2. Generalized line sieve

Input: Set B of pi,j, sieve region bounds M , tolerance T .

Output: Set S of probably smooth points.

Init: (a) Compute HNF Li,j of each pi,j in factor base.
(b) Compute approximation of the logarithm of norm of pi,j, li,j = ddi,j log2 pie.
(c) Associate a vector vi,j = (0, 0, . . . , 0) with each pi,j. Denote a set of all these

vectors V .
(d) Let S = ∅.

Recursion: Begin with dimension D = d, set VD = V .
(1) Reduction: For each vector vi,j ∈ VD add such multiple of D-th row of Li,j, so

that projD(vi,j) is the least possible in sieve region.
(2) Line sieve: If D = 0, do the line sieve.

(a) Let v be a vector such that for each vi,j ∈ V0, projk(vi,j) = projk(v), for
every 0 < k ≤ n.

(b) Let s be an array of size given by M . For each array index x, let θx =
x +

∑n
k=1 projk(v)αk. Let s[x] = blog2 N(θx)c.

(c) For each vi,j ∈ V0 : Let x0 = proj0(vi,j). Subtract the value li,j from every
array element s[x0 + mpi] in sieve bounds.

(d) For each array index x: If s[x] < T, let S = S ∪ {θx}.
(3) Sieve update: If D > 0, let xD run through all values given by M . For each

xD do:
(a) Let VD−1 ⊂ VD such that for each vi,j ∈ VD−1 : projD(vi,j) = xD.
(b) Take recusive step with D − 1 and VD−1.
(c) For each updated v′i,j ∈ VD−1 add D-th row of Li,j to a corresponding

vi,j ∈ VD.

The algorithm recursively searches subspaces with decreasing dimension. For each ideal
we maintain a working vector vi,j, and we are fixing and updating its coordinates from
the highest dimension. For further processing only those vectors are used, which have
some point in given fixed subspace. This is tested by checking the coordinate xD.
Working vector is initialized in dimension D to a minimal value, which can be computed
from M modulo pi or ad (depending on the actual dimension and the ideal degree, see
the Reduction step). Due to a lower triangular HNF matrix of the ideal, by changing
lower dimensions of vi,j we leave higher dimensions intact.

When the dimension 0 is reached, only the last coordinate is not fixed. This means we
have reduced the sieving area to a single line and we can proceed with the classical line
sieve. We initialize the array s with norm estimates for every point on the sieve line.
From this array we subtract logarithms of ideals that have intersection with the sieve
line (active ideals). After all active ideals are processed, we compare the final value of
s with the tolerance bound T . Only those algebraic numbers on the sieve line that are

7.4. IMPLEMENTATION OF THE 3D SIEVE FOR XTR-DL SOLUTION 53

below tolerance limit are sent for further processing. The sieve is stopped either after
enough smooth numbers is found, or after the whole region is sieved.

7.4. Implementation of the 3D sieve for XTR-DL solution

When implementing the sieve for XTR-DL solution we can use some specific facts that
are not addressed by the algorithm from Section 7.3. A sieve region is only three
dimensional, making a focus on generalization for a general dimension unnecessary. In
fact, a recursive iteration over dimensions represent unnecessary overhead. Moreover,
experiments with the general algorithm implementation have confirmed the intuition3

that ideals of higher degree do not play an important role in NFS, and thus can be
ignored during the sieve.

The norms of the elements
∑d−1

i=0 aiα
i of the sieve region can be bounded (in general)

by (n + d)(n+d)Mn
a Md

f [55], where Ma is the maximum of absolute values of ai, and Mf

is the maximum of absolute values of coefficients of sieve polynomial. As the largest
coefficient of f2 was chosen to be ±p, norm bounds quickly rise with the dimension of
the sieve. For optimal performance the sieve region should be chosen to be skewed (see
Section 8.2), such that Mi/Mi+1 ≈ p1/n, where Mi is the maximum of |ai| sieved in the
dimension i. Thus the sieve region contains the longest lines along the dimension 0,
and should be sieved along these longest lines by the line sieve.

Some new implementation problems arise when sieving higher degree elements. Higher
degree elements can generate principal ideals divisible by prime ideals of higher degree
than 1. The higher degree factors are however very rare. Prime ideal over pi of degree
t has norm pt

i. The chance of the factor with norm N appearing in factorization is
∼ 1/N . Thus ideal over pi of degree t has 1/pt−1

i smaller chance to appear than degree
one ideal over pi. Usually only higher degree ideals that appear are those lying over
small primes. These small primes are already excluded from the sieve for efficiency
reasons. We can also exclude all higher degree prime ideals without a serious impact
on the number of smooth algebraic equations collected. However, there is an easy way
to detect a degree 2 ideal excluded in 3D sieve. If the remainder of the norm, after
dividing out small primes and sieved primes, is less than B, then clearly the remainder
is caused by excluded degree 2 ideals (it must be square). Moreover, if the remainder
is less than B2, and is square, it is caused by the excluded degree 2 ideal(s).

In a multidimensional sieve we must furthermore check that the sieved element, when
taken as polynomial

∑d
i=0 aix

i ∈ Z[x], is irreducible over Z. Otherwise we can take the
corresponding factors and write equations directly for them (if their product is smooth,
then they are certainly smooth as well). If dimension d is fixed, we can leave out the
irreducibility check. The problem is that in that case we do not know exactly how
many equations are required for the linear system to be solvable. In the worst case,
when d = 3 every third equation can be a linear combination of previous 2 equations.

3The ideal of degree d over p have norm pd, and thus has 1/pd−1 smaller probability to appear in
any equation than the ideal of degree 1 over p.

7.4. IMPLEMENTATION OF THE 3D SIEVE FOR XTR-DL SOLUTION 54

In the sieve algorithm we use the Hermite Normal Form (HNF) of the ideal base4.
Excluding small finite number of cases, all remaining bases of d-dimensional subspace
have form5 (base vectors in rows):

pi 0 0 . . . 0
r1 1 0 . . . 0
r2 0 1 . . . 0
...

...
...

. . .
...

rd−1 0 0 . . . 1

. (7.11)

Let us find some point A0 = (a0, a1, . . . , ad−1) ∈ pi (ideal pi has the basis as above).
All points Ak = (a0 + kpi, a1, . . . , ad−1) also belong to ideal pi. Fixing a1, . . . , ad−1 we
define a sieve line (linear subspace of sieve region of dimension 1). We initialize each
sieve line by logarithmic norm estimates. For various pi we find the ”starting point”
A0 on the sieve line, such that a0 − pi < m0, where m0 is the minimum of possible
a0’s on the sieve line, i.e. the point (a0 − pi, a1, . . . , ad−1) is outside the sieve region
bounds. Then we make ”jumps” of size pi through points Ak, k > 0, until we find point
such that (a0 + kpi, a1, . . . , ad−1) is already outside the sieve region. On every jump we
”mark” points Ak by subtracting log pi from logarithmic norm estimate stored at point
Ak. After processing all pi’s, those points on the sieve line, whose remaining logarithmic
estimates are near to zero, are considered to be smooth, and sent for further processing.

Consider now the situation that we have processed all prime ideals for the given sieve
line. Next sieve line can be obtained by changing some aj to aj + 1, j > 0. Then we
must certainly mark points in the form (a0 + rj + kpi, a1, . . . , aj + 1, . . . , ad−1), for k in
some interval. If the starting point on the line given by a1, . . . , aj, . . . , ad−1 was m0 + s,
then the new starting point on the line given by a1, . . . , aj + 1, . . . , at is m0 + (s + rj)
mod pi (if m0 is fixed, it is easy to change the formula for variable m0).

If the sieve region is cuboid, we can use counter approach and change all coordi-
nates in previous dimensions when changing starting coordinates in higher dimension.
Let mj,Mj be the smallest and highest coordinate in dimension j, respectively. Af-
ter we sieve line M1, . . . , Mj−1, aj, . . . , ad−1, we change coordinates immediately to line
m1, . . . , mj−1, aj+1, . . . , ad−1. This is accomplished by changing the HNF from equation
(7.11) to the form:

4We are using ideal base in Z[α], but we can find the HNF also in a case of a so called special-q
sieve. In this case we choose a specific ideal q with large norm q. Points of q form a module Q (a subset
of Z[α]). All points of Q are guaranteed to have factor q in its norm, but these norms grow faster. For
every ideal pi, we can find the basis of pi ∩ q, and its HNF. We can then sieve module Q in a similar
manner then Z[α], using new HNF’s of small prime ideals. Special-q sieve is mainly used to compute
individual logarithms, see Section 5.2.4.

5This is a special case derived from equation (7.10) for degree one ideals, which are the only ones
used in the sieve.

7.4. IMPLEMENTATION OF THE 3D SIEVE FOR XTR-DL SOLUTION 55

pi 0 0 . . . 0
r′1 = r1 mod pi 1 0 . . . 0

r′2 = r2 − r1(M1 −m1) mod pi −(M1 −m1) 1 . . . 0
...

...
...

. . .
...

r′d−1 = rd−1 −
∑d−2

j=1 rj(Mj −mj) mod pi −(M1 −m1) −(M2 −m2) . . . 1

.

(7.12)

By adding an appropriate vector all higher line coordinates get properly updated. We
only need to change the starting point with the same formula, but using new r′i, for
every ideal.

The algorithm can be outlined as follows:

(1) For every ideal pi compute starting point m0+si on the line a1 = m1, . . . , ad−1 =
md−1.

(2) Sieve line a1, . . . , ad−1 by marking m0 + si + kpi within the sieve region.
(3) If a1 < M1 update si = (si + r′1) mod pi. Goto STEP 2.
(4) If ad−1 = Md−1, STOP the sieve.
(5) If a1 = M1 find the first ak < Mk, increment ak = ak + 1, update si = (si + r′k)

mod pi and reset a1 = m1, . . . , ak−1 = mk−1. Goto STEP 2.

The complexity of the algorithm consists of the number of sieve updates on a line, and
the number of starting point updates when moving between lines. From the implemen-
tation point of view, the optimal running time is achieved when M0 −m0 ≥ B. Then
every ideal must have at least one point on every sieve line, thus the update steps are
never ”wasted”.

The algorithm can be distributed on more computers by partitioning the sieve region
into smaller subregions. The partitioning can be done in the highest sieved dimension.
If we have more computers than Md−1−md−1 we can fix the highest dimension on each
computer and only sieve remaining d − 1 dimensions. If we want to balance the sieve
workload on N computers, we can also sieve the region by strides. Instead of updating
highest dimension by 1, we update it by N , initializing all computers with sieve lines
with mn−1, mn−1 + 1, ...mn−1 + N − 1 as their highest coordinate.

7.4.1. Block sieving. To further optimize our implementation, we wanted to re-
move the inner loop from STEP 2 of the sieve. We have excluded small primes from
the sieve, thus we use only primes B1 < pi < B. Each sieve line was further subdivided
into smaller blocks of size 2b ≤ B1. Thus, in every block, we expect only a single mark
per each prime ideal. If properly implemented (see below), this change of the sieving
algorithm can eliminate the inner sieve loop (STEP 2) executed for every prime in
traditional implementations, thus reducing the possible pipeline stalls on processor.

We have further used the division to blocks to speed up norm computations. Only
one logarithm of the norm is computed for the whole block if the number of bits of xs

(starting x-coordinate), and xe (ending x-coordinate) resp. are the same. Otherwise

7.4. IMPLEMENTATION OF THE 3D SIEVE FOR XTR-DL SOLUTION 56

Figure 7.2. Sieving algorithm with ideal lists. Each mark in sieve re-
quires 3 memory updates: Detach ideal from list do not update memory,
only a pointer in register, placing mark requires 1 update, attaching ideal
to new list requires update of 2 pointers. If number of blocks and sieve
array size are carefully balanced, all memory updates are local (in cache).
The algorithm seems faster in practice than classical sieve (too small ideals
are excluded).

the logarithm of the norm is interpolated between the end-points, or computed exactly
if the norm change is too large (e.g. if xs = 0).

Let each line have size l = k · 2b, where 2b is the block size, and the number of blocks
is k. Each block has an associated array of 2b elements initialized with logarithms of
norms. We only store one such an array at a time, and reuse it for each block.

For each ideal we compute its starting point on the current line si. The first block
we must mark is clearly ci = bsi/2

bc (if we index blocks from 0). We must subtract a

7.4. IMPLEMENTATION OF THE 3D SIEVE FOR XTR-DL SOLUTION 57

logarithm of pi from the array offset di = si mod 2b in block ci. Instead of doing it
immediately, we store ci, and di with further information about the ideal pi. For each
block cj, we create a set Cj of ideals (in practice a dynamic list), that must be processed
when we are working with this block.

After we have have computed all ci, di, and filled sets Cj, we process individual blocks.
In each block cj, j = 0, 1, . . . , k − 1, we initialize the sieve array with logarithms of
norms. For each ideal pi ∈ Cj we subtract the logarithm of pi from the sieve array at
offset di. Then we update the position of the ideal to c′i · 2b + d′i = ci · 2b + di + pi (note
that ci = cj). If c′i ≥ k, then we have finished sieving the line with pi. Otherwise we
store the new d′i, and move pi from set Cj to set Cc′i . We implement this moving by
using dynamic lists, as denoted on Figure 7.2. It requires 3 memory updates for each
sieve mark. However, the sieve array is now very small. No inner loop for determining
positions is required, we only process a limited list of ideals for each block. Final sieving
algorithm is thus as follows:

Algorithm 3. 3D-block sieve

Input: Factor base B, sieve region bounds [m0,M0]× [m1,M1]×· · ·× [md,Md], tolerance
T , block size 2b.

Output: Set S of probably smooth points.

(1) Init: For each pi ∈ B:
(a) Compute HNF of pi, equation (7.11).

(b) Compute and store r′i,k = ri,k −
∑k−1

j=1 ri,j(Mj −mj) Li,j, equation (7.12).

(c) Compute si, such that si +
∑d−1

j=0 mjα
j ∈ pi.

(d) Let k = (M0 −m0)/2
b − 1. Let aj = mj for j = 0, 1, . . . d− 1.

(2) Block init:
(a) For j = 0, 1, . . . k, let Cj = ∅.
(b) For each pi: Compute ci = bsi/2

bc, di = bsi/2
bc. Let Cj = Cj∩{< pi, di >}.

(3) Block sieve: For j = 0, 1, . . . k:
(a) Create sieve array s, and for x = 0, 1, . . . , 2b − 1: let

s[x] ≈ log

∣∣∣∣∣N
(

x + j2b +
d−1∑
i=1

aiα
i

)∣∣∣∣∣ .

(b) For each < pi, di >∈ Cj:
(i) Let s[di] = s[di]− log pi.
(ii) Let c′i2

b + d′i = j2b + di + pi, and d′i < 2b.
(iii) If c′i < k: Let Cc′i = Cc′i ∩ {< pi, d

′
i >}.

(c) For x = 0, 1, . . . , 2b − 1: If s[x] < T , let

S = S ∩ {x + j2b +
d−1∑
i=1

aiα
i}.

(4) Line updates:
(a) If a1 < M1 update si = (si + r′1) mod pi. Goto STEP 2.
(b) If ad−1 = Md−1, RETURN S.

7.5. LARGE PRIME VARIANT 58

(c) Find l, such that al < Ml and aj = Mj for every j < l.
(d) For each pi: Update si = (si + r′i,l) mod pi.
(e) Let a1 = m1, . . . , al−1 = ml−1, and al = al + 1. Goto STEP 2.

The block size influences the final running time of the algorithm, but it depends on
a computer architecture. In our experiments, the final size of the block was fixed to
27. This value was determined experimentally (on a computer with 512 KB cache
size and 64-bit AMD architecture), leading to fastest sieving for both B1 = 128 and
B1 = 256, and for various NFS setups. Experiments show approx. 25 % speedup using
this optimization in comparison to sieving the whole lines at once. Small changes of
the block size parameter around b = 7 can lead to only ±1 % change of the total sieve
time, so it is better to leave this parameter fixed, instead of fine-tuning it for each NFS
experiment.

7.4.2. Further implementation remarks. We have used the sieve with d = 3
for all further XTR-DL NFS computations described in Section 8.4. Coordinates were
denoted x, y, z, instead of an indexed notation. A region was cuboid with coordinates
[−X, X−1]×[−Y, Y −1]×[1, Z]. The z coordinate should not be negative, as multiplying
the elements by −1 leads to the same equation. X and Y were chosen as powers of 2
to simplify some of the modular arithmetic.

The sieve program integrates the possibility to execute the special-q sieve. This is
required for the individual logarithm phase, when we need to find semi-smooth equations
with a fixed single ideal q. This ideal determines the lattice Q to be sieved. For every
ideal pi we compute a basis of q ∩ pi (within Q). The line siever is then applied with
these new bases.

If we find a potentially smooth point in the actually sieved block, we re-sieve the block
again, and store also exact factors for potentially smooth points. Furthermore, we
compute the exact norm for each of them, divide it by known factors from the second
sieve and trial-divide out small factors below 27. Points are reported either if their
norm is smooth, or when the remaining large factor is below a given bound B1 (see
Section 7.5). After sieving each plane, siever also reports total number of smooth (or
semismooth) equations found, and timing information.

Results of one of the executed experiments are summarized in Table 7.1. As expected,
the NFS output is highest for z = 1. It decreases approximately with the factor 1/2 log z.
The NFS output is lower, when z has small prime factors, because we have removed
points with gcd(x, y, z) > 1. Interesting fact is that we get significantly more equations
for z = 1 than for z = 0 (only points corresponding to irreducible polynomials over Z
were used). This could lead to some optimizations even in existing sieves.

7.5. Large prime variant

In some cases, we have ”almost” reached the norm, up to some large factor n. If all
primes below B were used in the sieve, then certainly n > B. If also n < B2, then it is
clearly a prime. Let B < B1 ≤ B2. If B1 ≤ n < B2

1/B, then either n is prime or n has
two (not necessarily distinct) prime factors B < p1, p2 < B1. We can thus identify some

7.5. LARGE PRIME VARIANT 59

Table 7.1. NFS output by z. NFS parameters were: B = 80000, f1(x) =
x6 − 2x + 2, f2(x) = x6 − 2x − 529041. Sieving region was [−216, 216] ×
[−212, 212]×[1, 256], and for comparison corresponding (x, y)-halfplane with
z = 0, y > 0. Total NFS output was 29477 equations in 15642 unknowns.

z NFS output
0 303
1 1103
2 584
3 724
4 463
5 654
6 323

z NFS output
250 31
251 46
252 22
253 50
254 35
255 40
256 23

additional factors almost for free. Single large prime requires one additional comparison.
Composite factors require primality testing, and factoring of relatively small number,
which are both fast.

These large factors are obtained as a side effect almost for free, but their effective use
requires some further post-processing. Every large factor represent one new unknown
in the linear system. Thus only large factors that occur more than once are usable.

The customary method that combines both large primes variant and large factor base
is to use two-stage sieving. We use two smoothness bounds B,B1 < B2. First, a
classical sieve is applied for every (degree one) prime ideal over pi < B. Large primes
below B1 are identified (both single and double). If we do not have enough B-smooth
equations, large primes that occur at least twice are added to the factor base, along
with corresponding equations. If we still do not have enough equations, we can use
special-q lattice sieve also for remaining single large primes. This means, we construct
a lattice corresponding to a prime ideal over large qi, and sieve elements on this lattice.
Norm of every algebraic number associated with points on this lattice certainly has qi

as its factor. We can even skip medium step and directly use special-q sieve for every
prime B < qi < B1.

For an easy detection of large primes we should use B1 < B2 for a single large prime, or
B2

1 < B3 for a double large prime variant. Practical experiments show that the upper
bound is too large, if we want to avoid special-q sieve. With larger B1 we gain more
partial equations, but most of them are useless, since the corresponding prime ideals
appear only in a single equation. Recommended practical choice is B1.2 < B1 < B1.4

[65].

Standard approach of using large primes as a byproduct of sieve is however quite in-
effective (see our experiment in Section 8.4.3), due to a very small probability of the
repeated large prime factor. On the other hand, large primes can be used if optimal
factor base size is too large:

(1) Compute the optimal factor base size B, and choose some B1 = Bc, c < 1.
(2) Sieve the sieve region with the size based on B using a reduced factor base B1

bounded by B1.

7.5. LARGE PRIME VARIANT 60

(3) Collect partial equations with large primes B1 < pi < B.
(4) Count the number of occurrences of large primes, denoted by n(pi).
(5) Remove all partial equations, with all large primes having n(pi) = 1.
(6) Add all remaining pi’s to new factor base B2.
(7) For each remaining pi’s with n(pi) = 1 try to find more B2-smooth equations by

special-q sieve.

The algorithm can stop (with success) after step 2 if f > |B1|+o(1), where f is number
of full relations. We can also abort the algorithm after step 5, if p+r+|{pi|n(pi) = 1}| <
|B2| + o(1), where p is number of remaining partial equations. The second condition
is based on the fact that if only a single pi-partial equation was found using regular
sieve with smoothness bound B1, then it is not reasonable to expect more pi-partial
equations with the same sieve bound. However, with the new factor base we hope for
at least one new B2-smooth equation (on average) per each of the special sieves.

An alternative approach can use the fact that each ideal corresponding to a large prime
can be represented as Z-module. Short vectors of this Z-module (found by LLL), and
some of their linear combinations, can provide us with the required new B2-smooth
equation. We can even use higher dimensional Z-module to find elements of pi with
very small norm. Use of higher dimensions in LLL reduction also eliminates the possible
collisions between existing pi-partial equations and constructed equations.

CHAPTER 8

Experimental results

The main goal of our research was to find XTR discrete logarithms using the Number
Field Sieve algorithm, or a new algorithm with similar or lower complexity. However,
we suppose that a new algorithm to solve XTR-DL (or DLP/IFP in general) would
require a (radically) new approach from some new mathematical ideas. Although we
are currently limited by the asymptotic complexity of NFS, a practical implementation
has still many challenging points that are not well understood. We have made many
experiments while preparing and later fine-tuning the implementation. Many experi-
ments just confirm the known theoretical results. Others are very important for the
best performance, especially where o(1) asymptotics or implementation details come to
play. In this chapter we present our various experimental results from the preparation
of NFS, as well as results of concrete NFS computations.

8.1. Influence of the polynomial f1 on the smoothness density

Algorithms for the polynomial selection, as discussed in Section 6.3, are concerned with
the size of coefficients as the most important factor for the selection. However, in our
Fp6 experiments, there is a large number of candidate polynomials f1 (see Table 8.1).
On the other hand, the size of coefficients of polynomial f2 is fixed. There arise new
unanswered questions: What is the optimal choice of the polynomial f1? Does the
polynomial selection have any significant influence on the sieving algorithm? How can
we choose the best polynomial f1? As the number of possible polynomials is large, we
have tried to find some of the answers experimentally. These results were also published
in [116].

Our goal in the NFS is to find enough B-smooth pairs, when sieving algorithm is applied
over a fixed area in Zd. A common choice is to sieve points (a, b) ∈ Z2 corresponding to
pairs (a + bα, a + bβ), with 0 < |a|, b ≤ M, gcd(a, b) = 1. Another possibility of sieving
points of Zd with d > 2 is shown in Chapter 7.

Parameter M defines the size of an area, which is going to be sieved for smooth numbers.
If we increase the size of the sieve area, we increase the number of points we need to
inspect using the sieve. We can expect to gain more B-smooth numbers by increasing
M . However, as we are moving with the sieve further from the origin, the probability
that the corresponding numbers are B-smooth tends to zero.

To estimate this probability with respect to B and M we can take the fraction of B-
smooth algebraic numbers in the area given by M . Smoothness probability depends
also on the exact number field used in NFS. For the sake of simplicity we investigate a
single polynomial case only, and suppose that smoothness probabilities in number fields

61

8.1. INFLUENCE OF THE POLYNOMIAL f1 ON THE SMOOTHNESS DENSITY 62

Table 8.1. Number of degree 6 irreducible polynomials over Z and ran-
domly chosen finite fields with absolute value of coefficients under given
bound.

Irred. over: Z Fp, Fp, Fp,
p = 101 28-bit p 60-bit p

|ai| ≤ 1 292 64 48 76
|ai| ≤ 2 4678 828 808 809
|ai| ≤ 3 28178 5092 4700 4688
|ai| ≤ 4 101651 18206 16786 17200

defined by f1 and f2 are independent. In this section we work only with the selection of
the polynomial f1. To simplify the notation, we will denote this polynomial just by f ,
and indexes will be used only to denote different concrete selections of the polynomial.

Definition 8.1.1. Let f(x) ∈ Z[x] be a monic polynomial irreducible over Z, and α ∈ C
be its root, f(α) = 0. Let M = {a + bα|0 < |a|, b ≤ M, gcd(a, b) = 1} and S = {ξ|ξ ∈
M, ξ is B-smooth}. We call Ps = |S|/|M| the smoothness probability w.r.t. B, M, and
f .

The polynomial f clearly influences concrete norms of algebraic integers in the cor-
responding number field. Let f(x) =

∑n
i=0 aix

i and denote by A = max{|ai|} the
maximal coefficient of f . Then norms of corresponding algebraic integers in the area
given by M can be bounded by O(nAMn). Clearly, higher A means smaller smoothness
probability. However, even if we choose two different polynomials f1, f2, with the same
maximal coefficient A, the respective smoothness probability Ps is usually different.

8.1.1. Scope of the experiments. We have conducted following experiments to
investigate the smoothness probability distribution w.r.t. B, M, and especially f , where
f is a degree 6 irreducible polynomial with small coefficients.

We have generated a fixed set F of degree six monic irreducible polynomials over Z
with small coefficients. Polynomials were enumerated over all possible coefficient choices
within given bound on the absolute value of their coefficients |ai| ≤ 4. Irreducibility
tests were performed using the algorithms implemented in library NTL.1 Table 8.1 sum-
marizes number of irreducible polynomials over Z (within given bounds) and compares
it with the number of polynomials that are also irreducible over randomly chosen degree
1 finite fields Fp. It should be noted that a polynomial, irreducible over some Fp, is also
irreducible over Z, but in general we can expect that degree 6 polynomial irreducible
over Z is also irreducible over given Fp with probability near 1/6.

For further experiments we have reduced the set F , so that it contains just the first
1000 polynomials irreducible over Z. We have fixed the upper smoothness bound Bmax =
224. For each polynomial fi with root αi we have computed all norms (using NTL) of
algebraic numbers a + bαi, from set M with Mmax = 64. Using the adapted fast multi-
factorization algorithm [13] we have found for each algebraic integer the largest factor

1NTL – a library for doing numbery theory – version 5.4, Release date: 2005.03.25, Author: Victor
Shoup, GPL licence. The latest version of NTL is available at http://shoup.net/ntl/.

8.1. INFLUENCE OF THE POLYNOMIAL f1 ON THE SMOOTHNESS DENSITY 63

Figure 8.1. Smootness probability distribution with respect to M for
different smoothness bounds B and first 1000 irreducible polynomials.

of the norm, if it was smaller than Bmax. Thus for each choice of B ≤ Bmax, and
M ≤ Mmax we are able to compute Ps as a function of B, M and fi, where i indexes
the concrete choice of polynomial f ∈ F .

8.1.2. Experimental results. We present some basic findings based on our ex-
perimental results:

(1) The smoothness probability distribution w.r.t. B, M and f is shown in Figure
8.1. As expected, with increasing the sieve area size (parameter M) we are
reducing the smoothness probability (over the whole area). This means that we
are able to find more equations by increasing the sieve size, but with more work
per equation.

(2) We can compensate the smoothness probability decrease w.r.t. M by increasing
the smoothness bound B. In our experimental range we have gained an average
increase of 5% in smoothness probability by doubling the smoothness bound B.

(3) For a fixed M , and B, the smoothness probability w.r.t. the polynomial choice
can be approximated by a normal distribution. E.g. in our experiment Ps the
distribution for M = 32, B = 212 w.r.t. polynomial choice is N(µ = 0.160, σ =
0.014) with χ-test p-value 0.203 (see Figure 8.2).

(4) From the Figure 8.1 it is also apparent that Ps varies widely when we change
the polynomial. E.g. the smoothness probability for the best polynomial at
given B = 212,M = 32, is as high as the smoothness probability for the worst
polynomial at (4B, M). This means that with the best choice of the polynomial,
we need four times smaller factor base than in the worst case, or two times

8.1. INFLUENCE OF THE POLYNOMIAL f1 ON THE SMOOTHNESS DENSITY 64

Figure 8.2. Histogram of smootness probability distribution with respect
to polynomial choice (first 1000 irreducible polynomials) for M = 32 and
B = 212.

Table 8.2. Correlation of smoothness probability w.r.t. polynomial se-
lection for fixed M and different values of B.

log2 B 12 15 18 21
15 0.833 1
18 0.782 0.888 1
21 0.755 0.811 0.911 1
24 0.755 0.776 0.845 0.915

smaller than in the average case. Thus we can expect reduced sieving time, and
linear algebra complexity.

We can formulate the following hypothesis H: If some polynomial fi have a high/small
Ps in one setting B, M , it would also have relatively high/small Ps for any chosen
B, M . If this hypothesis H was true, we could pick some good polynomials based on
Ps measured in a small area/with a small bound B, and then use them for a larger
experiment.

Let x1 ∈ [0, 1]1000 be a vector created of different values Ps(B1,M1, i), with B1,M1

fixed, and i = 1, . . . 1000 indexing all f ∈ F . Now let x2 be a similar vector with
different B2,M2. Hypothesis H can be reformulated as follows: The vectors x1 and x2

are strongly correlated for any choice of B1, M1, B2, M2.

Table 8.2 denotes a situation, where M is fixed, i.e. M1 = M2 = 16. The distributions
are strongly correlated, even with a significant change of B. E.g. the correlation
coefficient between distributions with B1 = 212, and B2 = 224 is 0.755. This means
that we can expect a polynomial with high Ps for one smoothness bound to also have
a relatively high Ps for another smoothness bounds. For a fixed B = 212, and distinct
M1 = 16,M2 = 64, we get ρ = 0.703. Thus Ps seem to be more sensitive to a change
of sieve area size M . When we change both parameters, i.e. B1 = 212,M1 = 16, and
B2 = 224,M2 = 64, we get ρ = 0.567. In this case the correlation is weaker.

The experiments show, that hypothesis H (as formulated) is too strong. We can expect
that some ”good” and ”bad” polynomials exist (with high and low Ps respectively). We

8.1. INFLUENCE OF THE POLYNOMIAL f1 ON THE SMOOTHNESS DENSITY 65

Table 8.3. List of TOP-10 polynomials for B = 224, M = 32, 2D case.

Rank Polynomial Ps Rank, B = 212 Ps, B = 212 Rank, 3D
1 [2 -2 1 0 -1 2 1] 0.8020 27 0.1864 829
2 [2 -2 1 1 -2 2 1] 0.8014 119 0.1762 390
3 [2 -2 1 0 2 0 1] 0.7952 16 0.1901 96
4 [2 -2 0 0 -2 -2 1] 0.7949 38 0.1850 268
5 [2 -2 -2 2 2 -1 1] 0.7937 7 0.1924 58
6 [2 -1 -2 0 1 0 1] 0.7937 15 0.1901 151
7 [1 -1 0 0 1 1 1] 0.7926 75 0.1788 104
8 [2 -2 -1 0 -1 -1 1] 0.7921 514 0.1607 484
9 [2 -2 -1 0 -2 0 1] 0.7913 332 0.1669 781

10 [2 -2 -1 0 2 -1 1] 0.7913 11 0.1908 67

have a high chance to experimentally select a ”good” polynomial only if we select large
enough parameters B1,M1. Unfortunately, the real size of the sieve region is much larger
than the reasonable scope of polynomial selection phase, as it is not practical to measure
exactly the number of smooth elements in a larger region for so many polynomials.

The last experiment conducted was a comparison between two- and three-dimensional
sieve area (see further Section 8.2). We have fixed the parameter M = 32. A three
dimensional equivalent of a set M was a set M3 = {a + bα + cα2|0 < |a|, |b|, c ≤
M, gcd(a, b, c) = 1}. We imposed an additional condition that norms of the examined
numbers must be no greater than in the two dimensional region (so we can expect
similar smoothness probabilities in both experiments). This meant, that we had to
compute and (partially) factor 42830 norms for each of 1000 polynomials. The results
when considered separately were similar to the 2D case (approximately normal distribu-
tion, the qualitative difference between the best and the worst polynomial, correlations
between sets with different B,M). The main difference is notable, if we compare the

lists P
(2)
s (B,M, i) (2D case) with P

(3)
s (B,M, i) (3D case). The respective correlation

coefficients are only 0.256 for B = 212 and 0.191 for B24. This means we are unable
to conclude, which polynomials are good for 3D sieving, even if we have a list of good
polynomials suitable for 2D sieving.

In the practical NFS setup we can either select a random polynomial f1, or use a short
preliminary sieving with more polynomials (e.g. polynomials from the Table 8.3 or the
Table 8.4). Another possibility is to base the polynomials selection on the properties of
polynomial f2 (from NFS notation), as we have used in our final polynomial selection
method (see Section 6.3).

8.1. INFLUENCE OF THE POLYNOMIAL f1 ON THE SMOOTHNESS DENSITY 66

Table 8.4. List of TOP-10 polynomials for B = 224, M = 32, 3D case.

Rank Polynomial Ps Rank, B = 212 Ps, B = 212 Rank, 2D
1 [2 -2 2 0 2 0 1] 0.7731 3 0.1684 629
2 [2 -1 -1 1 2 1 1] 0.7665 1 0.1717 56
3 [1 -1 1 0 1 0 1] 0.7664 25 0.1623 137
4 [1 1 1 0 1 0 1] 0.7664 26 0.1623 901
5 [1 0 1 0 1 -1 1] 0.7664 28 0.1618 902
6 [1 0 1 0 1 1 1] 0.7664 29 0.1618 903
7 [2 -2 2 2 2 -1 1] 0.7660 16 0.1640 793
8 [2 -2 1 2 2 0 1] 0.7654 8 0.1664 169
9 [2 -2 2 2 1 -1 1] 0.7649 12 0.1646 75

10 [2 -2 2 2 2 2 1] 0.7646 2 0.1698 327

Table 8.5. List of BOTTOM-10 polynomials for B = 224, M = 32, 2D case.

Rank Polynomial Ps Rank, B = 212 Ps, B = 212 Rank, 3D
990 [-1 0 -1 -1 1 0 1] 0.6955 993 0.1206 715
991 [-1 0 -1 1 1 0 1] 0.6955 994 0.1206 716
992 [2 -2 1 -1 1 -1 1] 0.6949 870 0.1443 285
993 [2 -2 0 0 1 -1 1] 0.6929 955 0.1364 511
994 [2 -2 1 -1 2 1 1] 0.6918 992 0.1206 419
995 [1 -1 1 1 1 -1 1] 0.6889 999 0.1146 604
996 [1 1 1 -1 1 1 1] 0.6889 1000 0.1146 605
997 [2 -1 -2 1 0 0 1] 0.6880 988 0.1267 415
998 [2 -2 1 2 0 0 1] 0.6832 978 0.1329 485
999 [1 0 -1 -1 -1 0 1] 0.6770 968 0.1345 996

1000 [1 0 -1 1 -1 0 1] 0.6770 969 0.1345 997

Table 8.6. List of BOTTOM-10 polynomials for B = 224, M = 32, 3D case.

Rank Polynomial Ps Rank, B = 212 Ps, B = 212 Rank, 2D
990 [2 -2 -2 0 -2 2 1] 0.6570 968 0.1155 89
991 [2 -1 -2 2 -2 -1 1] 0.6567 998 0.1072 563
992 [2 -2 -2 -1 -2 1 1] 0.6531 993 0.1104 767
993 [1 -1 -1 1 -1 -1 1] 0.6501 972 0.1148 940
994 [1 1 -1 -1 -1 1 1] 0.6501 973 0.1148 941
995 [2 -2 -1 -1 -2 2 1] 0.6498 997 0.1076 541
996 [1 0 -1 -1 -1 0 1] 0.6465 979 0.1128 999
997 [1 0 -1 1 -1 0 1] 0.6465 980 0.1128 1000
998 [2 -1 -1 -2 -2 2 1] 0.6456 996 0.1083 873
999 [2 -2 -2 0 0 2 1] 0.6424 1000 0.1051 766

1000 [2 -2 -1 0 -2 1 1] 0.6395 999 0.1055 539

8.2. OPTIMAL SIEVE REGION 67

8.2. Optimal sieve region

In our preliminary sieving experiments we have sieved a classical two-dimensional region,
i.e. the algebraic numbers a− bα. The main advantage of the classical sieving region is
the fast computation of the norms, due to the fact that |N(a− bα)| = |bnf(a/b)|, where
f is a sieve polynomial. Moreover, there are many optimized software packages already
developed, and can be used freely for sieving experiments. Recommended region size
should be O(B2), for the NFS complexity to hold.

Unfortunately, we were never able to find enough smooth equations in this 2D region.
Increasing the sieve region size didn’t help, due to the fast growth of norms and a
considerable drop of the smoothness probability. Increase in B led to a larger factor
base, and more required equations. We have found out experimentally, that to increase
the smoothness probability (in a fixed region) by a constant factor, we have to double B.
If we double the sieve region size (so we extended the sieve plane further from origin),
the number of new equations in the original region plus new equations from the new
part of the sieve region is less than the increase in the factor base size. The situation is
different if we take instead an another sieve plane from a higher dimensional region, that
is nearer to the origin. We cannot however extend the sieve region to all 6 dimensions
of the number field, due to a faster growth of norms near origin in higher dimension,
caused by a (single) large coefficient of the sieve polynomial f2. We have conducted a
series of sieving experiments to find the optimal sieve region size and shape (for a fixed
B).

8.2.1. Smoothness probability in a square region. We have experimentally
sieved two number fields K1 = Q(α1) with α1 a root of f1(x) = x6 + x5 − x2 − x − 1,
and K2 = Q(α2) with α2 a root of f2(x) = f1(x) + p, p = 193224091 is a 28-bit prime.
We have computed two smoothness bounds B1 = 215 ≈ Lp6

(
1/3, (2/3)2/3

)
(similar

to SNFS), and B2 = 219 ≈ Lp6

(
1/3, (8/9)1/3

)
(similar to GNFS). Using the sieve we

identified Bi-smooth elements of the sets Mi,j,z = {x + yαj + zα2
j ||x| < Bi, 0 < y <

Bi, gcd(x, y) = 1},, with z = 0, 1, and computed the respective smoothness probabilities.
Set of Bi-smooth elements of Mi,j,z is denoted by Si,j,z. The results are summarized in
Table 8.7.

Table 8.7. Measured smoothness probability in square region Mi,j,z =
{x + yαj + zα2

j ||x| < Bi, 0 < y < Bi, gcd(x, y, z) = 1}, where α1 is a root

of f1(x) = x6 + x5 − x2 − x − 1 and α2 is a root of f2(x) = f1(x) + p,
p = 193224091 is a 28-bit prime.

log2 B log2 |Nmax| z |Si,1,z| Probability |Si,2,z| Probability
15 30 0 47319 7.24E-05 229 3.50E-07

1 97073 9.04E-05 327 3.05E-07
19 38 0 10239964 6.12E-05 64027 3.83E-07

1 19767480 7.19E-05 86536 3.14E-07

The expected smoothness probabilities based on the asymptotic estimates were p1 =
0.005, and p2 = 0.001 for B1 and B2 respectively. A more accurate estimate is based on

8.2. OPTIMAL SIEVE REGION 68

–100000

–50000

0

50000

100000

x

–100000

–50000

0

50000

100000

y

0

20000

40000

60000

80000

100000

120000

–100000

–50000

0

50000

100000

x

–15000
–10000

–5000
0

5000
10000

15000

y

0

500

1000

1500

2000

Figure 8.3. Solutions of the equation |N(α)| = 2100 (within a given par-
allelepiped), in the fields defined by polynomial f1(x) = x6 − x + 1 (on
the left) and f2(x) = f1(x) + p (on the right), where p = 1099511627831
is 40-bit prime. All elements within the given boundaries have (absolute)
norms below 2100.

Ps = Ψ(yu,y)
yu ≈ u−u (see Section 2.2.2). Here u is the degree of the polynomial f1, and f2

respectively. Estimate for Ps is 2.14E-05, which is near the measured Ps1 = |S1|/|M1|.
As expected, the measured Ps2 is lower, due to higher norms near origin. Another
observation is that the number of equations obtained is much higher than in the case
when smoothness probabilities are independent, e.g. |S2,1 ∩ S2,2| = 1414 instead of
expected Ps2,1|S2,2| = 6. This is caused by the fact that most of the equations are found
near origin, where the smoothness probability is higher than in the whole region.

Our experiments also show that there is not enough smooth elements in Si,1 ∩ Si,2 to
construct equations (5.9). By resizing the 2D sieve region, we increase the norms as
well as the work required to collect the equations. It is much more efficient to increase
the sieve region to the third dimension (compare the results from Table 8.7 for z = 0
and z = 1).

8.2.2. Shape of the sieve region. A certain care must be taken when selecting
optimal sieve region. One natural (theoretical) construction of the sieve region is such
that we compute the norm bound N and sieve all algebraic numbers having norm below
N . As shown in Figure 8.3, such a region is very irregular, especially if a corresponding
sieve polynomial has real roots. On the other hand, from an implementation point of
view, rectangular (resp. cuboid) region is desired. If we use a line sieve, such as the
algorithm from Section 7.4, we would like a sieve region to be skewed along some axis
(to sieve longer lines, and spare line updates).

In our experiments with XTR-DL, the polynomial f2 had a single large absolute coeffi-
cient p. This deforms a sieve region based on a fixed bound for N as shown in Figure

8.2. OPTIMAL SIEVE REGION 69

8.3. Norms along y axis are p-times larger than along x, and norms along z axis are
p-times larger than along y. Used number field have degree 6, so the norms grow with
the sixth power of x, y, or z, respectively. Thus a cuboid region that best copies the N
bound has sides X,Y, Z with

X6

Y 6
=

Y 6

Z6
= p.

8.2.3. A comparison of 2D and 3D sieve. Let us fix B = Lp6(1/3, (8/9)1/3).
We have to sieve a region of size V = B2. Let this region be of a (hyper-)cuboid shape
with d dimensions (d ≤ n = 6), and for each successive dimension X6

i /X6
i+1 = p. Then

we have V = Xd
n−1p

d(d−1)/12, or X0 = V 1/dp(d−1)/12. The Highest norm in this region is

expected to be N ≈ X6
0 = B12/dp(d−1)/2. With B fixed, we can write the norm bound

as a function of p, and d respectively:

N(p, d) = p(d−1)/2 · Lp6

(
1/3,

12

d

(
8

9

)1/3
)

. (8.1)

For a large p, this function is dominated by the exponential term p(d−1)/2. Thus the
asymptotically optimal degree is the lowest possible one.

Let us plot the behavior of function N(p, d) denoting the expected maximal norm in the
region of dimension d for a given small and medium sized p (see Figure 8.4). We can
see that for small p, norm bounds in two dimensions (d = 2) are actually much larger
than for higher d’s. Optimal dimension for p’s between 50 and 175-bits is d = 3. For
smaller p’s it is even higher. However, the actual difference between cases d = 3, 4, 5 is
very small if compared to the case when d = 2.

The disadvantage of using higher dimensions than d = 3 for p < 250 is not readily
apparent here. But the comparison based on the norm bound ignores the opposite side,
norms of elements near the origin. This becomes more clear, if we compare norms of
elements ξ1 = x+yβ+βd−2, and ξ2 = x+yβ+βd−1, where β is a root of the polynomial
f2 (having large absolute coefficient ≈ p), and d is the dimension of the sieve. Figure
8.5 shows the comparison in a base 2 logarithmic scale for d = 3 and d = 4. The main
difference is centered around the origin. For higher x, y the term x6, y6 dominates the
norm size for both ξ1 and ξ2. The logarithmic norm difference near the origin is nearly
log2 p, as N(ξ2) ≈ pN(ξ1). For larger d’s, the impact of the term with p to the norm is
stronger in a larger region, influencing negatively the number of equations sieved. The
region with higher norms for d = 3 is roughly 26 × 210, for d = 4 it is roughly 212 × 220,
or 216-times larger.

The practical experiment with 3D and 4D sieve was conducted to verify our hypothesis
(that d = 3 is better choice than d = 4 in our range of parameters). In this case
we have used p = 38939741891 (a 36-bit prime). Sieve polynomials were f1(x) =
x6 − x4 + x3 + x2 − x + 1 and f2(x) = f1(x) − p. The sieve region for 3D sieve was2

[−216, 216] × [−212, 212] × [0, 512], and for 4D sieve the region was shifted by adding

2In practice we do not use half of plane (x, y, 0, 0).

8.2. OPTIMAL SIEVE REGION 70

n=2
n=3
n=4

0

50

100

150

200

250

20 40 60 80 100
logp

Figure 8.4. Base 2 logarithmic plot of function N(p, d), defined by Equa-
tion (8.1), denoting the norm bound in sieve region for given p and dimen-
sion d. Dimension d = 3 is optimal between p ≈ 250 and p ≈ 2175.

Table 8.8. Practical comparison of 2D, 3D, and 4D sieve.

Sieved space Number of equations
(x, y, 0, 0) 2255
(x, y, 1, 0) 8106
(x, y, 0, 1) 108
(x, y, 1, 1) 86
(x, y, z, 0) 282828
(x, y, z, 1) 14368

β4. The results are shown in the Table 8.8. The number of equations with d = 4 is
significantly lower than for d = 3.

There is yet another important dimension-dependent factor that influences the number
of equations we are able to find. In a classical 2D sieve, all equations with gcd(x, y) > 1
are discarded, i.e. about 40 % of the sieve region is unusable3. Moreover, we cannot
use points with y ≤ 0. In the case when z = 1, we can sieve the whole plane (x, y, 1),

3The number of equations discarded is in fact much higher. In example from Table 8.8, number of
equations in full region [x, y, 0, 0] was 30850. This is due to fact that with equation for point (x1, y1)

8.2. OPTIMAL SIEVE REGION 71

5

10

15

20

25

30

a

5

10

15

20

25

30

b

0

5

10

15

20

25

30

5

10

15

20

25

30

a

5

10

15

20

25

30

b

0

10

20

30

40

Figure 8.5. Plot of the function log2 |N(2X +2Y β+βd−1)|− log2 |N(2X +
2Y β + βd−2)| for d = 3 (on the left) and d = 4 (on the right). β is a root
of polynomial f1(x) = x6 − x + 1 + p, where p = 1099511627831 is 40-bit
prime.

and in the case of general z we can still sieve all points with gcd(x, y) coprime to z.
This leads to a significant increase in the number of smooth equations, especially when
using polynomial f1 with small coefficients (see Figure 8.6). This increase might also
be applicable in case of NFS to compute discrete logarithms in Fp using polynomial
selection from [52].

8.2.4. A practical selection of the sieve region size. The sieve region selection
was further refined after executing initial sieving experiments (see Section 8.4.1). In the
first DLP experiment, parameters were chosen ad-hoc, just using the assumption that
x-axis must be longer than B. Moreover, its size was larger than expected optimal size
B2. After the sieving, we could see, that there was enough smooth equations contained
in a substantially smaller region.

However, using the data obtained from sieving the too large region, we have found out,
that it is possible to quite accurately estimate the optimal region size by sieving only a
small region on a single plane with z = 1. When increasing z, we expect to find almost
the same constant number of equations in every subspace [−xmax, xmax]×[−ymax, ymax]×
[z0, 2z0] (i.e. we must double our effort to gain only a constant increase in the number
of equations). Similar observation is valid for increase in x- and y-direction respectively.
Due to the construction of our sieving algorithm (sieving along x axis, saving some sieve
updates in memory, see Figure 7.1) we expect that the sieving time is doubled, when
we double the sieve region along axes y and z respectively. On the other hand, when we
double the sieve region in x-direction, we expect the new time to be less than doubled.

we also get equations in all points (kx1, ky1), kx1 < X, ky1 < Y , and most of the smooth equations are
found near origin.

8.2. OPTIMAL SIEVE REGION 72

Figure 8.6. Comparison of smoothness densities in a region [−M, M]×
[1,M] (on the left), [−M, M]× [−M, M]× [1,M] (on the right) for various
degree 6 fields (defined by roots of polynomials with small coefficients).
Series S12, S14 and S23 denote 212, 214 and 223-smoothness.

Table 8.9. Time t to sieve a single rectangle [−2X , 2X]× [2Y , 2Y + 210]×
[1, 1], and number of equations found in this rectangle (different columns
for different choice of Y).

X t Y = 0 Y = 10 Y = 11 Y = 12 Y = 13 Y = 14
10 18 1076 48 16 4 2 1
11 18 1414 102 39 9 3 1
12 19 1703 158 74 16 8 2
13 21 1913 209 95 30 10 3
14 24 2084 257 122 42 14 3
15 31 2195 308 147 62 18 6
16 44 2245 344 174 75 19 7

The difference in the sieving time growth along axes x, y, z should be taken into account
when selecting the optimal sieve region size. However, the time growth along x axis
is very implementation-specific, and depends also on the actual factor base used. It is
thus easier to estimate the optimal region size experimentally, by preliminary sieving
specific smaller regions. However, we must take into account not only the sieving time,
but the number of potential equations as well.

The method is demonstrated for the case p32 (see Section 8.4.6 for exact parameters).
We have sieved a single rectangle [−2X , 2X] × [2Y , 2Y + 210] × [1, 1], for various X,Y .
The results are summarized in Table 8.9. As expected, the time to sieve the region does
not double with increasing X by 1, but is instead growing slowly (it is doubled only
after increasing the region size 64-times). Again, time to sieve the rectangle [2X , 2X +
c]× [−2Y , 2Y]× [1, 1] doubles with every Y increase, as the processing of every line for
various Y ’s is essentially the same.

8.3. SIEVE TOLERANCE 73

The number of equations gained by increasing X or Y is relatively small. To find the
optimal region size, we have computed an estimate of the average number of equations
per second for each sieving region [−2X , 2X]× [−2Y , 2Y]× [1, 1] (from the data in Table
8.9). The results are shown in Figure 8.7. By increasing Y the average number of
equations per second quickly decreases (doubled time, less new equations). On the
other hand, by increasing X, the average number of equations per second grows, until
optimal X-size is reached, and only then it decreases. Optimal X grows slowly when
increasing Y (the decrease in the smoothness density along x-axis is steeper for lower
Y). Final region shape is selected by combining the criteria for region size based on
norms (see Section 8.2) and criteria based on actual sieve timings from Figure 8.7. In
our further experiments, the estimated region size was sometimes too small (producing
not enough equations). This could however be easily remedied by sieving the additional
neighboring regions.

8.3. Sieve tolerance

We have conducted sieving experiments to check the influence of the tolerance value
T (see Section 7.2) on the real world behavior of our implementation of the NFS. The
sieve polynomial was F (x) = f1(x)f2(x) (both sides sieved together), where f1(x) =
x6 − 2x + 2 and f2(x) = f1(x) − p, p = 529043 is a 20-bit prime. Sieve region was
[−214, 214]× [0, 212]× [1, 210]. Smoothness bound was B = 478741 (19 bits, factor base
in the initial experiments was chosen to have exactly 80000 prime ideals). All sieve
updates and logarithmic estimates were measured in the ”number of bits”, which is
nb(x) = blog2 xc + 1. Logarithmic estimate of the norm was based on the number
of bits of coordinates, with a more careful handling near origin. We have verified
experimentally that the error of the estimate was at most 12 bits. Ideals with norms
below 128 were not used in the sieve. Their omission was compensated by a constant
based on theoretical values discussed in Section 7.2.

To estimate the optimal sieve tolerance setting, we sieved the region with different toler-
ance setting, T = 28+6k bits4 for k ∈ {−10,−9, . . . , 10}. For every k, we have measured
the total sieve time, the number of reported smooth equations, and the number of really
smooth equations.

In the first experiment, we measured the number of reported equations N = N(T) (not
necessary smooth) and the total time t = t(T) needed (on average) to produce smooth
equations from sieving a single plane (with fixed z) with a given tolerance T . The
number of equations reported grows exponentially with T . This is due to the fact that
by increasing a tolerance by a single bit, we effectively double the interval of acceptable
numbers. Up to the tolerance T = 28, the growth of N had almost a negligible effect
on the total time, as the dominant time was the line sieving time t0 ≈ 36s. Later the
growth of N had more significant impact, and for the largest tested tolerance T = 88
we had t = 190s. After subtracting the constant term t0 we were able to estimate
additional time required to process a single reported candidate, tc = 67.6 · 10−9s. Thus

4Constant 28 comes from 12 bits to compensate norm estimate errors and 16 bits to compensate
small factors, being 95-percentile of function S7 from Section 7.2.

8.3. SIEVE TOLERANCE 74

Figure 8.7. Experimental setup for p32. Number of equations found per
second in a region [−2X , 2X]× [−2Y , 2Y]× [1, 1].

the expected sieve time with the constant tolerance can be estimated by functions

t(T) = t0 + tcN(T), N(T) = αeβT (8.2)

where α and β are some constants dependent on the number field and the norm esti-
mation (in our experiments α = 1.3 · 105, β = .1219). The values of t0 and tc are very
implementation specific (both hardware and software). Parameter α depends mainly
on the smoothness density, and can be found by a single sieving (with T = 0). We
expect, that the parameter β depends only on the degree of number field n, β = ln 2

n
.

The reasoning is as follows: to double the number of reported points, we can allow to
double some coefficient (increase it by 1 bit); these points have 2n-times higher norms
(increase by n bits). If this hypothesis is correct, we can determine the whole function
N(T) by a single measurement of α.

8.3. SIEVE TOLERANCE 75

Figure 8.8. Average time per smooth equation (light-grey) and marginal
average time needed to find one more equation (dark-grey). Times in µs.

Another important function when evaluating the tolerance setting is the number of
smooth equations that is not reported. If we set the tolerance too low, we can miss
quite a large fraction of smooth equations, if we set the tolerance too high, the time
required grows much quicker than the number of additional equations.

The two sources of errors (for smooth equations) are the rounding/norm estimate error,
and the influence of small primes. Both of them can be approximated by a normal
distribution, as well as total sieve error. This is confirmed by our experiments, where
the error term had distribution E ∼ N(µ, σ2), with µ = 14.1, and σ = 13.17. If we want
to collect 95 % of all smooth equations, we must set tolerance to T = 40 bits. From
previous experiments, average time for t(40) = 38s. The number of candidates reported
by the sieve was N(40) = 25216694, out of which 466238 was really smooth (only 1.8 %
of reported equations). Using the error term distribution E we can now define function
s(T) returning the number of expected smooth equations for a given tolerance setting
T .

To locate the optimal value of T we computed functions t(T)
s(T)

— average time required

to find a smooth equation, and ∆t(T)
∆s(T)

— average time required to find one additional

equation (by increasing tolerance). Experimental results are plotted in Figure 8.8.
Although the average time per equation is low in the interval [16, 64], the marginal time
grows quickly after T = 40. That is, we can find more5 smooth equations in the same
interval by increasing the tolerance above T = 40, but the additional time required can
be better used e.g. in increasing the sieve region size.

We emphasize that it is not practical to conduct the above measurements for every
sieving experiment, just to determine the optimal tolerance value. To estimate optimal
tolerance we can measure (or estimate) the sieve time t0, the additional processing time
per candidate tc, parameters of the distribution E, and the function N(T). Then we

5As shown above, there are approximately 5 % of all smooth equations with error term above 40
bits.

8.4. SIEVING EXPERIMENTS 76

can choose optimal T as the value, where function ∆t(T)
∆s(T)

(average time required to find

an additional equation) gets above some arbitrary limit.

8.4. Sieving experiments

The goal of our research was to solve the XTR-DL problem for a given choice of p. Most
of our experiments (all except the largest one) were done on a single computer with the
following parameters:

AMD Athlon(tm) 64 Processor 3200+

cpu MHz : 2202.901

cache size : 512 KB

MemTotal : 1 GB

MIPS : 4410.67

For the last experiment we have created a small network of 8 computers working in
parallel. Their parameters6 were:

AMD Sempron(tm) Processor 3400+

cpu MHz : 2010.302

cache size : 256 KB

MemTotal : 2 GB

MIPS : 4023.09

The source code of the siever, and some of the helper programs and data are available
on a dedicated web-page http://147.175.106.2/kaivt/Vyskum/XTRDL (at the date of
the publication).

8.4.1. Preliminary experiments. Our preliminary experiments were published
in [114] The XTR system was defined in a field with characteristic p = 529043 (a 20-bit
prime). XTR group size was q = 93295322269 (a 37-bit prime). The XTR-DL was easily
solvable by Pollard’s rho-algorithm [87]. On the reference computer this computation
took 51 seconds. The complexity of Pollard’s rho is given by O(

√
q), thus the expected

running time is doubled with every 2 additional bits in the size of q.

The polynomial selection was based on results of [116]. In this initial experiment we
have chosen the polynomial f1(x) = x6−2x+2, which was the first applicable polynomial
with the highest smoothness density found in experiments described in Section 8.1. The
second polynomial was chosen to be f2(x) = f1(x)−p. Unfortunately, as we found later
the index of Z[α2] in OK2 is 7, and some extra work was required to handle the ideals
over prime 7 in this field. Further observations led to simplification of the polynomial
selection, as well as to exclusion of polynomials with [Z[α] : OK] 6= 1.

The factor base size was larger than optimal. With bound B = 80000, it contained
15620 prime ideals of degree 1 with norm above 128. Only these ideals were used to

6All computers were the same, except one, which had halved RAM clock. This has caused that our
algorithm required 45 % more time to run on this computer. This shows that the algorithm implemen-
tation is far from cache-optimal.

8.4. SIEVING EXPERIMENTS 77

sieve region [−216, 216]× [−212, 212]× [1, 256], i.e. 238 points altogether. The total sieve
time was 24691 seconds (approx. 7 hours). We have found 29477 full equations, i.e.
smoothness density was 10−7. After throwing away some of the excess equations, we
have constructed a 19048 × 13959 matrix, which was solved using Lanczos algorithm
in 4431 seconds (18 % of the sieve time). Afterwards we were able to compute XTR-
discrete logarithms by lifting traces back to Fp6 and using descent method described in
Section 5.2.4.

After these first successful experiments, we have focused on improving the sieving
phase, and testing the algorithms for different fields with increasing characteristic
p24 = 16102169, p28 = 193224089, p32 = 3147768119, p36 = 38939741891, and p40 =
1081034284409 (subscript denotes number of bits of given prime, see Section 8.4.6).
We have tried to further optimize parameter selection (especially the sieve region size)
based on the initial experimental results. The largest experiment we concluded was to
solve the DLP in Fp6 with 40-bit prime p, i.e. the field size 240 bits.

8.4.2. Record solution. The largest solution we were able to compute by our
NFS programs was a computation of discrete logarithms in Fp6 with 40-bits prime p40 =
1081034284409, and its respective XTR group with order q = 389545041355532555398291
(79 bits). Computed value of smoothness bound was B = Lp6

(
1/3, (8/9)1/3

) .
= 6532326.

We have chosen the following pair of sieve polynomials: f1(x) = x6 − 2x5 + x3 − x + 2,
and g(x) = f(x) + p.

We have constructed a factor base consisting of all degree one ideals with norm greater
than 128 and less than B in both Z[α1], and Z[α2] respectively. The total number of
ideals in the sieve factor base was 893707.

The estimated region size based on calculations from Section 8.2.3 (to sieve B2 points
with the smallest norms possible) is roughly 3.5 · 106 × 3.5 · 103 × 345. In our sieving
program we are using bounds that are powers of two, with x, y axes centered around
the origin, i.e. the original sieve region is [−221, 221] × [−214, 214] × [1, 345]. To sieve
this region would mean to examine approximately 245 points. Our preliminary sieving
showed that increasing x-axis bound above 218 produces only a very limited number of
equations. We have similarly reduced the sieve region along the y axis to one quarter of
the original. Thus we have used 32-times smaller sieve region with the expected number
of sieve points nearly 240. This size is comparable with the expected running time of
Pollard’s rho algorithm (240 field exponentiations), however the sieving is much faster
in practice.

The sieve region was divided to smaller blocks along x-axis, with 128 points each. Thus
every ideal has at most one intersection with each sieved segment. Tolerance bound was
set to 40, based on experiments from section 8.3. As the estimated sieving time was too
large to run on a single computer, we have created a parallelization engine. This was
distributing the sieving tasks among 8 computers. Each computer was sieving a single
plane with a fixed z. After finishing the job, smooth equations were sent to the server,
which assigned a new z plane to the siever.

The shortening of the sieve region along x-axis led to the smaller number of equations
than required, so we let the sieving run longer to z = 1149. Server was stopped manually

8.4. SIEVING EXPERIMENTS 78

after the number of equations per plane was too small to justify continued sieving. As we
have found only 606040 equations in the sieve region [−218, 218]× [−212, 212]× [1, 1149],
we have restarted the sieve in neighboring regions along y axis. Thus we also sieved
regions [−218, 218]× [−213−212,−212]× [1, 452], and [−218, 218]× [212, 212+213]× [1, 265],
getting 259609 and 212335 equations respectively. The total number of equations was
thus 1077984, which gave us also some spare equations for SGE. We have sieved a
total of 219 × 213 × 1866 points, which is approximately 1/6 of the originally estimated
region size. The total sieve time was 2087070 s, i.e. slightly more than 3 days on 8
computers working in parallel (+distribution server, but the communication overhead
is small compared to the sieving effort).

Sieving program produced the list of points along with valuations for ideals in the
factor base. We have additionally computed 12 character maps for each point as well
as valuations corresponding to ideals over small primes (pi < 128). Finally, we have
constructed a linear system with 1077984 equations and 854821 + 12 unknowns. The
number of unknowns is smaller than the original sieve factor base size, because some
prime ideals were not used in any smooth equation.

8.4.3. Sieving with large prime method. Because the equation size was too
large for our solver to tackle, and we have seen that some of the larger ideals were
unused, we have tried to reduce the system size by using smaller factor base and the
method of large primes.

We have reduced the smoothness bound to B = 220, leading to a sieve factor base
with 163485 unknowns. We have increased the sieve tolerance to 60 bits. Instead
of automatically discarding misreported equations (that were in fact not smooth), we
have stored the partial equations with large factors bellow B1.2 = 224. We have sieved
a slightly larger sieve region [−220, 220] × [−215, 215] × [1, 144] in total time 3636478 s
(approx. 42 days). We have only found 40750 smooth equations. We estimate that
approximately 14000 new equations can be found by doubling of the sieve region size
(along z axis). If the trend holds infinitely (i.e. a constant number of new equations
per each doubling of the sieve region size is achieved), than we can expect to collect
enough smooth equations in more than 100 years.

The final number of partial equations was nearly 10-times higher than that of the
smooth equations (exactly 382371:40750). However, the number of new unknowns was
quite large: 731611; that is more than 1.9 new unknowns per equation (we allowed
at most 2 large primes, so the maximum number of new unknowns is 2 per equa-
tion). We eliminated all equations that contained at least one large prime occurring
only once. 87857 partial equations remained with 96606 new unknowns (nearly 1.1
new unknowns/equation). This filtering was repeated 10-times, and the result was
10126 partial equations with 9660 new unknowns (.95 new unknowns/equation). The
usefulness of partial equations in itself was thus very small (equivalent of 466 smooth
equations, i.e. 1.1%). One of the solutions would be to perform additional special-q
sieve for each large prime found in partial equations. However, we have not pursued
this way further, as we already had the full system of comparable size obtained with
much less computational effort.

8.4. SIEVING EXPERIMENTS 79

8.4.4. Solution of the linear system for p40. Linear system obtained from p40

sieving experiments had r = 1077984 equations, c = 854821 unknowns corresponding
to virtual logarithms of prime ideals and 2n = 12 unknowns corresponding to character
maps. It is very sparse, with only 17487557 non-zero elements (which are small num-
bers, mostly ±1), i.e. 16 non-zero elements per row, not counting the character maps.
Densities in columns follow the expected statistics, i.e. the number of non-zero elements
in columns is near r/pd

j , where pd
j is the norm of an ideal pj (corresponding to the j-th

column). This means there is a large number of sparse columns (with few non-zero
elements), a small number of dense columns (with at most r/2 non-zero elements), and
12 columns with character maps (fully dense, containing large 80-bit numbers).

Let A denote the matrix of our linear system, let aj denote the j-th column of A, and
Ai the i-th row of A. Let us sort7 the columns of the system by the number of its
non-zero elements, such that wH(ak) ≥ wH(aj) for each k > j. Let us sort the rows of
the matrix according to first non-zero element, such that if aij = 0, then also akj = 0
for each k > i.

If some column contains only a single non-zero element aij, we can compute the corre-
sponding virtual logarithm xj after we compute all virtual logarithms in the row Ai. If
aij is the first non-zero element, we just need to compute xk for k > j. In the sorted
matrix A the corresponding rows create an upper triangular matrix. We can store these
equations for post-processing (and remove corresponding row and column from A). If
aij is not the first non-zero element (in the sorted matrix), we cannot compute xj at
all, and we can remove the whole equation from the system.

Let us consider the situation, that some column aj contains only w non-zero elements,
and they are all on the first positions in the corresponding rows. We can again compute
the corresponding virtual logarithm xj after we compute all virtual logarithms xk with
k > j. Furthermore, the knowledge of xj is not required to compute any xk with k < j
(all non-zero occurrences in the column are used on first places). We can thus store one
of the rows (Ak) on disk for post-processing. We can then eliminate alj from remaining
w − 1 rows by computing new row aljAk − akjAl (to avoid modular inversion). These
new rows are more dense, and its first non-zero element has higher index than j, so they
must be put to their new corresponding positions in the matrix.

If some column aj contains w non-zero elements, but only v < w are on the first
positions, we cannot remove these rows, as the still existing previous equations depend
on knowing xj. This situation however cannot happen, if we continually insert the
reduced rows to proper positions. We can stop at some time and finish the solution
using sparse matrix methods (in our case we have Lanczos equation solver).

Unfortunately, this method is just like the normal Gaussian elimination, but using
repositioning of rows to find pivots. The density of the matrix quickly increases, as we
are using the same rows for reduction repetitively (imagine matrix with only non-zero
elements per row aij and ai(j+1)). We have changed this preliminary method to the
following:

7The sorting of A is fast, and it is not required to store the whole matrix in the computer memory.

8.4. SIEVING EXPERIMENTS 80

(1) Set A(i) = A, and let B be an ”empty matrix” (with no rows, and the same
number of columns as A).

(2) Mark all columns of A with w non-zero elements, all of them on the first position,
and their corresponding rows (forming groups of wk rows).

(3) Store all unmarked rows in matrix A(i+1).
(4) For each group of wk rows: Store one of the rows to matrix B. Reduce remaining

rows and store them to matrix A(i+1).
(5) [Optional] Remove heaviest rows of matrix A(i+1) (if the number of rows is sig-

nificantly larger than remaining unknowns).
(6) If A(i+1) is still too large, sort matrix A(i+1), and repeat from the step 2 with

A(i) ← A(i+1).
(7) Solve system corresponding to A(i+1) by Lanczos algorithm.
(8) Solve equations from matrix B by backtracking in opposite order of adding

equations. Some virtual logarithms cannot be recovered immediately, if the
corresponding equations were eliminated in Step 5.

Using this method we have reduced the original system to a system of 226059 equa-
tions in 223474 unknowns. We have done 30 iterations of the above algorithm, with 2
reductions in step 5. One iteration took at start about 1 hour, and at the end about 20
minutes. Total time was 15 hours, but the running time can be misleading, as we were
using only a simple PERL script. Using optimized version of our Lanczos solver we have
finally solved this linear system in 1078641 seconds (12.5 day on a single computer).
Backtracking took 8 hours, again with using different PERL script, but on a slower
computer. We have finally found 845377 virtual logarithms (out of original 854821),
and using these values we have been able to compute discrete logarithms of 1072363
elements of Fp6 (corresponding to smooth equations).

8.4.5. Individual logarithms for p40. As a first task, we have computed discrete
logarithms of the elements of Fp6 corresponding to smooth elements found by the sieve
(to verify the correctness of the found virtual logarithms). We show the exact values
for two such elements.

The field Fp6 , with p = p40 = 1081034284409 was represented as Fp[x]/(f1(x)), with
f1(x) = x6− 2x5 +x3−x+2 (the sieve polynomial f1). During the sieve we have found
(among others) these smooth elements:

τ1 = 1118− 4096α + α2 N (τ1) = 2 · 5 · 31 · 191 · 347 · 367 · 769 · 115883 · 12251

τ2 = 1118− 4096β + β2 N (τ2) = 7 · 172 · 19 · 1367 · 589753 · 3835763 · 79411 · 23021 · 23473

ζ1 = 9547− 4096α + α2 N (ζ1) = 52 · 101 · 1132 · 20123 · 229519 · 1113997

ζ2 = 9547− 4096β + β2 N (ζ2) = 22 · 29 · 1097 · 220919 · 1438061 · 1217423 · 647489 · 159571

(8.3)

Ideals corresponding to 52, 1132 were degree 2 ideals with valuation 1, ideals correspond-
ing to 22, 172 were degree 1 ideals with valuation 2. Character maps for these elements
are summarized in Table 8.10. Virtual logarithms of character maps and selected virtual
logarithms of ideals are summarized in Table 8.11, and Table 8.12 respectively.

8.4. SIEVING EXPERIMENTS 81

Table 8.10. Character maps corresponding to smooth elements from
equation (8.3).

λ(τ1) λ(τ2) λ(ζ1) λ(ζ2)

332178357106423719517553 359154011446162056546912 169698805811873719103016 319288906937222296059014
234513379622851892776968 228456514497427458682278 156406108626642883750951 158707679012260335765672
303626561019476149554780 99207135067318102124376 272870316408916122480733 49138496191698642761415
179194649149685766645386 172966748775552307115918 302738685729232602437854 58380375523923559161519
138469171204904836823850 147925965590101529317944 355354891870071499369826 268356987667066844550474
249814026430200418398740 204760358080571620556694 1107583755142185704874 98390629948965261085568

Table 8.11. Virtual logarithms of character maps.

Λ1 Λ2

337847685506752680303506 278826722621497997483834
185348091931998849517424 1764500661451119403563
20022834392927148191528 199970128754298460487035
20606211993666021143938 80556290207775092778911

281368054418317500402223 63073511606345029008824
205880894720554334263651 282948909281968076715558

Table 8.12. Virtual logarithms of selected ideals.

p1 x1 p2 x2

(2, α) 319333234119305752826732 (2, β + 1) 216690832578263446432974
(5, α + 1) 170939175959701328091975 (7, β + 1) 368080756269487538573716

(5, α2 + 4α + 2) 385996846441714183236553 (17, β + 9) 111179551687758777408205

Using values of virtual logarithms, we computed discrete logarithms of elements t =
φ1(τ1) = φ2(τ2) and z = φ1(ζ1) = φ2(ζ2) modulo q = 389545041355532555398291 (order
of the XTR group):

logg(1118− 4096x + x2) = 74993585068277971960398 mod q

logg(9547− 4096x + x2) = 310352009675967591007797 mod q
(8.4)

To verify the solution we have computed g′ = ge, e = (p6 − 1)/q, a generator of a
subgroup with order q. We can compute it from both t, and z:

g′ = (te)(loggt)−1 mod q = (ze)(loggz)−1 mod q (8.5)

g′ = 284166533795 + 1000474640296x + 697619380851x2 + 782310152545x3 + 531467318536x4 + 831332532574x5 (8.6)

Let us find a discrete logarithm (modulo q) of a random element of Fp6 . To simulate
”verifiably random” number, we have taken the first 72 decimal digits of the number π,
and created the element:

q = 314159265358 + 979323846264x + 338327950288x2 + 419716939937x3 + 510582097494x4 + 459230781641x5 (8.7)

For r = 0, 1, . . . , 210− 1, we computed q(g′)r = a/b. From this we can compute logg q =
logg a − logg b − re mod q. Fractions a/b were determined using LLL for each r. We

8.4. SIEVING EXPERIMENTS 82

have partially factored norms of corresponding elements in Z[α] with the Pollard’s rho
factoring algorithm limited to 220 steps. Only pairs a/b with both B1-smooth norms

were stored for postprocessing, where B1 = Lp6

(
2/3, (1/3)1/3

)
≈ 4.85 · 1017 ≈ 259.

Average time required for one LLL reduction and 6 corresponding factorizations was
12.2s, leading to a total time of approx. 3.5 hours. This time can be reduced, if we stop
after the first suitable r (in our case it was immediately r = 0). However, the norms of
a, b for the first possible pair would usually have higher factors, than if we check more
pairs, and take the best solution. The pair of a, b for r = 0 had a total of 5 factors
between B and 255. From the 434 found B1-smooth pairs (7 % of the examined pairs)
we have chosen a pair of a, b arising from r = 470:

g470eq =
441088− 85469x + 336329x2 − 125053x3 + 239252x4 − 25547x5

−33155− 459090x− 661904x2 − 483315x3 − 47127x4 − 440144x5
(8.8)

We had to compute 4 unknown virtual logarithms, lying over primes with 28, 34, 34, and
36 bits respectively. To do this, we must find a semi-smooth equation with a given large
factor. We can sieve points in the given ideal p, which form a lattice with determinant p.
We only need to find a single semi-smooth equation, instead of O(B) smooth equations
required for the whole sieve. This would mean, that the sieve region should have only
O(B) instead of O(B2) points. However, norms on the sieved lattice grow faster, thus
the expected smoothness probabilities are lower.

For the individual logarithm sieving we have fixed the sieve region to be [−212, 212] ×
[−28, 28]×[1, 27] (in the coordinates of the lattice defined by special p). The computation
of basis for the sieve ideals within p took approx. 50s for each special p, and the sieve
took 35s (on average) for a single plane. Thus the total sieve time per single p was
1.3 hour. This time can be reduced, if we stop the sieve immediately after a suitable
equation is found.

The lattice sieve for 28-bit unknown p1 produced a B-smooth equation (not accounting
for p1), allowing us to compute its virtual logarithm immediately. For larger primes,
we have found only semi-smooth equations, with 2 large factors each, so we needed to
repeat the sieving with these new unknown primes. We have always finished the whole
sieve area, and chosen the semi-smooth equation with the smallest factors for the next
step in the descent. After finding a B-smooth equation, we computed originally sought
virtual logarithms by backtracking. To find all 4 required virtual logarithms, have used
14 lattice sieves in 3 levels of descent (4, 6, and 4 sieves respectively). The last level
sieve time was reduced by sieving only 64 planes. The total sieve time was 62160s (ca.
17 hours). Along with LLL reductions and factorization of norms for pairs a, b the
total time to compute the desired individual logarithm was approx. 20 hours, i.e. the
individual logarithm stage took 2% of the total NFS time (incl. the initial sieve and
matrix phase).

The final solution was8

8We can verify it by computing (g′)logg q = qe.

8.4. SIEVING EXPERIMENTS 83

Table 8.13. Smoothness bound and factor base size.

log2 p log2 B p B Sieve Ideals
24 17.8 16102169 250000 43828
28 19.0 193224089 600000 97816
32 20.3 3147768119 1300000 200137
36 21.3 38939741891 3000000 365666
40 22.6 1081034284409 6532326 893707

logg q = 254468168507936021353212 mod q.

To further compare the results we have created a simple program to compute discrete
logarithms using Pollard’s rho method. It was using NTL library, and the implemen-
tation technique was similar to the techniques used for implementing the NFS and the
Lanczos algorithm. The program was able to compute 220 iterations of the algorithm
on average in 24.4s (on the same computer as the single-computer sieving and Lanczos
was performed). The expected number of iterations required to compute the same DLP
was 240. Thus it would take approximately 10 months to compute a single DLP, which
we were able to compute via NFS in about 1 month (if the computation was run on a
single computer). The advantage of the NFS is more pronounced for larger p’s, as its
complexity grows subexponentially, while the complexity of Pollard’s rho method grows
exponentially.

8.4.6. Summary of sieving results. To observe the scaling of the NFS we have
conducted a series of experiments with increasing prime p, from 24 bits to 40 bits
(the largest experiment described in more details above). In every experiment the
smoothness bound was chosen near B = Lp6

(
1/3, (8/9)1/3

)
(summarized in the Table

8.13). Block sieving was used with the fixed sieve tolerance T = 40 (using experimental
results from Section 8.3), and with the block size 128. Only ideals of degree 1 having
norm above 128 were used in the sieve. Sieve polynomials f1, f2 were chosen in such a
way, that [OK1 : Z[α1]] = [OK2 : Z[α2]] = 1, the absolute value of coefficients of f1 was
at most 2, and D(f2) was the lowest possible. Concrete polynomials are presented in
Table 8.14.

The sieve region size was determined experimentally (see Section 8.2.4), in such a way
as to maximize the estimated number of equations per second. The sieve region always
had shape [−2X , 2X]× [−2Y , 2Y]× [1, z]. In the case of p32, p36, p40 the originally selected
sieve had not produced enough equations. In these cases we also sieved the neighboring
regions [−2X , 2X] × [−3 · 2Y ,−2Y] × [1, z−], and [−2X , 2X] × [2Y , 3 · 2Y] × [1, z+]. All
sieve regions are presented in the Table 8.14.

Table 8.15 summarizes the results of the sieving. In the selected region the logarithm
of the sieve time increases almost linearly with log2 B. However, the overall smoothness
probability decreases, due to a large coefficient in f2. This can be caused not only by
the growth of norms, but also by additional resizing of the sieve regions.

8.4. SIEVING EXPERIMENTS 84

Table 8.14. Sieve polynomials and sieve regions.

log2 p f1 f2 X,Y, z + z− + z+

24 x6 − x5 + x4 − x + 1 f1(x) + p 14, 10, 162
28 x6 + x5 − x2 − x + 1 f1(x) + p 14, 11, 256
32 x6 + x4 − x3 + 1 f1(x)− p 15, 11, 256+256+256
36 x6 − x4 + x3 + x2 − x + 1 f1(x)− p 16, 12, 512+512+448
40 x6 − 2x5 + x3 − x + 2 f1(x) + p 18, 13, 1149+452+265

Table 8.15. Sieving times and equation probabilities.

log2 p log2 B Sieve Time [s] Equations Eq. prob.
24 17.8 2746 48255 4.4 · 10−6

28 19.0 13636 149182 4.3 · 10−6

32 20.3 78891 220204 1.1 · 10−6

36 21.3 449744 401032 2.5 · 10−7

40 22.6 2087070 1077984 6.7 · 10−8

Table 8.16. Linear system size and (estimated) times for Lanczos algorithm.

log2 p log2 q Sieve Ideals Equations Unknowns Non-zero/row Lanczos time
(excl. maps) [s]

24 48 43828 48255 41683 14.6 15692
28 56 97816 149182 95553 15.5 157160

99998 95553 15.1 112438
32 64 200137 220204 189975 15.2 245017
36 72 365666 401032 349264 15.5 1747882

110000 108705 50.2 251110
40 79 893707 1077984 854821 16.2 (est.) 9214833

226059 223474 63.1 1078641

Table 8.16 summarizes the linear systems obtained after processing the sieve results.
Matrices up to p36 were solvable by optimized Lanczos solver (uses less memory for
storage and separate handling of columns with character maps). Average time per (row
× column) was 10ns for unprocessed matrix. The size of the modul q did not have a
significant impact on the average performance. The system for p40 was too large to fit
in the memory, and the Lanczos time is only estimated using the above average time.
This system was later reduced by our specialized SGE as described in Section 8.4.4 to
a smaller, but denser linear system. For the SGE-reduced system the average time per
(row× column) had risen to 21ns.

The Lanczos-only solution is 3-8 times slower than the respective sieve phase, as can be
seen from Table 8.17. Moreover, this time cannot be effectively reduced by paralel exe-
cution. The time required for linear algebra phase can be reduced by using Structured
Gaussian Elimination (SGE) prior to Lanczos algorithm (LA). We have observed, that
using SGE always reduced the total linear algebra time, however, for small systems the
time reduction is very small. Moreover, for larger systems the SGE step is necessary due

8.4. SIEVING EXPERIMENTS 85

Table 8.17. Sieving times compared with linear algebra time.

log2 p log2 B Sieve Time [s] Lanczos [s] SGE+LA [s]
24 17.8 2746 15692 11640
28 19.0 13636 112438 21720
32 20.3 78891 245017 39519
36 21.3 449744 1747882 259870
40 22.6 2087070 9214833 1161441

Table 8.18. NFS time compared to Pollard’s rho.

log2 p log2 q Sieve+SGE+Lanczos [s] Pollard’s rho [s]
24 48 14386 390
28 56 35356 6240
32 64 118410 99840
36 72 709614 1597440
40 79 3248511 25559040

Table 8.19. Extrapolation of sieving results for higher values of p.

log2 p log2 B Exp. Sieving Time

50 25 0.6 years
60 27 4 years
70 29 29 years
80 31 200 years
90 33 1400 years

100 34 3704 years

to memory restrictions. For experiments p24, and p28, the SGE+LA time was higher
than sieving time. For p32, p36, and p40, the SGE reduced the required linear algebra
time below that of the sieving.

If we compare NFS times with (expected) running times of the Pollard’s rho method
(see Table 8.18), we can see that NFS is already faster for p36. Unlike in Pollard’s rho,
after executing the sieve phase and the linear algebra phase, we can compute practically
any discrete logarithm in the corresponding field much faster.

The logarithm of the sieving time scales linearly with B, when B = Lp6

(
1/3, (8/9)1/3

)
.

We have used our sieve times to estimate times required for the sieve phase of DLP
experiments with larger p’s. These are summarized in Table 8.19. The smoothness
bound B determines the size of the sieve region as well as the size of the linear system.
The time required for the linear algebra phase depends mainly on the quality of the SGE.
We expect, that the linear algebra time can always be reduced below the total sieve time.
The main problem of these estimates is that they do not take into account the growing
storage requirements (to store a larger factor base and equations). Furthermore, the
experimental data cover only a short interval. Thus the extrapolations should only be
used to give some basic expectations on the order of magnitude of the sieving effort.

CHAPTER 9

Conclusions

We have successfully implemented the NFS algorithm, and were able to solve the XTR-
discrete logarithm problem. Preliminary computations were executed for the XTR sys-
tem with 20-bit prime characteristic described in [114]. Further experiments focused
more on the optimization of the sieve phase of the algorithm. The final largest exper-
iment executed was the computation of discrete logarithms in Fp6 with 40-bit prime
characteristic (240-bit field size). The sieve phase for this experiment took the com-
putation cost equivalent of 266 MIPS years. If our results can be extrapolated thus
far, then the sieve phase for DLP solution in XTR system with 110-bit characteristic
would require 84 000 GIPS years. Such a system is equivalent to RSA-200 (the RSA-200
modulus has the same number of bits), which was solved in estimated 121 GIPS years
(700-times faster) [111]. The discrete logarithm record in Fp, with 532-bit field size (160
digits) was solved in est. 10 GIPS years [56]. The equivalent RSA-160 computation
took 2.7 GIPS years [37], and our estimate for an equivalent XTR system is 3500 GIPS
year (350, resp. 1300-times slower). The linear algebra phase for our computations is
more difficult, as the involved linear systems are larger.

We do not claim that our implementation is the fastest possible, nor directly comparable
to a highly optimized software used for integer factorization records. Suppose that the
Infinitely Skillful Programmer [86] implements the NFS in three variants: to solve the
integer factorization (IFP), DLP in the degree 1 field and DLP in the degree 6 field,
respectively, all with the equivalent field/modulus size. The IFP version is simplified
by the fact that the system of linear equations is computed modulo 2. Both degree
1 DLP and degree 6 DLP require computation of logarithmic maps, and the solution
of linear system modulo a large prime. Moreover, NFS for degree 6 DLP requires two
polynomials of (at least) degree 6. Thus the total degree is higher than in the degree 1
case (degree 5 + degree 1 polynomial was used for DLP-160 [56]). Moreover, a 3D sieve
is required to obtain enough equations. This complicates the norm computation, and
the whole sieving algorithm is slower. Thus, we expect that the practical total cost of
NFS implementation and execution for equivalent systems is lowest for IFP, and highest
for degree 6 DLP. In this respect, the XTR system is preferable to classical ones (RSA,
DSA) from the security point of view.

Except of our main result, there are many NFS specific topics covered in this work. We
summarize our further results in the following:

(1) Experimental results confirm the significant impact of a polynomial selection on
the real-world behavior of the NFS algorithm [116]. In the case of NFS for DLP
in degree 6 field, we have much freedom in the polynomial selection. We are
seeking the irreducible degree 6 polynomial with extremely small coefficients,

86

9. CONCLUSIONS 87

such that the smoothness probability in corresponding algebraic number field is
the highest possible. The experimental increase in the smoothness probability
between the best and the worst polynomial was as high, as gained by the 4-times
larger factor base. It is however not clear, how to select the best polynomial.
The best strategy seems to be: precompute a list of polynomials ordered by the
(statistically measured) smoothness probability, and choose the best one, which
is irreducible also over the used Fp.

(2) To obtain enough smooth equations to solve the degree 6 DLP, we must sieve
a three dimensional sieve region, as shown in Section 8.2. Bounds of the sieve
region should be chosen in such a way that norms of boundary elements are
approximately the same. This leads to a skewed sieve region shape. Alternative
criteria for the sieve region shape can be used for the effective sieve implementa-
tion. These criteria depend on the actual sieve algorithm implementation details.
The final region shape can be adjusted by the preliminary sieving.

(3) If we are sieving a region of higher dimensions, we need to consider the influence
of higher degree ideals. Actual implementation and test runs have confirmed
that only a very small fraction of ideals with higher degree contributes to smooth
equations, and thus can safely be omitted in the sieve algorithm. Higher degree
ideals over small primes should be considered when preparing the linear system.

(4) To speed up the sieve algorithm, we can omit the small primes, and use logarith-
mic approximations of norms. These changes lead to a stochastic behavior of
the sieve that needs to be fine tuned for the best sieve performance. Section 8.3
elaborates the general criteria, and possible testing methodology for the actual
implementation.

(5) A comparison between 2D and 3D sieve results shows that there are more possible
NFS equations for points [x, y, 1] than for points [x, y, 0]. This is caused by the
fact that (most of the) equations with gcd(x, y) = d > 1 can safely be used in
the 3D case, but in the 2D case they are linearly dependent (with the equation
for point [x/d, y/d, 0]). Moreover, in the 3D case we can also sieve the half-plane
with y < 0, moving the sieve region bounds nearer to the origin.

During our research we also tried to use the large prime variant of NFS. The results
were, however, not satisfactory. Partial equations found by the sieve had too many new
unknowns, and only a very small fraction of them survived the (costly) filtering. Much
better results were obtained by using a larger factor base. The solution might be a new
approach based on using the special-q sieve with an adaptive factor base, as presented
in Section 7.5. A fast lattice reduction and (B-smooth) factoring algorithm is required
in this case.

As a side effect of the 3D sieve we observed that the plane [x, y, 1] generates more NFS
equations than the plane [x, y, 0]. This remained true even if we restricted the search in
the z = 1 case to y > 0 for better comparison, due to unusable points with gcd(x, y) > 1
in z = 0 case. No gcd check, or modifications of the sieving, is required in z = 1 case.
It is not difficult to modify the classical 2D sieve to sieve plane with z = 1 instead
of z = 0. The number of equations obtained after this change depends mostly on the
sieve polynomial(s). If we wanted to use this change in NFS for integer factorization, a
different polynomial selection algorithm might be required.

Bibliography

[1] Adleman, L. A subexponential algorithm for the discrete logarithm problem with applications
to cryptography. In Proc. 20th IEEE Found. Comp. Sci. Symp. (1979), pp. 55–60.

[2] Adleman, L. M. The function field sieve. In Proceedings of the First International Symposium
on Algorithmic Number Theory (1994), vol. 887 of Lecture Notes In Computer Science, Springer,
pp. 108–121. ISBN:3-540-58691-1.

[3] Adleman, L. M., and DeMarrais, J. A subexponential algorithm for discrete logarithms over
all finite fields. In Proceedings of CRYPTO’93 (1993), D. Stinson, Ed., vol. 773 of Lecture Notes
in Computer Science, Springer, pp. 147–158.

[4] Adleman, L. M., and DeMarrais, J. A subexponential algorithm for discrete logarithms over
all finite fields. Math. Comp. 61, 203 (1993), 1–15.

[5] Adleman, L. M., and Huang, M.-D. A. Function field sieve method for discrete logarithms
over finite fields. Inf. Comput. 151, 1-2 (1999), 5–16.

[6] Aoki, K., Franke, J., Kleinjung, T., Lenstra, A., and Osvik, D. A kilobit special number
field sieve factorization. Tech. Rep. 205, Cryptology ePrint Archive, 2007.

[7] Aoki, K., and Ueda, H. Sieving using bucket sort. In Advances in Cryptology - ASIACRYPT
2004 (2004), vol. 3329 of Lecture Notes in Computer Science, Springer, pp. 92–102.

[8] Atkin, A. O. L., and Bernstein, D. J. Prime sieves using binary quadratic forms. Mathematics
of Computation 73 (2004), 1023–1030.

[9] Bach, E., and Peralta, R. Asymptotic semismoothness probabilities. Mathematics of Compu-
tation 65, 216 (1996), 17011715.

[10] Bernstein, D. Circuits for integer factorization: a proposal, 2001.
[11] Bernstein, D. Arbitrarily tight bounds on the distribution of smooth integers. In Number Theory

for the Millennium I (2002), M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J.
Hildebrand, and W. Philipp, Eds., A. K. Peters, pp. 49–66.

[12] Bernstein, D. J. The multiple-lattice number field sieve. In Detecting perfect powers in essen-
tially linear time, and other studies in computational number theory (1995), Thesis, University of
California at Berkeley. URL: http://cr.yp.to/papers.html.

[13] Bernstein, D. J. How to find small factors of integers. Manuscript, 2001.
[14] Bernstein, D. J. Factoring into coprimes in essentially linear time. Journal of Algorithms 54

(2005), 1–30.
[15] Bernstein, D. J., and Lenstra, A. K. A general number field sieve implementation. In Lenstra

and Lenstra [65], pp. 103–126. ISBN: 978-3-540-57013-4.
[16] Bleichenbacher, D., Bosma, W., and Lenstra, A. K. Some remarks on lucas-based cryp-

tosystems. In CRYPTO ’95: Proceedings of the 15th Annual International Cryptology Conference
on Advances in Cryptology (London, UK, 1995), Springer-Verlag, pp. 386–396.

[17] Brent, R. P. An improved monte carlo factorization algorithm. BIT 20 (1980), 176–184. MR
82a:10007.

[18] Brouwer, A. E., Pellikaan, R., and Verheul, E. R. Doing more with fewer bits. In Advances
in Cryptology — ASIACRYPT (1999), vol. 1716 of LNCS, pp. 321–332.

[19] Buchmann, J., Loho, J., and Zayer, J. An implementation of the general number field sieve.
In CRYPTO ’93: Proceedings of the 13th annual international cryptology conference on Advances
in cryptology (New York, NY, USA, 1994), Springer-Verlag New York, Inc., pp. 159–165.

[20] Buhler, J. P., Lenstra, H. W., and Pomerance, C. Factoring Integers with the Number
Field Sieve. In Lenstra and Lenstra [65], pp. 50–94. ISBN: 978-3-540-57013-4.

88

BIBLIOGRAPHY 89

[21] Canfield, E. R., Erds, P., and Pomerance, C. On a problem of oppenheim concerning
”factorisatio numerorum”. J. Number Theory 17 (1983), 1–28.

[22] Cavallar, S., Dodson, B., Lenstra, A. K., Lioen, W. M., Montgomery, P. L., Murphy,
B., te Riele, H., Aardal, K., Gilchrist, J., Guillerm, G., Leyland, P. C., Marchand,
J., Morain, F., Muffett, A., Putnam, C., Putnam, C., and Zimmermann, P. Factoriza-
tion of a 512-bit RSA modulus. In Theory and Application of Cryptographic Techniques (2000),
pp. 1–18.

[23] Cohen, H. A Course in Computational Algebraic Number Theory. Springer-Verlag, 1993. ISBN:
978-3-540-55640-4.

[24] Commeine, A., and Semaev, I. An algorithm to solve the discrete logarithm problem with
the number field sieve. In Public Key Cryptography (2006), M. Yung, Y. Dodis, A. Kiayias, and
T. Malkin, Eds., vol. 3958 of Lecture Notes in Computer Science, Springer, pp. 174–190.

[25] Coppersmith, D. Fast evaluation of logarithms in fields of characteristic two. IEEE Transactions
on Information Theory 30, 4 (Jul 1984), 587 – 594.

[26] Coppersmith, D. Modifications to the number field sieve. Journal of Cryptology 6, 3 (March
1993), 169–180.

[27] Coppersmith, D., Odlyzko, A. M., and Schroeppel, R. Discrete logarithms in GF (p).
Algorithmica 1, 1 (1986), 1–15.

[28] Crandall, R., and Pomerance, C. Prime Numbers: A Computational Perspective. Springer,
2001. ISBN 0387947779.

[29] de Bruijn, N. G. On the number of positive integers ≤ x and free of prime factors > y ii. Indag.
Math., 38 (1966), 239247.

[30] Dickman, K. On the frequency of numbers containing primes of a certain relative magnitude.
Arkiv för Matematik, Astronomi och Fysik 22 (1930), 1–14.

[31] Diffie, W., and Hellman, M. New direction in cryptography. IEEE Trans. Info. Theory. IT
22, 1-2 (1976), 644–654.

[32] Dodson, B., and Lenstra, A. NFS with four large primes: An explosive experiment. In Ad-
vances in Cryptology - CRYPTO ’95: 15th Annual International Cryptology Conference (1995),
vol. 963 of Lecture Notes In Computer Science, Springer-Verlag, pp. 372–385. ISBN:3-540-60221-6.

[33] ElGamal, T. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory 31, 4 (July 1985), 469–472.

[34] Elkenbracht-Huizing, M. An implementation of the number field sieve. Experimental Mathe-
matics 5 (1996), 231–253.

[35] Elkenbracht-Huizing, R. M. A multiple polynomial general number field sieve. In ANTS-II:
Proceedings of the Second International Symposium on Algorithmic Number Theory (London, UK,
1996), Springer-Verlag, pp. 99–114.

[36] Floyd, R. W. Nondeterministic algorithms. J. ACM 14, 4 (1967), 636–644.
[37] Franke, J. RSA-160. E-mail announcement, April 2003.
[38] Franke, J., and et al., T. K. RSA-576. E-mail announcement, December 2003.
[39] Franke, J., and Kleinjung, T. Continued fractions and lattice sieving. In Special-Purpose

Hardware for Attacking Cryptographic Systems SHARCS 2005, Paris (2005).
[40] Franke, J., Kleinjung, T., Paar, C., Pelzl, J., Priplata, C., and Stahlke, C. Shark: A

realizable special hardware sieving device for factoring 1024-bit integers. In Cryptographic Hard-
ware and Embedded Systems CHES 2005 (2005), vol. 3659 of Lecture Notes in Computer Science,
Springer, pp. 119–130.

[41] Gao, S., and Howell, J. A general polynomial sieve. Des. Codes Cryptography 18, 1-3 (1999),
149–157.

[42] Geiselmann, W., Januszewski, F., Köpfer, H., Pelzl, J., and Steinwandt, R. A simpler
sieving device: Combining ECM and TWIRL. In Information Security and Cryptology ICISC 2006
(2006), vol. 4296 of Lecture Notes in Computer Science, Springer, pp. 118–135.

[43] Geiselmann, W., and Steinwandt, R. Non-wafer-scale sieving hardware for the NFS: Another
attempt to cope with 1024-bit. In Advances in Cryptology - EUROCRYPT 2007 (2007), vol. 4515
of Lecture Notes in Computer Science, Springer, pp. 466–481.

BIBLIOGRAPHY 90

[44] Golliver, R. A., Lenstra, A. K., and McCurley, K. S. Lattice sieving and trial division.
In ANTS-I: Proceedings of the First International Symposium on Algorithmic Number Theory
(London, UK, 1994), Springer-Verlag, pp. 18–27.

[45] Gong, G., and Harn, L. Public-key cryptosystems based on cubic finite field extensions. IEEE
Transactions on Information Theory 45, 7 (November 1999), 2601–2605.

[46] Gordon, D. Discrete logarithms in GF (p) using the Number Field Sieve. SIAM Journal on
Discrete Mathematics 6, 1 (1993), 124–138.

[47] Gordon, D. M., and McCurley, K. S. Massively parallel computation of discrete logarithms.
Lecture Notes in Computer Science 740 (1993), 312–323.

[48] Granger, R., and Vercauteren, F. On the discrete logarithm problem on algebraic tori. In
CRYPTO 2005 (2005), V. Shoup, Ed., vol. 3621 of Lecture Notes in Computer Science, Springer,
pp. 66–85.

[49] Hestenes, M. R., and Stiefel, E. Methods of conjugate gradients for solving linear systems.
J. Res. Nat. Bureau of Standards 49 (1952), 409–436.

[50] Horsley, S. The sieve of eratosthenes. being an account of his method of finding all the prime
numbers. Philosophical Transactions (1683-1775) 62 (1772), 327–347.

[51] Joux, A., and Lercier, R. The function field sieve is quite special. In ANTS-V: Proceedings of
the 5th International Symposium on Algorithmic Number Theory (London, UK, 2002), Springer-
Verlag, pp. 431–445.

[52] Joux, A., and Lercier, R. Improvements to the general number field sieve for discrete logarithms
in prime fields: a comparison with the gaussian integer method. Mathematics of Computation 72
(2003), 953–967.

[53] Joux, A., and Lercier, R. Discrete logarithms in GF (37080130) – 168 digits – 556 bits. Tech.
rep., NMBRTHRY list, November 2005.

[54] Joux, A., and Lercier, R. The function field sieve in the medium prime case. In Advances
in Cryptology - EUROCRYPT 2006 (2006), vol. 4004 of Lecture Notes in Computer Science,
Springer-Verlag, pp. 254–270.

[55] Joux, A., Lercier, R., Smart, N., and Vercauteren, F. The number field sieve in the
medium prime case. In Advances in Cryptology - CRYPTO 2006 (2006), vol. 4117 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 326–334.

[56] Keinjung, T. Discrete logarithms in GF (p) — 160 digits. Tech. rep., NMBRTHRY list, February
2007.

[57] Kleinjung, T. On polynomial selection for the general number field sieve. Math. Comp. 75 (2006),
2037–2047.

[58] LaMacchia, B. A., and Odlyzko, A. M. Computation of discrete logarithms in prime fields.
Designs, Codes and Cryptography 1, 1 (1991), 47–62.

[59] LaMacchia, B. A., and Odlyzko, A. M. Solving large sparse linear systems over finite fields. In
CRYPTO ’90: Proceedings of the 10th Annual International Cryptology Conference on Advances
in Cryptology (London, UK, 1991), Springer-Verlag, pp. 109–133.

[60] Lanczos, C. Solution of systems of linear equations by minimized iterations. J. Res. Nat. Bureau
of Standards 49 (1952), 33–53.

[61] Lenstra, A., Lenstra, H. J., Manasse, M., and Pollard, J. The number field sieve. In
Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (1990), pp. 564–572.

[62] Lenstra, A., Tromer, E., Shamir, A., Kortsmit, W., Dodson, B., Hughes, J., and
Leyland, P. Factoring estimates for 1024-bit RSA modulus. In Advances in Cryptology - ASI-
ACRYPT 2003 (2003), vol. 2894 of Lecture Notes in Computer Science, Springer, pp. 55–74.

[63] Lenstra, A., and Verheul, E. An overview of the XTR public key system. In Publickey cryptog-
raphy and computational number theory (Warsaw, 2000) (2001), de Gruyter, Berlin, pp. 151–180.

[64] Lenstra, A. K. SNFS versus (G)NFS and the feasibility of factoring a 1024-bit number with
SNFS. EIDMA-CWI Workshop on Factoring Large Numbers, December 2003. PPT presentation.

[65] Lenstra, A. K., and Lenstra, H. W., Eds. The Development of the Number Field Sieve,
vol. 1554 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993. ISBN: 978-3-540-57013-
4.

BIBLIOGRAPHY 91

[66] Lenstra, A. K., Lenstra, H. W., and Lovász, L. Factoring polynomials with rational coef-
ficients. Mathematische Annalen 261, 4 (December 1982), 515–534.

[67] Lenstra, A. K., Lenstra, H. W., Manasse, M. S., and Pollard, J. M. The number field
sieve. In Lenstra and Lenstra [65], pp. 11–42. ISBN: 978-3-540-57013-4.

[68] Lenstra, A. K., and Shamir, A. Analysis and optimization of the twinkle factoring device. In
EUROCRYPT (2000), pp. 35–52.

[69] Lenstra, A. K., Shamir, A., Tomlinson, J., and Tromer, E. Analysis of bernstein’s fac-
torization circuit. In ASIACRYPT ’02: Proceedings of the 8th International Conference on the
Theory and Application of Cryptology and Information Security (London, UK, 2002), Springer-
Verlag, pp. 1–26.

[70] Lenstra, A. K., and Verheul, E. R. The XTR public key system. Lecture Notes in Computer
Science 1880 (2000), 1+.

[71] Lenstra, H. W. J. Factoring integers with elliptic curves. Annals of Mathematics 126, 2 (1987),
649–673.

[72] Leyland, P. C., Lenstra, A. K., Dodson, B., Muffett, A., and Wagstaff, S. Mpqs with
three large primes. In ANTS-V: Proceedings of the 5th International Symposium on Algorithmic
Number Theory (London, UK, 2002), Springer-Verlag, pp. 446–460.

[73] Lidl, R., and Niederreiter, H. Introduction to finite fields and their applications. Cambridge
University Press, 1994.

[74] Lim, S., Kim, S., Yie, I., Kim, J., and Lee, H. XTR extended to GF (p6m). In Selected Areas
in Cryptography (SAC 2001) (2001), vol. 2259 of Lecture Notes in Computer Science, Springer,
pp. 301–312.

[75] Magliveras, S., Stinson, D., and van Trung, T. New approaches to designing public key
cryptosystems using one-way functions and trapdoors in finite groups. Journal of Cryptology 15,
4 (September 2007), 285–297.

[76] Matyukhin, D. V. On the asymptotic complexity of computing discrete logarithms in the field
GF (p). Diskr. Mat. 15, 1 (2003), 2849. translation in Discrete Math. Appl. 13 (2003), no. 1, 27–50.

[77] Menezes, A., van Oorschot, P. C., and Vanstone, S. Handbook of Applied Cryptography.
CRC Press, Boca Raton, 1996.

[78] Menezes, A., Vanstone, S., and Okamoto, T. Reducing elliptic curve logarithms to loga-
rithms in a finite field. In STOC ’91: Proceedings of the twenty-third annual ACM symposium on
Theory of computing (New York, NY, USA, 1991), ACM, pp. 80–89.

[79] Murphy, B., and Brent, R. P. On quadratic polynomials for the number field sieve. Tech.
Rep. TR-CS-97-17, CS Lab, ANU, Canberra 0200 ACT, Australia, 1997.

[80] NIST. Data Encryption Standard (DES). FIPS PUB 46-2, January 1988.
[81] NIST. Digital Signature Standard (DSS). FIPS PUB 186-2, January 2000.
[82] NIST. Recommendation for pair-wise key establishment schemes using discrete logarithm cryp-

tography. Special Publication 800-56A, March 2007.
[83] Odlyzko, A. Discrete logarithms: The past and the future. Designs, Codes, and Cryptography

19, 2–3 (2000), 129–145.
[84] Odlyzko, A. M. Discrete logarithms in finite fields and their cryptographic significance. In Proc.

of the EUROCRYPT 84 workshop on Advances in cryptology: theory and application of crypto-
graphic techniques (New York, NY, USA, 1985), Springer-Verlag New York, Inc., pp. 224–314.

[85] Pohlig, S. C., and Hellman, M. E. An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance. IEEE Transactions on Information Theory 24, 1 (1978),
106–110.

[86] Pollard, J. The lattice sieve. In Lenstra and Lenstra [65], pp. 43–49. ISBN: 978-3-540-57013-4.
[87] Pollard, J. M. Monte Carlo methods for index computation mod p. Mathematics of Computation

32 (1978), 918–924.
[88] Pomerance, C. A tale of two sieves. The Notices of the Amer. Math. Soc. 43 (1996), 1473–1485.
[89] Pritchard, P. Fast compact prime number sieves (among others). J. Algorithms 4, 4 (1983),

332–344.
[90] Rivest, R., Shamir, A., and Adleman, L. A method for obtaining digital signatures and

public-key cryptosystems. Communications of the ACM 21, 2 (1978), 120–126.

BIBLIOGRAPHY 92

[91] Rubin, K., and Silverberg, A. Torus-based cryptography. In Advances in Cryptology
(CRYPTO 2003) (2003), vol. 2729 of Lecture Notes in Computer Science, Springer, pp. 349–365.

[92] Schirokauer, O. Discrete logarithms and local units. Phil. Trans. R. Soc. Lond. A 345 (1993),
409–423.

[93] Schirokauer, O. Virtual logarithms. Journal of Algorithms 57 (2005), 140–147.
[94] Schirokauer, O. The number field sieve for integers of low weight. Tech. Rep. 107, Cryptology

ePrint Archive, 2006.
[95] Schirokauer, O., Weber, D., and Denny, T. F. Discrete logarithms: The effectiveness of the

index calculus method. In Algorithmic Number Theory: Second Intern. Symp. (1996), H. Cohen,
Ed., vol. 1122 of Lecture Notes in Math., Springer, pp. 337–362.

[96] Schnorr, C. P. Efficient signature generation by smart cards. Journal of Cryptology 4, 3 (1991),
161–174.

[97] Schroeder, M. Number Theory in Science and Communication. Springer-Verlag, 1984. ISBN
3-540-12164-1.

[98] Semaev, I. Special prime numbers and discrete logs in finite prime fields. Mathematics of Com-
putation 71, 237 (2000), 363–377.

[99] Shamir, A. Factoring large numbers with the twinkle device (extended abstract). In CHES (1999),
Çetin Kaya Koç and C. Paar, Eds., vol. 1717 of Lecture Notes in Computer Science, Springer,
pp. 2–12.

[100] Shamir, A., and Tromer, E. Factoring large numbers with the TWIRL device. In Proceedings
of Crypto 2003 (2003), vol. 2729 of Lecture Notes in Computer Science, Springer-Verlag.

[101] Shamir, A., and Tromer, E. On the cost of factoring RSA-1024. RSA CryptoBytes 6, 2 (2003),
10–19.

[102] Shanks, D. Class number, a theory of factorization, and genera. In Proc. Symp. Pure Math.
(1971), D. J. Lewis, Ed., vol. 20, Amer. Math. Soc., pp. 415–440. MR 47:4932.

[103] Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J.SCI.STATIST.COMPUT. 26 (1997), 14–84.

[104] Silverman, R. Optimal parameterization of SNFS. Journal of Mathematical Cryptology 1, 2
(2007), 105–124.

[105] Sýs, M., and Novák, V. Selected part of solving sparse system over Zn2 via block lanczos
apgorithm. In International Workshop on Grid Computing for Complex Problems GCCP 2005
(December 2006), VEDA., pp. 145–151. ISBN 80-969202-1-9.

[106] Sýs, M., and Zajac, P. Discrete logarithm problem and its applications in cryptography. Be-
gabtenförderung im MINT Bereich 12 (2005), 129–146.

[107] Thomé, E. Computation of discrete logarithms in f2607. In ASIACRYPT ’01: Proceedings of
the 7th International Conference on the Theory and Application of Cryptology and Information
Security (London, UK, 2001), Springer-Verlag, pp. 107–124.

[108] Wambach, G., and Wettig, H. Block sieving algorithms. Tech. Rep. 190, University of Cologne,
1995.

[109] Weber, D. Computing discrete logarithms with the general number field sieve. In ANTS-II:
Proceedings of the Second International Symposium on Algorithmic Number Theory (London, UK,
1996), Springer-Verlag, pp. 391–403.

[110] Weber, D., and Denny, T. F. The solution of McCurley’s discrete log challenge. In CRYPTO
’98: Proceedings of the 18th Annual International Cryptology Conference on Advances in Cryptol-
ogy (London, UK, 1998), Springer-Verlag, pp. 458–471.

[111] Weisstein, E. W. RSA-200 factored. MathWorld Headline News., May 10 2005.
[112] Wiedemann, D. H. Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theor. 32,

1 (1986), 54–62.
[113] Zajac, P. Generalized line sieve algorithm. In Proceedings of ELITECH ’07 (2007).
[114] Zajac, P. How to solve XTR-DL using NFS. In Mikulášska Kryptobeśıdka (2007).
[115] Zajac, P. Remarks on the NFS complexity. Submited to TATRA MOUNTAINS Mathematical

Publications, 2007.
[116] Zajac, P. Smoothness probability in degree six number fields. Journal of Electrical Engineering

58, 7/s (2007), 14–16.

