
Slovak University of Technology
Faculty of Electrical Engineering and

Information Technology
Institute of Computer Science and Mathematics

Reg. No.: FEI-12307-29017

Improving CPA of (EC)DSA and Timing Analysis of
McEliecePKC

Dissertation thesis

2015 Ing. Marek Repka

Slovak University of Technology
Faculty of Electrical Engineering and

Information Technology
Institute of Computer Science and Mathematics

Reg. No.: FEI-12307-29017

Improving CPA of (EC)DSA and Timing Analysis of
McEliecePKC

Dissertation thesis

Study programme: Applied Informatics
Study �eld number: 2511
Study �eld: 9.2.9 Applied Informatics
Supervisor: prof. RNDr. Otokar Grošek, PhD.

Bratislava 2015 Ing. Marek Repka

Slovak University of Technology in Bratislava

Institute of Computer Science and Mathematics

Faculty of Electrical Engineering and

Information Technology

2015/2016

DISSERTATION THESIS ASSIGNMENT

Author: Ing. Marek Repka

Study programme: Applied Informatics

Study field: 9.2.9. Applied Informatics

Reg. No.: FEI-12307-29017

Student ID: 29017

Supervisor: prof. RNDr. Otokar Grošek, PhD.

Thesis title: Improving CPA of (EC)DSA and Timing Analysis of McEliecePKC

Assignment: Sensitive information can leak through Side Channels of cryptographic products. This sensitive

information can be exploited to radically shrink the set of possible keys of a cryptosystem. Attacks

misusing this leaked information are called Side Channel Attacks (SCA).

Main tasks:

1. Make state-of-the-art SCA techniques.

2. Analyze an SCA attack.

3. Propose a countermeasure to the attack.

Literature:

1. Kocher, P. C. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In CRYPTO

'96: Proceedings, pages 104-113, London, UK. Springer-Verlag.

2. Mangard S., Oswald E., Popp T. Power Analysis Attacks: Revealing the Secrets of Smart Cards. Graz University

of Technology, Graz Austria. Springer 2007.

3. Rohatgi P. Chapter 14, Improved Techniques for Side-Channel Analysis. Scienc+Business Media 2009.

4. Schindler W., Lemke K., and Paar C. A Stochastic Model for Differential Side Channel Cryptanalysis. CHES

2005, LNCS 3659, pp. 30-46, 2005.

Assignment date: 29. 09. 2012

Delivery date: 31. 08. 2016

Ing. Marek Repka
author

prof. RNDr. Otokar Grošek, PhD.
head of department

prof. RNDr. Otokar Grošek, PhD.

garant of study programme

Súhrn
Postranné kanály sú tu tak dlho ako kryptogra�a, no formálne prvá práca zaobera-
júca sa postrannými kanálmi bola publikovaná v roku 1996 [36]. Pokrok za posledné
desaťročie v tejto oblasti je nesmierny. Niet divu, veď útoky postrannými kanálmi
sú jedinou možnosť ako zlomiť dnešnú i budúcu kryptogra�u. Táto práca sa zaoberá
útokom korelačnou analýzou spotreby na DSA a ECDSA, a implementáciou pôvod-
ného originálneho McEliece kryptosystému s verejným kľúčom (McEliece PKC) ob-
sahujúc nástroj na meranie úniku informácie postranným kanálom. V práci je CPA
útok na DSA a ECDSA vylepšený a je tu tiež diskutované účinné a efektívne pro-
tiopatrenie voči tomuto útoku. V práci je ďalej prezentovaná implementácia originál-
neho McEliece PKC s nástrojom na meranie zvolených typov únikov. Možnosti tohto
nástroja sú v práci aj demonštrované, ako aj analýza doby výpočtu v spojení s vnášaním
chýb, ktorá je tiež vylepšená. Návrh efektívnej metódy pre výpočet p-tej odmocniny v
konečných poliach charakteristiky p je uvedený ako posledný výsledok. Práca uvádza
súčasný stav problematiky, metodológiu, ktorá mapuje analyzované kryptogra�cké
implementácie, meracie nástroje, a metódy útokov, ktoré boli použité na dosiahnutie
popisovaných výsledkov. V závere je práca zhrnutá.

i

ii

Abstract
Side-channel attacks are here as long as cryptography exits. However, formally, the
�rst work was published in 1996 [36]. Tremendous progress has been made in this
�eld in past decade. Indeed, side-channel attacks are the only way how to break today
cryptography, and moreover, they are everywhere. This work deals with correlation
power analysis of ECDSA and implementation of McEliece Public Key Cryptosystem
(McEliece PKC) with embedded leakage measurement tool. The CPA attack against
ECDSA has been improved, and an e�ective and e�cient countermeasure is discussed.
The original McEliece PKC has been implemented together with the embedded leak-
age measurement tool. The measurement tool is demonstrated as well as timing fault
injection analysis which is also improved. The proposal for e�cient computation of
p-th root in extended �nite �elds of characteristic p is mentioned as the last result.
State-of-the-art is provided in the �rst part of the work. Then the methodology maps
analyzed cryptographic implementations, used measurement devices and attack meth-
ods, which were used to achieve desired results. Finally, the work is concluded.

iii

iv

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

1 Introduction & Motivation 1

2 State of the Art 3
2.1 Side Channel Kinds . 3
2.2 Scale of Side Channel Attacks . 4

2.2.1 Scale regarding the manipulation by the computation 4
2.2.2 Scale regarding the destruction of the device 4
2.2.3 Scale regarding the statistical analysis 5

2.3 Steps of Side Channel Attacks . 6
2.3.1 Side-channel analysis . 6
2.3.2 Leakage modeling . 6
2.3.3 Measurements . 8
2.3.4 Distinguishing . 9

2.4 Countermeasures . 10
2.4.1 Hiding . 11
2.4.2 Masking . 11

3 Goals 13
3.1 Improve CPA of 16-bit Integer Multiplier in FPGA 13
3.2 Timing Fault Injection Analysis of chosen steps of McEliece PKC . . . 14

v

4 Methodology 15
4.1 Analyzed Implementations . 15

4.1.1 DSA & ECDSA: 16-bit integer multiplier in FPGA 15
4.1.2 McElice PKC in 64-bit CPU . 16

4.2 Analyzed Devices . 17
4.2.1 Altera DISIPA FPGA board . 17

4.3 Measurements & Attacks Setup . 19
4.4 Measurement & Analysis Tools . 19

4.4.1 Application for power consumption measurements & analyses 19
4.4.2 Application for time measurements & analyses 22

4.5 Measurement Devices . 23
4.5.1 List of Oscilloscopes . 25
4.5.2 List of Probes . 25
4.5.3 Triggering the Signal Recording 26

4.6 Performed Analyses . 27
4.6.1 CPA of the 16-bit integer multiplier in FPGA 27
4.6.2 Fault injection & timing analysis 29

5 Results 31
5.1 CPA Attack against DSA & ECDSA . 31

5.1.1 Related work & our contribution 31
5.1.2 Attack complexity & success for one 16-bit block of the key . . 32
5.1.3 Attack complexity & success estimation for N key blocks . . . 33
5.1.4 Errors of simulated CPA attack 34

5.2 Improving the CPA Attack against DSA & ECDSA 37
5.3 Countermeasure against the CPA Attack against DSA & ECDSA 39
5.4 Implementation of the Original McEliece PKC 40

5.4.1 Related work & our contribution 40
5.4.2 Binary irreducible Goppa codes for the McEliece PKC 41
5.4.3 Key-pairs Generation . 42
5.4.4 Key-pairs Storing . 44
5.4.5 Encryption . 44
5.4.6 Decryption . 44
5.4.7 Basic Use Cases . 47

5.5 Timing Fault Injection Analysis of McEliece PKC Decryption 47
5.6 Improving the Timing Fault Injection Analysis 56
5.7 Countermeasure against the Timing Fault Injection Analysis 56
5.8 Computing pth roots in extended �nite �elds of characteristic p ≥ 2 . . 57

5.8.1 Related work & our contribution 57
5.8.2 The computation of pth root . 58
5.8.3 Summary . 59

vi

6 List of Publications & Contributions 61
6.1 Zoznam príspevkov kategórie A . 61
6.2 List of Contributions of Category B . 62
6.3 List of Talks at Conferences . 62

7 Conclusion 63

8 Resumé 65

References 71

vii

viii

List of Figures

2.1 Various measurement points for power analyses. 8

4.1 Schematic diagrams of measurement points in the DISIPA FPGA board.
a) current �ow from a linear regulator to the FPGA; b) current �ow
from the power supply to a linear regulator; c) the voltage on the de-
coupling capacitor; d) current �ow from a decoupling capacitor to the
FPGA. 18

4.2 Top-Level Measurement & Attack Setup. 19

5.1 Success rates of the 665 CPA attacks using measured power traces (red),
and simulated HDPM traces (blue), regarding D - max number of the
key hypotheses taken to account after CPA. 32

5.2 Estimation of CPA attacks complexity and success rate against N 16-
bit blocks of k using measured (red) and simulated (blue) power traces
after 1st CPA. 33

5.3 Estimation of α, β, and probability of E, for 16-bit key for various D. . 35
5.4 Estimation of probability ofE forN 16-bit blocks of the key for various

D. 36
5.5 Demonstration of the improvement on results of guessing 665 ran-

domly and uniformly generated 16-bit keys. 37
5.6 Estimations of attack complexity and probability after the second CPA

(black markers) in comparison with the estimations after the �rst CPA
(gray markers). 38

5.7 Timing analysis of Petterson’s decoding algebraic algorithm (Alg. 5.5).
One random key pair and 1000 random messages for m, t McEliece PKC. 48

5.8 Average CPU Ticks, Degrees, and HW of polynomials processed for
the same instances of McEliece PKC as in Fig. 5.7. 49

ix

5.9 Plot for S(e, Z) (inv), Step 1 (Alg. 5.5), measurements of type II (Sec.
4.4.2). Data are plotted only for the last and the penultimate coe�cients
of 46 goppa polynomials (random key pairs) each used with 1000 ran-
dom messages. 50

5.10 Plot for T (e, Z) (EEA), Step 2 (Alg. 5.5), measurements of type II (Sec.
4.4.2). Data are plotted only for the last and the penultimate coe�cients
of 46 goppa polynomials (random key pairs) each used with 1000 ran-
dom messages. 51

5.11 Plot for τ(e, Z) (sqrt), Step 3 (Alg. 5.5), measurements of type II (Sec.
4.4.2). Data are plotted only for the last and the penultimate coe�cients
of 46 goppa polynomials (random key pairs) each used with 1000 ran-
dom messages. 52

5.12 Plot for α(e, Z) (EEA), Step 4 (Alg. 5.5), measurements of type II (Sec.
4.4.2). Data are plotted only for the last and the penultimate coe�cients
of 46 goppa polynomials (random key pairs) each used with 1000 ran-
dom messages. 53

5.13 Plot for σ(e, Z) (sqr), Step 5 (Alg. 5.5), measurements of type II (Sec.
4.4.2). Data are plotted only for the last and the penultimate coe�cients
of 46 goppa polynomials (random key pairs) each used with 1000 ran-
dom messages. 54

5.14 Plot for σ(e, Z) (eval), Step 6-8 (Alg. 5.5), measurements of type II
(Sec. 4.4.2). Data are plotted only for the last and the penultimate co-
e�cients of 46 goppa polynomials (random key pairs) each used with
1000 random messages. 55

5.15 Plot for success rate of error vector guessing for McEliece PKC with
m = 11, t = 51. The red line (1) is for guessing error vectors using
Alg. 4.2. The next blue lines (3-51) are for guessing as well but taking
error guesses of previous attacks (Tab. 5.2). The black line (cnt) is
for guessing regarding number of occurrences at index in the �rst t
position from all the performed attacks. 56

x

List of Tables

2.1 List of the most common side-channels 3
2.2 Dynamic Power Consumption for Hamming Weight and Hamming

Distance Power Models which are commonly used 7

4.1 Measurement Type 1: Indicators measured to perform side-channel at-
tacks, and determine where the leakages occur. Examples in form of
graphs can be found in Fig. 5.7 and 5.8. 23

4.2 One measurement �le header for measurement setup. 24
4.3 Information recorded about secret error vector. 24
4.4 Measurement Type 2: Information recorded about secret goppa poly-

nomial in order to measure success rate of an attack. Examples in form
of graphs can be found in Fig. 5.9, . . . , 5.14. 24

5.1 Di�erence between probability of success and complexity of the attack
after 1st and 2nd CPA. Data in this table is mentioned only for the most
complex attack. Note, the max complexity was bounded by 260. For
more information about the di�erence, see Fig. 5.6. 39

5.2 Attack vector for plot in Fig. 5.15. For instance, 1:1 means guessing
error bit position 1 time using Alg. 4.2; 3:10 means that guessing of
error bit position was performed using 2 guesses with the lowest time
from the previous attack, repeated 10 times; 5:10 means that guessing
of error bit position was performed using 4 guesses with the lowest
time from the previous attack, repeated 10 times. 57

xi

xii

List of Algorithms

4.1 Digital Signature by ECDSA . 15
4.2 Fault injection & timing analysis of the McEliece PKC key decryption

(Alg. 5.4). 29
5.1 McEliece PKC key generation. 42
5.2 Random permutation of a sequence of elements. 43
5.3 McEliece PKC encryption. 45
5.4 McEliece PKC decryption. 45
5.5 Patterson’s algebraic decoding algorithm. 46

xiii

xiv

Chapter 1
Introduction & Motivation

S ide-channel attacks play role in wars and espionages as long as cryptography
exits. Hackers and crackers use side-channel attacks naturally. However, for-

mally, the �rst work was published in 1996 [36]. Vast progress has been made in this
�eld in past decade. Today cryptography is very robust against linear, di�erential,
and algebraic cryptanalysis. Nevertheless, side-channel attacks still remain big threat.
Cryptography resistant to quantum-cryptanalysis is vulnerable as well since it must
also be implemented to real devices. Essentially, it is not problem only of the imple-
mentation itself. This problem is also at the levels of the implementation description
and the cryptographic algorithm design.

Indeed, side-channel attacks are the only way how to break today strong cryp-
tography. A cryptosystem may have got so big vulnerability that its secrets can be
revealed using information about computation time or electromagnetic emanation, or
by achieving an invalid state, or by fetching in an invalid input. Therefore, it is very
important to investigate possibilities of side-channel attacks and how to be e�ectively
protected against them. Designing and implementing an e�ective, moreover e�cient,
countermeasure is not trivial because by implementing a countermeasure another leak-
age can be produced, and one type of countermeasure does not cover all leakages.
Furthermore, there are 2nd and 3th order attacks against protected implementations.

State-of-the-art with scale and steps of side-channel attacks are provided in the
�rst part of this work. Discussion trough attacks, which destruct or do not even touch
the device, or which observe only or act with the computation, is provided. Data or
operation dependent behavior of the cryptographic product is exploited in order to
reveal the secret. Countermeasures, masking and hiding of the exploitable behavior,
are discussed. Methodology maps analyzed cryptographic implementations, devices,
and attack methods, which were used to achieve described results.

The CPA attack against integer multiplier with one constant secret operand was im-
proved. This achievement was demonstrated on the 16-bit integer multiplier in FPGA

1

in the work (Repka, Varchola, and Drutarovsky [58]). Thanks to this improvement, the
CPA attack can be simulated and more blocks of key can be guessed.

Despite the original McEliece PKC [42], is post-quantum cryptosystem, it is not
an exception as regards side-channel attacks. The original McEliece PKC providing
test vectors and embedding leakage measurement tool was implemented, and the im-
plementation was described in the work (Repka [52]). Using the embedded tool the
implementation can be used to analyze various leakages. The tool is presented on
several examples this work.

2

Chapter 2
State of the Art

2.1 Side Channel Kinds
There exist several kinds of side-channels which can be exploited by an adversary. The
most common side-channels nowadays are electromagnetic emanation, power con-
sumption, computation time, light (photon emission), sound, residual data,

Table 2.1: List of the most common side-
channels

Side-channel Reference

Power consumption [35], [9]

Electromagnetic emanation [47], [14]

Software de�ned radio [23]

Computation time [36], [11]

Sound [22]

Photon emission [30]

Nonstandard behavior [4],[80]

Residual data [26]

Social engineering [25]

and also nonstandard behavior of a
device (fault injections, for instance,
to achieve bu�er over�ow or another
invalid state, or �ipping bits of an
intermediate result in memory using
laser beam, or changing clock fre-
quency) or nonstandard behavior of
an algorithm (like fetching invalid in-
puts to achieve bu�er over�ow or also
errors in output of the algorithm in-
dependently of the device). The elec-
tromagnetic emanation is very com-
mon and dangerous side-channel be-
cause the electromagnetic emanation
can propagate across walls to far dis-
tances. For instance, it is possible to
reveal which keys were pressed when
a password was being typed in. Fault
injections attacks are very powerful
because they can involve very clear
and very sensitive information, but,
in many cases, especially in the case

3

of injecting the physical errors, a close access to the sensitive parts of the device and
very good knowledge of the algorithm implementation is needed. Even timing attacks
are very dangerous because they can be performed remotely without letting any mark-
able footmarks. The most common side-channels are listed in Tab. 2.1.

2.2 Scale of Side Channel Attacks
Side-channel attacks can be scaled regarding the manipulation by computation, re-
garding the destruction of the device, and regarding the analysis performed.

2.2.1 Scale regarding the manipulation by the computation

Regarding the manipulation by the computation, side-channels attacks are divided to
active and passive attacks.

Passive attacks do not interfere with the computation process, they just trace or
observer the standard physical behavior. As an example of passive attacks, there is a
timing attack focused on CACHE of CPU [8].

Active attacks a�ect the computation process in order to cause an error (fault in-
jection attacks). This error can be introduced in to the computation via incorrect or
invalid input or also by changing a physical property (temperature, voltage, clocking,
capacitance) of the device. The supposition for the physical fault injections is that the
adversary has access to the device and he/she knows details about the implementation
and the technical realization depending on the introducing type of errors. The device
independent algorithm based fault injections can be performed remotely. However, in
order to know what invalid inputs can provide a sensitive information, cryptanalysis
of the algorithm must be made. In the paper [19], there is an example of this kind of
attacks entering invalid elliptic curve points, and, in the work [70], many methods of
error injections via changing physical properties are listed. For instance, one can use
a laser beam or electromagnetic discharger to �ip a bit in memory, or one can use a
microprobe to manipulate signal in buses. The work [4] explore e�cient and practical
methods for fault injections.

When attacking a true random generator, the adversary intends to bias statistic of
the generator. This can be achieved, for an example, by activity of electromagnetic
�eld, or by changing voltage or clocking [41], [10].

2.2.2 Scale regarding the destruction of the device

The scale regarding the destruction of the device is divided to noninvasive (the device
is not destructed at all), semi-invasive (the device is damaged, but it is still bale to
operate), and invasive (the device is destructed, it is not able to perform its function at

4

all). The subjects of the tampering are commonly ASIC, FPGA, µController, CPU, and
their embedded �ues, memories, buses, multiplexers, and registers.

As an example for the noninvasive attacks, there is a timing analysis of CACHE.
In the papers [82], [8], there is CACHE timing model described. This model has been
validate on di�erent implementations of AES. Also electromagnetic emanation anal-
ysis attacks can belong to noninvasive attacks. Computation time analysis of Di�e-
Hellman, RSA, DSS can be found in [36]. The most dangerous remote attack is based
on electromagnetic emanation side channels [47], especially in the case of smart cards
(ECDSA [32]).

The work [70] deals with invasive and particularly by semi-invasive side-channel
attacks. In this type of attacks, the cover of chip is removed usually by an acid, scalpel,
or a laser cutter. Afterwards, buses, or embedded memories can be analyzed. There
are also backtracking imagining techniques which use a light of di�erent wavelength
(UV, X-Ray, IR, sono, laser). Also power consumption side-channel, like correlation
power analysis ([9], [38]) or many fault injection attacks, like di�erential fault injection
analysis ([61]) are very often semi-invasive.

2.2.3 Scale regarding the statistical analysis

The statistical analysis play a big role in side-channel attacks. The statistical analysis
is used to distinguish between possible key hypotheses, and thus reduce the size of the
set of possible keys to a size that can be searched through in a feasible time. Note that
also non-probabilistic analyses have been tried to use, such as, for instance, SVM [27].

2.2.3.1 Simple analysis

In some cases the cryptosystem’s physical behavior leaks so much that the secret can be
guessed using only few signal records (traces). This case happens often for operational
dependences, for example, if the operation and data �ow is driven by values of bits of
the secret. Conditional branching and loops provide the sensitive leakage. Work [19]
contains some examples on simple analyses. Also the cold boot attack [26] is instance
of the simple analysis.

2.2.3.2 Univariate and multivariate analysis without templates

In this case the adversary analyses big number of signal traces. If he/she is guessing
one variable, then it is univariate analysis, and if he/she guesses two or more variables,
it is multivariate analysis. Special instances of multivariate analyses are High-Order
analyses [44] which are used against cryptosystems protected by masking. As example
[40], there are analyses like di�erence of means, distance of means, various correlation
coe�cients, conditional entropies [6], and also another non-probabilistic methods [27].

5

2.2.3.3 Univariate and multivariate analysis with templates

If the adversary can moreover make statistical pro�le of the device performance, we are
talking about pro�ling or template analyses. These attacks are very powerful attacks
[43]. Such attacks use more sophisticated description of the sensitive leakage [71], like
stochastic methods [64], multivariate Gaussian distribution [62], multivariate regres-
sion, and conditional entropy (Mutual Information Analysis – MIA [6]). These attacks,
however, need to have access to the same device (or another instance of the device) be-
fore the attacks are performed, in order to make the statistical pro�le of the leakage
(the templates).

2.3 Steps of Side Channel Attacks

Generic steps of side-channel attacks are expressed in this section. There are four
main steps, namely side-channel analysis, leakage modeling, measurements, and dis-
tinguishing respectively.

2.3.1 Side-channel analysis

The �rst step in side-channel attacks is to �nd the exploitable vulnerability of the cryp-
tosystem. In this step, an adversary collect the most information possible to get, like
information about the cryptographic algorithm, its implementation, the platform it is
implemented on, and also about the environment. This information is then analyzed
in order to �nd weak points which can be misused. Very often it is enough to know the
architecture of the cryptographic algorithm and the architecture of the cryptographic
device. From the knowledge of the architecture, the adversary can �nd registers, which
register a sensitive intermediate result, whose power consumption or electromagnetic
emanation contain a sensitive leakage, or �nd multiplexers which root a sensitive in-
termediate result which can be after fault injection to the multiplexers routed to the
output, or possible vulnerabilities for bu�er over�ow.

The output of this side-channel analysis are some knowledges about what side-
channels provide signal which contains a sensitive leakage, which method can be used
to measure the signals, whether there are methods to e�ectively model the leakage
or exploit the vulnerabilities, what statistical methods can be used for distinguished
between hypotheses.

2.3.2 Leakage modeling

When the leakage point is known. The adversary looks for possibilities how to model
the leakage, and how to reveal the most clear information of the leakage. The model is

6

then used in distinguishing between possible hypotheses about the secret the adver-
sary wants to reveal.

There are two di�erent approaches to model the leakage signal. The adversary
must make the model of the signal assuming all the possible data that can be processed
or all the possible operations that can be performed. The adversary makes the model
for data processing performance if the adversary desires to exploit data dependency,
while the adversary makes a mode for operation performance if the adversary wants
to exploit operational dependency.

The �rst approach is used in the case the adversary has access to the device and
the adversary can control the device so he/she can chose inputs, keys, and output of
the cryptographic device. In this case the adversary will construct statistical pro�le, or
templates, for all the possible data that can be processed or all the possible operations
regarding what he/she wants to exploit. These are template attacks, and they are very
powerful because the model is very precise. Essentially, it neglect nothing.

The second approach is to use a top level common models like Hamming Weight or
Hamming Distance Power Models (HWMP, HDPM). When HWPM is used, the power
consumption is assumed to be proportional to the number of bits set to logic ’1’ of the
processed sensitive variable. However, the HWPM is not su�ciently accurate because,
in reality, the power consumption depends rather on the occurrence of bit transitions.
Therefore, an adversary will probably use the HWPM only if one of the two consec-
utive states of the sensitive variable is not known. Since the power consumption de-
pends mostly on occurrence of transitions at the output of the logical gates, the HDPM
is more accurate.

Table 2.2: Dynamic Power Consumption for Hamming Weight and Hamming Distance
Power Models which are commonly used

HD = 0 HD = 1
HW = 0 0→ 0 1→ 0
HW = 1 1→ 1 0→ 1

Dynamic Power
Consumption:

No Yes

Such models are less precise, because they neglect many factors, like glitches,
length of buses and wires and another kind of parasitic capacitance, combination logic
around, and other noise. The more �tting the model is, the better success rate and
errors achieves the attack. Therefore, if the adversary would have got the hardware
description sources or con�guration �les, EDA tools can be used for modeling at a
lower level with much better �tting. The more the adversary knows about the imple-
mentation, the more �tting model the adversary can produce. In the following text
below, we discuss the most common power models used by adversaries.

7

+
+

-
-

+
-

+
-

+
-1.

2.

3.

4.

5.

6.

Core power suply

Measurement
device

+
-

Low-noise
amplifier

I/O power suply

+ -

Figure 2.1: Various measurement points for power analyses.

Some works claim that 1→ 0 transition can be neglected, since the corresponding
dynamic power consumption is less signi�cant than in the case of 0 → 1. Sometimes
the power model is made so those transitions are weighted. But if the power model is
weight than the attack is going to be considered as a template attack, so maybe rather
than weight the power model, make statistical templates of signal while prepossessing
know data. Power consumption can be inversely proportional to the HW and HD in
many cases, such as in our case of CMOS devices.

Outcome of this step are model or templates for data, which are used to distin-
guishing between possible hypotheses about what data was processed in reality.

2.3.3 Measurements

The next task in a side-channel attack is to measure the signal that contains the sen-
sitive information. This work is focused on power analysis, thus we are talking about
various measurement points for power consumption measurements. The most com-
mon methods are depicted in Fig 2.1.

It holds that the closer to the leakage source the measurements are, the more qual-
itative information is recorded. When measuring the signal containing the sensitive
leakage, it is very crucial to measure the leakage as clear as possible. The quality of
the information involved in the measured signal is expressed by signal to noise ratio

8

(SNR). More about SNR is in [40].
What makes an attack semi-invasive is the method of the measurements. If the

electromagnetic emanation can not be used or the signal is not clear enough, the ad-
versary must get closer to the source. That means that he/she must open the device.
It is possible if the device is not protected by detection of opening and manipulation,
like �ling and signeting of screw holes, �aws, or capacitance and temperature or elec-
tromagnetic sensitivity. However, if the electromagnetic emanation is still not possible
to capture even afterwards the device was opened, for instance, because of the FPGA
shielding, and also when the capacitors (Items 3 and 6 in Fig. 2.1) are shielded, then
the adversary still can decapsulate the cover and use laser cutter to remove the shield,
or �aws, or cut the power supply of the core and connect it to its own spatial circuit to
power supply the core. The special circuit for power supply is designed by the adver-
sary for the special purpose of measuring the power consumption or electromagnetic
emanation of the core. It contains �lters and another magic to measure as clear leakage
as possible. Especially, charging of the certain parts of the circuit of the core is inter-
esting and brings the most clear information. For instance, when sensitive registers
change their state from 0 to 1 on their outputs, the interconnected part of the circuit,
for which this change applies, must be charged. Because the charging must be very
fast, capacitors are used to charge the circuit in the time. Indeed, measurement point
3 and 6 in Fig. 2.1 should are the most information bringing measurement point of the
all measurement points depicted. And that is true.

Output of this step are records of the signal that contain the leakage. The records
should be processed to make them ready for distinguishing. Here comes traces aligning
and noise removing. Then a post-processing method is used to compress traces. The
goal is to have as low number of �nal records as is possible and to gain the most clear
leakage it is possible. Te trace aligning is the most critical. It must be known exactly
where the sensitive operation is performed or data are processed, and according this
point all traces must be aligned. Standardly, trigger signal is used, but the trigger signal
must be also implemented what means the attack active. Further for traces aligning,
detection of certain operations which can slave as a start point, and various signal
processing methods, like Phase-Only Correlation [31] can be used. The most usual
methods for compressing are averaging or computing median on intervals of traces.
From compression of the traces also Principal Component, Cluster, and Discriminant
analyses can be used. Next usual option is to use SNR to identify which parts of traces
can be neglected.

2.3.4 Distinguishing
The �nal step in side-channel attacks is to distinguish between possible hypotheses
about the secret. The hypotheses were made in the step leakage modeling. The dis-
tinguishing is conducted comparing the measured data with the leakage models or

9

templates. The comparison is realized using the chosen analysis (simple, without tem-
plates, with templates). When an attack without templates is performed, the leakage
model is not very �tting, therefore also the comparison will not provide perfect an-
swer. Hence, we rather talk about ordering the hypotheses according the results of
the comparison. The most �tting hypothesis to the measured signal will have the �rst
position, and the worst �tting hypothesis will have the last position. Indeed, the most
�tting hypothesis is the most portable, and the adversary will try the hypothesis as the
�rst. Therefore, we can talk about a complexity of the attack.

The complexity is computed as the number of remaining hypotheses taken to the
account after the side-channel attack distinguishing step. The hypotheses that are
taken to the account are then tried, and it is assumed that in the considered hypotheses,
there is the one that is correct. How many ordered hypotheses to consider is a next
question we deal with in Chapter 5. The next factor for the side-channel attacks is also
success rate.

The success rate means the probability the side-channel analysis provide good an-
swer regarding the complexity. Of course, the more complex the attack is the more it
is successful. Theses two factors, the complexity and the success rate, depend on all
the steps, the chosen side-channel, the leakage model, the measurements, and also on
distinguishing method used.

The outcome of this step is vector of the chosen number of the �rst ordered hy-
potheses. The number is chosen maximizing success rate, but it is limited by available
computation power. The boundary is around 260 nowadays.

2.4 Countermeasures

The goal of each countermeasure is to make the physical behavior independent of the
data processing or operation performing, or to detect a tempering with the device in
order to delete all the sensitive material.

The detection can be made by checking voltage, capacitance, and electromagnetic
�eld, and when a change is detected the reaction is to delete the sensitive data, like key
material. Those are active detections. Passive detection is when the device is protected
by �ling and signeting of screw holes. In this case the attack can be still performed,
but it can be detected.

There are two methods to make the device behavior, like power consumption, in-
dependent of the data processing and operation performing, and those are masking
and hiding.

10

2.4.1 Hiding
The goal of hiding is to make an additional noise or make the power consumption con-
stant. If the intend is to hide the exploitable signal in noise, then a noise generator can
be added, or an additional logic is added in order to produce noise. Another technique
is based on random dummy cycles, or random independent operations performance.
If there is the intend to make the power consumption constant, the Dual Rail Logic
(DRL) [13] can be used. The advantage is that the power consumption is really inde-
pendent of data and operations. The disadvantage is that the power consumption is
constantly maximal. If we would talking about making constant computation time,
the ‘‘for’’ loops must not be interrupted if the results is computed, and the conditional
branching must be made in the way that every branch must take the same time or
power consumption depending on the side-channel. For instance, if all the operations
are performed on all the branches but only the desired output of the certain branches
are taken. More about all the techniques can be found in [40].

2.4.2 Masking
Masking [5] is based on randomizing being processed data in order to randomize physi-
cal behavior of the device (power consumption) and make so the behavior independent
of the data. Random secret mask is applied subsequently step by step to the intermedi-
ate results of the algorithm. Data are masked at the input and demasked at the output.
The output mask is computed from masks which were applied during the algorithm
performance. Secure masking should meet these rules:

1. Mask is secret value that is generated within the device. The value of the de-
masking mask, and the masked values are computed inside the device securely
considering side-channels. All masks, even the demasking one, are secret.

2. A new random mask must be applied at the input to the device, and new random
mask must be applied to the each intermediate result before each next operation.
That means, before registering new state, mask is applied. Data are demasked
only at the output of the device. Thus,the data are demasked only after the �nal
registration, when data are read of the output.

3. Each mask must be independent of the other masks. Every possible input to
a function must be possible to obtain by masking of any possible input of that
function. All the possible masks, and thus also possible masked input values,
must be used with the same probability. Masks must be uniformly generated by
a cryptographic generator.

The most common methods are additive masking, boolean masking [39], and mul-
tiplicative masking [3]. If the masking is applied to data which enters into a linear

11

operation, the masking is easy to implement. However, if the operation is nonlinear,
the masking is not so easily applicable. We will demonstrate this on AES S-box.

y = S(x). (2.1)

If the S-box is implemented as a table-look-up, then 256 di�erent (masked) S-boxes
must be stored in memory, or computed on-the-�y. The mask m will then address the
masked S-box so that

ym = Sm(x⊕m). (2.2)
The masked S-box is constructed as

Sm(x⊕m) = S(x)⊕m. (2.3)

Therefore,
y = ym ⊕m. (2.4)

This approach is not perfect since the Eq. 2.3. Better approach is to use two masks.

ym2 = Sm1,m2(x⊕m1). (2.5)

Sm1,m2(x⊕m1) = Sm1(x⊕m1)⊕m2 = S(x)⊕m1 ⊕m2. (2.6)

y = ym2 ⊕m1 ⊕m2. (2.7)
The multiplicative masking can be demonstrated on the case the S-box is imple-

mented in the logic. The S-box is expressed as y = Ax−1 ⊕ b ∈ GF (28). Using the
multiplicative approach, the S-box can be masked as

ym = A(x ·m)−1 ⊕ b ·m−1, (2.8)

y = ym ·m1. (2.9)
An example of provably secure masking of AES can be found in [63]. In the work [3],
an e�ective method for switching between boolean and multiplicative masking can be
found. Multiplicative masking can be also demonstrated on RSA. At the input of the
decryption algorithm, new mask m is applied on the input message x,

ym = (xme)d mod n, (2.10)

y = ymm
−1 mod n, (2.11)

where e is public and d is private, and m ∈ Z∗n. Exponent d can also be masked.
For masking and hiding elliptic curve cryptography, see comprehensive state-of-

the-art [19], and for a survey of methods for protecting McEliece PKC, consult works
(Repka and Cayrel [54]) or (Repka and Zajac [59]).

12

Chapter 3
Goals

3.1 ImproveCPAof 16-bit IntegerMultiplier in FPGA

The goal is to look at a possibility to guess a constant operand of a 16-bit integer mul-
tiplier in FPGA from generic point of view. This constant operand has been multiplied
by known ordered set of second operands. In order to distinguish between possible
hypotheses about the value of the constant operand, correlation coe�cient should be
used. That means, there are not special analyses or preprocessing techniques, nor spe-
cial side-channel-leakage models used. There is only the classical correlation power
analysis employed. The goal is not to adjust the analysis of the multiplier implementa-
tion to gain the best success rate, and make it appropriate for the one implementation
instance, but rather see such generic attack possibilities.

We can expect more than one HWPM/HDPM key hypothesis remaining after CPA,
even using simulated leakage, since multiplication by a constant is a linear function,
while for an example, if attacking AES S-Box, there should be identi�ed only one key
hypothesis because it is nonlinear function at all. This goal is to look at possibilities
how to improve this kind of attacks to reduce the linear impact by only using the same
traces and the same generic method.

In this linear case, CPA using measured power traces achieves better success rate
than CPA using simulated power traces. Often vulnerability of cryptosystems to this
kind of attacks is approximated by using only simulated power traces. Therefore, it is
valuable to analyze possible errors of approximations based only on simulated data.

Implement an application for measurements & analyses in order to perform CPA
attacks and investigate its properties. This application should be able to control a
measurement device, and a cryptographic device remotely, and it should be able to
automatically perform measurements and analyses. Finally, Propose a countermeasure
against the CPA attack to (EC)DSA.

13

3.2 Timing Fault Injection Analysis of chosen steps
of McEliece PKC

There exits only a few implementations of McEleliece PKC. Many of them bypass the
original proposal of McEliece particularly because of the size of the key pairs. First,
implement the original McEliece PKC [42] with un�xed parameters, which will produce
test vectors for all the important intermediate results and implement a tool for chosen
leakage measurements. Using the implementation of the original McEliece PKC and
the application for leakage measurements & analyses perform timing fault injection
analysis of chosen steps of McEliece PKC.

14

Chapter 4
Methodology

4.1 Analyzed Implementations

Generally, attacking ASICs is harder than attacking FPGAs, and attacking FGPAs is
harder than attacking µControllers or processors. Processors and µControllers are
easier attackable as far as they have symmetric buses of constant length and width.

4.1.1 DSA & ECDSA: 16-bit integer multiplier in FPGA

The sensitive integer multiplication is the multiplication kr, where r is known and k
is the private key. In this work, we call k as the constant operand or key, and we call r

Algorithm 4.1 Digital Signature by ECDSA
Require: Private key k, Message m, Domain parameters (×, G, q).
Ensure: Digital signature (r, s) of the message.

1: Generate randomly and uniformly nonce n, 0 < n < q.
2: Calculate the curve point (x1, y1) = n×G
3: r = (x1 mod q).
4: if r is 0 then
5: GOTO Step 1.
6: end if
7: s = n−1 (Hash(m) + kr) mod q.
8: if s is 0 then
9: GOTO Step 1.

10: end if
11: return (r, s).

15

as the second operand of the multiplication. This sensitive multiplication is performed
in the DSA as well as in Step 7 in the ECDSA (Alg. 4.1).

A 16-bit integer multiplier is implemented in FPGA. The FPGA has further imple-
mented only the necessary functionality for our experiments. The power consump-
tion has been measured during multiplication of k by known ordered set of second
operands. The CPA analysis targets power consumption caused by registers that reg-
ister results of multiplications. It is generally accepted that the power consumption of
registers is linearly dependent on number of 1 → 0 and 0 → 1 transitions. Thus, the
power consumption can be simulated by the HDPM which is better �tting than the
HWPM. However, measured power consumption will be noised by other functionality
of the FPGA, which runs parallel, and also by the environment. Consider now Signal
to Noise Ratio. In our case of analysis, signal consists of dynamic power consumption
caused by the 32-bit registers for multiplication results. The noise signal consists of
dynamic power consumption caused by LFSR (used to generate the known ordered set
of second operands), state machine (used to control data�ow), UART (for communica-
tion), and signal added by environment and measurement.

This implementation was made at the Department of Electronics and Multimedia
Communications, FEI-TUKE, Košice in Bratislava by Michal Varchola et al., and it was
used to achieve desired results which were presented in the work (Repka and Varchola
[57]) ,wherein it is shown that CPA using measured power traces is better than CPA us-
ing simulated traces, the errors of approximation of CPA success rate and complexity
are investigated in Sec. 5.1.4, and �nally the CPA of an integer multiplier was im-
proved eliminating the error of the approximation based on simulated power traces.
Thanks to the imporvement the CPA is more successful and more blocks of the key
can be revealed. The improvement is demonstrated in the work (Repka, Varchola, and
Drutarovsky [58]) on the 16-bit integer multiplier in FPGA.

4.1.2 McElice PKC in 64-bit CPU
The original McEliece PKC proposal is interesting thanks to its resistance against all
known attacks, even using quantum cryptanalysis, of course, in an IND-CCA2 secure
conversion. We made a generic implementation of the original McEliece PKC proposal
(Sec. 5.4), which provides test vectors (for all important intermediate results), and also
in which a measurement tool for side-channel analysis is employed (Sec. 4.4.2). To our
best knowledge, this is the �rst such an implementation. This Calculator is valuable in
implementation optimization, in further McEliece/Niederreiter like PKCs properties
investigations, and also in teaching. Thanks to that, one can, for example, examine
side-channel vulnerability of a certain implementation, or one can �nd out and test
particular parameters of the cryptosystem in order to make them appropriate for an
e�cient hardware implementation. This implementation is available [1] in executable
binary format, and as a static C++ library, as well as in form of source codes, for Linux

16

and Windows operating systems.
Since we have Post-Quantum PKC in the secure cryptosystem property setup [18],

the only possibility how to break this PQ-PKC is via side-channel attacks. Recently,
several side-channel attacks have been published [75, 66, 74, 76, 77]. It is possible to
attack key generator, decryptor, and also encryptor. We stressed only the Patterson’s
algebraic decoding algorithm used in the decryption process. By the tool, secret er-
ror vector, secret permutation, and secret goppa polynomial can be guessed, and the
success rate of the guessing can be evaluated.

This implementation was published in the article (Repka [52]). More about code-
based cryptography and post-quantum McElice PKC can by found in our work (Repka
and Cayrel [54]). For McEliece PKC like cryptosystems, we summarize security in
work (Repka and Zajac [59]).

4.2 Analyzed Devices

4.2.1 Altera DISIPA FPGA board
For the DSA and ECDSA implementation (Sec. 4.1.1) analyses, we used our novel ex-
perimental platform (Fig. 4.1) for measuring power consumption of FPGAs (namely
the Altera Cyclone III). The system provides the following features:

1. Measurement points (Fig. 4.1);

2. EMI shield which protects against electromagnetic pollution;

3. Strong Murata �lters are assembled on a power line in order to minimize noise
from the power supply.

The FPGA and measurement points circuitry have their own chamber in the shield.
All: linear regulators + �lters, con�guration circuitry, input/output circuitry, and the
main Murata �lter have separate chambers as well. Described improvements enhance
signal-to-noise ratio of the leakage, or in other words will reduce the number of traces
needed for a successful DPA attack. We want to get as clean leakage signal as possible
in order to assess the strength of particular countermeasures. We are curious, if sim-
ple (but e�cient) EMI shielding, or the usage of another measurement point causes
otherwise secure DPA countermeasure to be inadequate.

Up to now, we have found that the selection of measurement points matters. The
voltage drop on a series measurement resistor is de�nitely not the best choice. We
found out that the voltage on the decoupling capacitor (Fig. 4.1.c) gives us the best
results.

17

This implementation was made at the Department of Electronics and Multimedia
Communications, FEI-TUKE, Košice in Bratislava by Michal Varchola et al. Performed
analyses using this device was published in (Repka and Varchola [57], and Repka, Var-
chola, and Drutarovsky [58]).

1.2V

LDO
F
I
L
T
E
R

LDOs

FPGA

R1

FPGA

R2

1.2V

LDO

FPGA

C2

C3

1.2V

LDO

FPGA

C4 R4

+

-

AB

C

D

E

F

a) b)

c) d)

Figure 4.1: Schematic diagrams of measurement points in the DISIPA FPGA board.
a) current �ow from a linear regulator to the FPGA; b) current �ow from the power
supply to a linear regulator; c) the voltage on the decoupling capacitor; d) current �ow
from a decoupling capacitor to the FPGA.

18

Evaluation & Management Work Station

Multiplier

Measurement Device

User M
e

as
u

re
d

 S
a

m
p

le
s

M
e

as
u

re
m

en
t

Pa
ra

m
et

er
s

Et
he
rn
et

Figure 4.2: Top-Level Measurement & Attack Setup.

4.3 Measurements & Attacks Setup

The measurement setup is depicted in Fig. 4.2. An user uses notebook as an evaluation
and management work station which is equipped with applications for measurements
and analyses (Sec. 4.4). The workstation manages the whole attack process. It sends
data to the cryptographic device (Sec. 4.2); it also sets up the measurement device, in
our case one of the oscilloscopes in Sec. 4.5; and �nally, it performs the mathemati-
cal part of the analysis, the correlation computations, success rate evaluations, and it
further traces various indicators in various trends as mentioned in Sec. 4.4 and 4.6.
The cryptographic device starts measurements by a trigger signal (Sec. 4.5.3), which
is scanned by the measurement device. Thanks to this, power traces can be easily
aligned.

4.4 Measurement & Analysis Tools

4.4.1 Application for power consumptionmeasurements& anal-
yses

This C++ application can provide comprehensive data for analysis of CPA. It provides
multi-threading features thanks to which conducted analyses are very fast if used on

19

multi core processors. Thanks to the modularity of the application, the application
can be enhanced to future attacks and various leakage models. This application im-
plements also interface for oscilloscope remote controlling, and it is designed to be
used in the measurements & attacks setup in Sec. 4.3. The application is con�gured
using initialization �les with the .ini su�x. The application traces various indicators
in various trends such as listed bellow. The application is designed and developed so
it can measure and process millions of power traces independently of operation mem-
ory of the computer. For instance, when one power trace has 2000 samples (50ns), the
acquisition of 1M of power traces using the oscilloscope LeCroy WavePro 740Zi takes
65 seconds.

4.4.1.1 List of indicators

Correlation coe�cient for the correct key hypothesis. Since the CPA is imple-
mented in this application, the maximal correlation coe�cient is recorded for
the correct key hypothesis separately. This correlation coe�cient is then printed
into the output �le for various trends described bellow.

Di�erence of correlation coe�cients for the correct key hypothesis and incorrect
hypothesis. It is the di�erence of correlation coe�cients for the incorrect key
hypothesis with the maximal correlation and the maximal one for the correct
key hypothesis. This value is than printed into the output �le for various trends
described below.

Order of the correct key hypothesis. Essentially, the correlation coe�cient is used
to order the key hypotheses in the way that the key the most correlated hypoth-
esis is the most probable candidate to the correct key, and thus it has the �rst
position. This value is than printed into the output �le for various trends de-
scribed below.

Time moment with max correlation for the correct key hypothesis.
The correlation matrix can have more columns than only one. Each column
in the correlation matrix is for a time moment (a power trace sample) or time
interval (interval of power trace samples that was preprocessed, for instance av-
eraged). Hence, it is an index of the correlation matrix column in which the
correct key hypothesis achieved the maximal correlation coe�cient. This indi-
cator is traced for various trends.

Success rate of CPA attack. This is relative count of occurrences of the event that
the correct key hypothesis was in the �rstD positions. TheD is called threshold
and can be con�gured as a vector traced of thresholds.

20

Fitness of simulated attack. This application computes all the above trends for mea-
sured as well as for simulated power traces. Success rate of CPA attack di�ers
according to the fact whether simulated power traces or measured power traces
were used. Regarding the fact the simulated power traces are simulations only,
and the measured power traces are the reality, this application record intermedi-
ate values to estimate errors of the �rst and second type, α and β, see Sec. 5.1.4
for de�nitions and more details. Those errors are traced for all the mentioned
trends.

4.4.1.2 List of tracing trends of the indicators

Al the indicators can be recorded with respect to the following variables. These pa-
rameters are con�gured in measurements.ini �le.

Part of power trace. This de�nes the interval of power trace that is considered for
analyses. It is used if the power trace is long, and the sensitive information is only
in the certain interval in the power trace. If we have no knowledge which part
of the power trace it is, we can con�gure the application for analysis of interval
of various length at various positions of the power trace in one turn. This can
be used in order to determine the most valuable part of the power trace. Using
this feature, we found that for the CPA, it is the most valuable to take the whole
cycle when the sensitive intermediate result is registered. This number can be
con�gured as a start, step, and stop value.

Length of preprocessing interval. This value determines number of intervals to
which the considered part of the power trace is divided. These intervals are then
represented by an average value of each interval. The measurements can be con-
�gured to analyze various lengths of preprocessing intervals in one turn. Using
this trend we found that, for the CPA, it is the best to averaged the power trace
of the whole cycle within which the sensitive intermediate result is registered.
This number can be con�gured as a start, step, and stop value.

Number of power traces. Using this parameter, one can con�gure how many power
traces to record for an attack. This number can be con�gured as a start, step, and
stop value.

Vector of thresh holds. This is the vector of thresholdsDi. The success rate α and β
are computed according to these thresholds. It is tested whether the correct key
hypothesis index is less than these thresholds. These thresholds than provide
view of complexity of the CPA attacks because, essentially, it is a number of
ordered key hypotheses that must be take to the account after the CPA. It is
because the correct key hypothesis is on the �rst position very rarely, therefore

21

we must consider more ordered key hypothesis in order to have the correct key
hypothesis between them.

4.4.2 Application for time measurements & analyses

This measurement tool is the side-channel leakage measurement tool Repka [52] em-
ployed in the Patterson’s algebraic decoding algorithm (Alg. 5.5). As we mentioned
above, using the tool, secret error vector, secret permutation, and also the secret goppa
polynomial, can be possible to guess. Moreover, power consumption and electromag-
netic emanation leakages can be simulated using the measured data provided by this
tool.

4.4.2.1 Measurement Type 1

This measurement type records average computation time, standard deviation of the
computation time, and if applicable, average values and standard deviations of Ham-
ming Weights and degrees of polynomials processed, and steps performed, during Pat-
terson’s algebraic decoding algorithm de�ned in Alg. 5.5. The purpose is to measure
these Indicators (Tab. 4.1) dependency on HW(e), see Tab. 4.3. Hence, output �le
of this measurement type is composed as follows. As the �rst column there is the
HW(e) growth according to that Indicators are recorded. Since there is a possibility to
make such record for many random key-pairs, for the next key-pair there is the next
such record separated by empty row. As the last data in the measurement �le, sum-
marization over all the key-pairs is placed. At the beginning of measurement �le the
measurement setup, such as stated in Tab. 4.2 is placed.

The average values and the standard deviations are computed from nTests encryp-
tions. The measurement �le contains nRandKeyPairs measurement records, each for
one random private key. Examples can be found in graphs depicted in Fig. 5.7 and 5.8.
Optionally, also the test vectors can be stored in the disk as a text �le.

4.4.2.2 Measurement Type 2

This second measurement type is designated to measure Indicators (Tab. 4.1) depen-
dency on secret goppa polynomial (Tab. 4.4). Corresponding to each information about
goppa polynomial, Indicators are measured. If moreover dependency on secret permu-
tation is desired to measure, then the �ag is_storeKeys must be set to 1. Output �le
of a measurement of this type is composed as follows.

At the beginning of the �le, the measurement setup is presented. The measure-
ment setup is arranged in the Tab. 4.2. Regarding the measurement setup, afterwards,
information about goppa polynomials (Tab. 4.4), HW(e) (Tab. 4.3), and the measured
Indicators (Tab. 4.1) are stored form left to right respectively. Thus, for each goppa

22

polynomial there is a row, which displays also step-by-step HW(e) and indicators for
each i ∈ [min(HW(e)),max(HW(e))] according the measurement setup.

Such as in the measurement type 1, the average values and the standard deviations
are computed from nTests encryptions. The measurement �le contains nRandKeyPairs
measurement rows, each for one random private key. Some examples in form of graphs
can be seen in Fig. 5.9, . . . , 5.14. Optionally, also the test vectors can be stored in the
disk as a text �le.

4.5 Measurement Devices
Measurement devices and probes used are listed in this section. The measurement
devices and probes listed here were used for power consumption and electromagnetic

Table 4.1: Measurement Type 1: Indicators measured to perform side-channel attacks,
and determine where the leakages occur. Examples in form of graphs can be found in
Fig. 5.7 and 5.8.

Item/Column number Step of Alg. 5.5 Indicators:
avg(.),
std(.)

Object

1, . . . , 6 1. computation
time, deg,
HW

S(Z)

7, . . . , 12 2. computation
time, deg,
HW

T (Z)

13, . . . , 18 3. computation
time, deg,
HW

τ(Z)

19, 20 4. computation
time

EEA

21, . . . , 24 4. deg, HW α(Z)

25, . . . , 30 5. computation
time, deg,
HW

σ(Z)

31, 32 6., 7., 8. computation
time

e construction

23

Table 4.2: One measurement �le header for measurement setup.

Value Description
m F2m

t deg g(Z)

nRandKeyPairs Number of randomly generated
key-pairs

nTests Number of random messages per
key-pair and HW(e)

min(HW(e)) Start HW(e)

max(HW(e)) End HW(e)

Table 4.3: Information recorded about secret error vector.

Item/Column number Value

1 HW(e)

2, . . . , n+ 1 [e]2

Table 4.4: Measurement Type 2: Information recorded about secret goppa polynomial
in order to measure success rate of an attack. Examples in form of graphs can be found
in Fig. 5.9, . . . , 5.14.

Item/Column number Value

1, . . . , (t+ 1) g0, . . . , gt

(t+ 2) , . . . , (2t+ 3) HW(g0), . . . ,HW(gt)

(2t+ 4) HW(g(Z))

24

emanation signal acquisitions.
The time side channel was measured on computer platform by using certain in-

structions for CPU cycles counting for particular processor. The generic CPU Tick
Measurement Library [20] was used.

4.5.1 List of Oscilloscopes

During measurements, the smart, embedded, acquisition memory of the listed oscillo-
scopes in sequence mode was used. Thanks to this acquisition memory, we were able
to achieve very fast signal acquisitions, for instance, when one power trace has 2000
samples (50ns), the acquisition of 100K power traces using the oscilloscope LeCroy
WavePro 740Zi takes 6.5 seconds.

LeCroy WavePro 7200A equipped with 8-bit A/D converter, 2GHz bandwidth, 20GS/s
sample rate, and 10M points in acquisition memory. This device was used to mea-
sure power consumption of FPGA ACTEL FUSION M7AFS600 as voltage drop
on resistor placed on power supply of FPGA core. The probe used was active dif-
ferential voltage probe (Repka, Gaspar, and Fischer [55]). This device was also
used to measure power consumption on the ground of µControler PIC18F2520
using passive voltage probe (Repka [50]).

LeCroy WavePro 740Zi equipped with 8-bit A/D converter, 4GHz bandwidth, 40GS/s
sample rate, and with extended acquisition memory to 128M points. This device
was used to measure power consumption of FPGA ACTEL FUSION M7AFS600
as well.

AGILENT INFINIIUM DSO9404A equipped with 8-bit A/D converter, bandwidth,
20GS/s sample rate, and 10M points acquisition memory. This device was used
to measure of power consumption as voltage on the decoupling capacitor (Fig.
4.1.c) placed on power supply of the FPGA ALTERA Cyclon III core. The probe
used consisted of coaxial cable as passive voltage probe (Sec. 4.2.1).

4.5.2 List of Probes

Here is the list of probes which were used during measurements performed. We list
probes, their connection, and their e�ectiveness as well.

Passive voltage probe on the ground of µControler PIC18F2520 (Repka [50]). This
is the most noised measurement point, since the ground is shared. This mea-
surement technique would not work properly for hardware platform.

25

Active di�erential voltage probe connected to the resistor placed in power supply
of FPGA core, and other measurement points (Repka, Gaspar, and Fischer [55]).
This is very good, but not the best, measurement point. The signal must be
ampli�ed by good quality low noise ampli�er what makes this measurement the
most expensive.

Spot, passive electromagnetic probe which was placed over FPGA core (Repka, Gas-
par, and Fischer [55]), essentially over the part of the FPGA where the sensi-
tive operation is performed. Measurements by this electromagnetic probe can
achieve signi�cantly better quality of acquisition of signal containing the sensi-
tive information than the active di�erential voltage probe connected to resistor,
but there must be known exact place where the sensitive operation is placed in
the FPGA surface to focus the probe exactly to this place. We focused this probe
to the embedded RAM memories of the FPGA.

Coaxial cable as a passive voltage probe to measure voltage on the decoupling ca-
pacitor (Fig. 4.1.c) placed on power supply of FPGA (Sec. 4.2.1). This is the best
measurement point at all. However, there is very important to use certain capac-
itor. There is possibility use more capacitors of certain characteristics and place
them in certain positions to achieve better acquisition of signal containing the
sensitive information. This measurement method was used for the 16-bit integer
CPA performed in (Repka and Varchola [57]) and improved in (Repka, Varchola,
and Drutarovsky [58]).

4.5.3 Triggering the Signal Recording

There are two possibilities where to trigger an oscilloscope to start recording a signal.
One possibility is to trigger before the operation is performed and the second one is to
trigger afterwards the traced operation is performed. We trigger before the operation
is performed.

The reason why we decided to trigger before the operation performance is that if
the trigger signal was after the operation performance, there would be needed shifting
the timebase to the right. When shifting the timebase to right, the fast acquisition
memory of the oscilloscope is used what signi�cantly reduces the memory available for
the sequence mode of measurements. The acquisition memory is very expensive, and
thus its size is strictly limited. Therefore, in order to have as much acquisition memory
available for the measurements as possible, the trigger signal was placed before the
traced operation performance. In this case, the trigger signal must be delayed because
the trigger signal has non negligible impact to the measured signal that is intended to
be used in the attack. Thus, it is important to wait a while to measure as clear signal as
the signal is not a�ected by the trigger signal. If the measured signal was a�ected by

26

the trigger signal, the recored signal would have to be averaged as the impact of the
the trigger signal would be removed.

4.6 Performed Analyses

4.6.1 CPA of the 16-bit integer multiplier in FPGA

In Sec. 5.1 and 5.2, where CPA attack against DSA & ECDSA is analyzed and improved,
we are attacking actually only one integer 16-bit multiplier (Sec. 4.1.1). The integer
multiplier is implemented in the DISIPA FPGA board (Sec. 4.2.1). Further in that sec-
tions, we approximate the attacks complexities and success rates for N blocks of key,
and errors for approximations using simulated attacks. Also the attack is signi�cantly
improved. The analyses preformed were conducted using oscilloscope AGILENT IN-
FINIIUM DSO9404A (Sec. 4.5.1) in measurement & analyses setup in Sec. 4.4, by using
the C++ application for power consumption and electromagnetic emanation measure-
ments & further analyses described in Sec. 4.4.1.

Let xM denotes a vector of M known di�erent second operands. Hence, we have
M second operands known and we know the order they were processed. By xm, we
will denote the m-th 16-bit second operand.

By LM,T , we will denote matrix of power traces, where m-th power trace lm,∗ con-
sisting of T samples corresponds to processing of the m-th second operand.

While the device is being processing data, the device is emitting some extra (leak-
age) information through its physical behavior dependent on the data it is processing
and operation it is performing. The leakage-information can be for example sound,
light (photon emission), computation time, not only the power consumption of the de-
vice. Therefore, the multiplication process is not only ym = MULT(xm, k), but rather

(ym, lm,∗) = MULT(xm, k), (4.1)

where lm,∗ is a leakage that is the power consumption in our case.
The �rst step of our CPA attack is to choose the leakage point of the implemen-

tation, to which a hypothetical power consumption will be made. Essentially, we are
focused at the power consumption of ym registration.

The second step of our CPA attack is to collect data important to reveal the key.
Hence, we must measure the power consumption of the cryptographic device while
it processes di�erent second operands xM . Since we are using HDPM, it is important
to know order in which the second operands was processed. Next, CPA attack needs
to have the power traces aligned. We used a trigger signal that starts power traces
recording at the start of the multiplication. Power traces are then aligned according to
the trigger signal.

27

The next step of the attack is to calculate hypothetical multiplication results for
every possible choice of the key - the constant operand. Therefore, we obtain matrix
HM,K , where K is the number of possible values for key. Thus, in the matrix, each
row is for each second operand, and each column is for each possible value of the key.

hm,k′ = MULT(xm, k
′), (4.2)

where k′ is a hypothesis to the real k, and hm,k′ is thus hypothesis to the real result of
the multiplication. The number of possible hypotheses k′ is K .

The next step of our CPA attack is to compute hypothetical power consumption
PM−1,K according the hypotheses HM,K , where

pm,k′ = HD (hm,k′ , hm+1,k′) . (4.3)

The matrix PM−1,K contains one row less because of the power model used (Eq. 4.3).
There are many possibilities of power models (HWPM, HDPM, bit power model, zero
value power model, and at the lower level, one can use di�erential equations). The
lower level of the power model, the precision of the power model is better, but the more
information and greater computational power is needed. In our case, we used HDPM.
Note that we desire to approximate complexity of this kind of attacks in generic sense.
For the approximations, we used only one 16-bit multiplier, and according the results,
we approximated complexities and successes of attacks against key consisting of N
16-bit blocks, and relevant errors of thees approximations based on simulated power
traces are approximated also.

Now the leakage signal must be compared to the hypothetical power consumption.
In our case, we used a compression method to compress the matrix LM,T to vector lM .
We simply computed average value for each row lm,∗ of the matrix LM,T. The vec-
tor lm,∗ contains only samples measured during the multiplication result registration
clock. Therefore each row lm,∗ is represented by average value lm = avg(lm,1, . . . , lm,T).
This also improves the success rate of the attack, since neighborhood samples in the
power traces are correlated. In order to �nd which of the key hypotheses is correct,
we must compare the hypothetical power consumption to the measured one. As the
comparison method, we used the Pearson’s Correlation Coe�cient. Note that accord-
ing to the power model used (Eq. 4.3), the matrix PM−1,K contains one row less, and
one m-th row of that matrix corresponds to the (m + 1)-th element of the vector lM .
Hence, the correlation is computed as:

rk′ = ρ (p∗,k′ , (l2, . . . , lM)) . (4.4)

After the comparison, we obtain a correlation vector rK . According to this correlation
coe�cients, we will order the key hypotheses in our attacks. Recall that we know that
the correlation is negative in our case. Therefore, the key hypothesis with the maximal

28

Algorithm 4.2 Fault injection & timing analysis of the McEliece PKC key decryption
(Alg. 5.4).
Require: Ciphertext y, number of errors t, length of codeword n, boundary ε.
Ensure: The guess to e.

1: timeref = measure_time (decrypt(y))
2: for i = 0; i < n; i+ + do
3: yi = y ⊕ to_bin_vector (2i)
4: timei = measure_time (decrypt(yi))
5: if (timei < (timeref − ε)) or (timei > (timeref + ε)) then
6: timei =∞
7: end if
8: end for
9: ordered_time_vec = ascending_order_regarding_time

(
(timei)0≤i<n

)
10: e = take_first_t_indexes_i(t,ordered_time_vec)
11: return e

negative correlation coe�cient we assume to be the most probable and it thus has
the �rst position. The key hypothesis with the second maximal negative correlation
coe�cient has the second position. In our case, we have correlation vector since the
compression of the power traces, but in a case a correlation matrix would have more
than one column, for each key hypothesis only the maximal one is considered.

4.6.2 Fault injection & timing analysis
This method to attack McEleice PKC, can be used to reveal messages, and some times
also to reveal the secret permutation, depending on the certain implementation of the
PKC. The notation used here is de�ned in Sec. 5.4. This attack is based on the idea
that decryption of cipher text, which has normally t errors, is faster if it has less than
t errors. The algorithm for this attack is listed in Alg. 4.2. This attack is focused on
the McEliece PKC key decryption (Alg. 5.4), and it can reveal value of the error vector.
The parameter ε is here to reduce false positives. To prefrom this attack the embed-
ded leakage measurement tool can be used. This tool is demonstrated. We analyzed
computation time regarding the error vector hamming weight of chosen steps of the
decryption process in 5.5. Then we focused on the EEA step for solving the key equa-
tion. The computation time analysis of this step of the decryption was improved 5.6.

29

30

Chapter 5
Results

5.1 CPA Attack against DSA & ECDSA

5.1.1 Related work & our contribution

In work [32], attack against ECDSA implementation in passive RFID is performed. The
ECDSA implementation is based on 163-bit Elliptic Curve, and the sensitive multipli-
cation is performed using a 16-bit integer multiplier. They demonstrate revealing of
the �rst 2 16-bit blocks of the one chosen secret constant operand d (private key) that
is denoted as key or k in our work. The attack is aimed against Step 5 in the Algo-
rithm 1 (Signature-generation scheme using ECDSA) listed in their work (it is Step 7
in the ECDSA (Alg. 4.1) in our work. The attack is especially aimed against the integer
multiplication dr, where r is known to an adversary (it is public) and d is a private key.

In many works dealing with SCA, often one key is chosen and revealed, many times
it is only a part of the key. In this work, we randomly and uniformly generated 665 16-
bit keys and tried to reveal them. We used measured as well as simulated power traces
using Hamming Distance Power Model. Based on these results, we estimated success
rate and complexity of the attack. The complexity is represented by remaining key
hypotheses after the CPA attack in both cases (measured and simulated power traces).
We also estimated complexity and success of CPA attacks revealing 1 ≤ N ≤ 21 16-
bit blocks of the key. We performed these attacks on FPGA, and note that attacking a
processor or µcontroller can be less complicated than attacking FPGA or ASIC.

Moreover, we improved this attack using second CPA with di�erent, but still generic,
HDPM. While, after the �rst CPA, it was possible to reveal 21 16-bit blocks (336-bit)
of the key with good probability and feasible complexity, afterwards the second CPA,
it is possible to reveal 23 16-bit blocks (368-bit) of the key with good probability and
feasible complexity. Finally, possible e�cient countermeasure is discussed at the end
of this work.

31

0 1 2 3 4 5 6 7 8 9 10 11 12

200

250

300

350

400

450

500

550

600

650

700

227

378

508

566

612
636

650
660 664 665 665 665 665

233

371

477

538

588

617
640

651 659 663 664 665 665

Order D of the correct key hypothesis

A
bs
ol
ut
e
co
un

ts
of

ke
y
gu

es
ss

uc
ce
ss
es

After 1st CPA using trcs
After 1st CPA using sims

Figure 5.1: Success rates of the 665 CPA attacks using measured power traces (red),
and simulated HDPM traces (blue), regarding D - max number of the key hypotheses
taken to account after CPA.

5.1.2 Attack complexity & success for one 16-bit block of the
key

CPA attacks are aimed against registers for multiplication results (four 8-bit registers).
4096 16-bit LFSR subsequent states was multiplied by the k step by step. We know
order of results, thus we can compute HDs of previous and actual results giving us
number of 0 → 1 and 1 → 0 transitions in the result register in time. Hypotheti-
cal power consumption for all possible key hypotheses are made by computing HDs
of subsequent hypothetical results of multiplications of all the 4096 LFSR states by
possible keys. These hypothetical power consumptions are correlated to both mea-
sured power-consumption and simulated power traces (just the HDs) afterwards. As
an outcome, the correlation vector lM is obtained. Then next step is to order the key
hypotheses according to the correlation coe�cients. We exploited the fact that we
have negative correlations.

The question is how many key hypotheses take at least to account to reveal the
key after CPA. We will denote this number as D. Recall, we want to show how it can
be dangerous to estimate this number by considering simulation only. The correct key
hypothesis has thus index 0 ≤ i ≤ D after the CPA attack using HDPM simulated
traces. Let j be the index of the correct key hypothesis in reality (using power traces).

32

2 4 6 8 10 12 14 16 18 20 22 24
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Complexity 257.06

Complexity 260

Complexity 258.95

Complexity 241.79

Complexity 238.77Complexity 218.58

Number N of 16-bit blocks of key

Es
tim

at
ed

pr
ob
ab
ili
ty

of
su
cc
es
s

trcs: D = 4; trcs: D = 5; trcs: D = 6; trcs: D = 7; trcs: D = 8
sims: D = 4; sims: D = 5; sims: D = 6; sims: D = 7; sims: D = 8

Figure 5.2: Estimation of CPA attacks complexity and success rate against N 16-bit
blocks of k using measured (red) and simulated (blue) power traces after 1st CPA.

From the Fig. 5.1, it can be clearly seen that j ≤ D with better probability than i ≤ D.
It means that attack using measured power traces achieves better success rate than
attack using simulated power traces. If we took 10 �rst key hypotheses (D = 9) ordered
according to correlation coe�cients, the real attack would have success in 100%, while
when simulated power traces are used, it is 99.7%. If we took 5 �rst key hypotheses,
the attack would succeed in 92.03, and 88.42%, respectively.

5.1.3 Attack complexity & success estimation for N key blocks
Since we can look at revealing of N 16-bit blocks of the key as on independent trials,
we can write:

P (i1 > D, . . . , iN > D) = PN(i > D), (5.1)

Therefore, also the complexity can be computed as:

Complexity = (D + 1)N (5.2)

According to the results, one can try to estimate power of the attack in terms of
complexity (number of the key hypotheses remaining after CPA, the D) and success
probability of the attack. We will do this for both simulated power traces and measured

33

one in order to see the di�erence between the estimations. Up to now, we attacked one
16-bit block of k. Based on this results, we are going to estimate attack possibilities to
reveal N 16-bit blocks of k.

We bound these estimations. The probability of attack success must be greater than
0.5 and the complexity of the attack must be less or equal to 260.

The estimation is shown in Fig. 5.2. We can see that if the �rst 5 key hypotheses are
taken after CPA against each block of the key (D = 4), the estimation using simulated
power traces says that 5 blocks of the key can be guessed, while estimation using
measured power traces shows that 8 16-bit blocks of the key can be guessed. In case of
D = 5, 9 and 15 blocks of the key can be revealed for simulated and measured power
traces respectively. IfD = 6 (number of remaining hypotheses after CPA against each
block of the key is 7), the estimation based on the simulation indicate that 17 blocks
of the key can be revealed, and based on the measured power traces, it is 21. For
D = 7, the di�erence between estimation based on simulations and measurements can
be observed in the success rate. In the case of simulation, the estimated probability of
success is around 0.65, while, in the case of measured power traces, it is approximately
0.86. In both cases 20 16-bit blocks of the key are predicted to be possible to reveal. If
9 �rst key hypotheses are considered after CPA against each block of the key (D = 8),
the estimation using simulation indicates estimated probability 0.85. In the case of
measured power traces it is close to 1. Here, 18 blocks of the key are indicated in both
cases.

This result was published in (Repka and Varchola [57]).

5.1.4 Errors of simulated CPA attack
In order to show relevant error of the approximations of the attacks using HDPM sim-
ulated power traces, we performed analysis based on the following formulated hy-
potheses:

De�nition 5.1.1 (HypothesisH0:). It is enough to takeD �rst key hypotheses ordered
regarding the correlation coe�cient. The correct key hypothesis has thus index 0 ≤
i ≤ D after the CPA attack using HDPM simulated traces.

De�nition 5.1.2 (HypothesisH1:). It is not enough to take theD �rst key hypotheses,
and thus D < i < K .

The H0 is not rejected correctly if 0 ≤ i ≤ D when H0 is true in reality.

De�nition 5.1.3 (Reality:). As the reality, CPA using power traces are considered.
Hence, let j be the index of the correct key hypothesis in the reality.

Probability that H0 is rejected:

P (i > D) = P (i > D, j ≤ D) + P (i > D, j > D), (5.3)

34

1 2 3 4 5 6 7 8 9 10 11 12
−5 · 10−2

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.46

0.31

0.18

0.13

8.17 · 10−2

5.35 · 10−2

2.77 · 10−2

1.52 · 10−2
9.04 · 10−3

3.01 · 10−31.5 · 10−3 0

0.25

0.39 0.39

0.47
0.49

0.52
0.53

0.2

0 0 0 0

0.16
0.18

0.14
0.11

7.52 · 10−2

5.11 · 10−2

2.71 · 10−2

1.5 · 10−2
9.02 · 10−3

3.01 · 10−31.5 · 10−3 0

Order D of the correct key hypothesis

Es
tim

at
ed

pr
ob
ab
ili
ty

α
β
Error E

Figure 5.3: Estimation of α, β, and probability of E, for 16-bit key for various D.

P (i > D, j ≤ D) = P (j ≤ D)P (i > D | j ≤ D), (5.4)

P (i > D, j > D) = P (j > D)P (i > D | j > D). (5.5)
Probability that H0 is not rejected:

P (i ≤ D) = P (i ≤ D, j ≤ D) + P (i ≤ D, j > D). (5.6)

This probability (Eq. 5.6) is depicted in absolute values as sim in Fig. 5.1.
Regarding the hypotheses de�ned, the two types of error can be made. The type

one, α, and two, β, errors:

α = P (i > D | j ≤ D), (5.7)

1− α = P (i ≤ D | j ≤ D), (5.8)

β = P (i ≤ D | j > D). (5.9)

1− β = P (i > D | j > D). (5.10)

An approximation of both α and β errors is depicted in Fig. 5.3.
Type one error, α, means probability that in each case measurements success, the

simulation fails. This error could be dangerous because we could say D is not enough

35

2 4 6 8 10 12 14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number N of 16-bit blocks of key

Es
tim

at
ed

pr
ob
ab
ili
ty

of
E

trcs, D = 4
trcs, D = 5
trcs, D = 6
trcs, D = 7
trcs, D = 8

Figure 5.4: Estimation of probability of E for N 16-bit blocks of the key for various D.

yet for an attack, but in reality, when power traces are used, the D would be enough
still. This could cause that, according the simulation, the complexity and success rate
would looks more complicated as it is in the reality.

Type two error, β, means probability that in each case measurements fail, the sim-
ulations successes. Actually, this is not a crucial error for us in this work because we
are trying to limit the worst case of the attack. In this situation we do not mind that
simulation says that the attack will success for the D still but in reality D is too small
because regarding this error we would secure the cryptosystem more than it is impor-
tant, and this error is not so crucial as the α. For this reason, we stress only α in this
paper.

De�nition 5.1.4 (Relevant Error E:). As the relevant error, we consider error that is
in�uenced by the error of the �rst type only.

The probability of occurrence of this error is

P (E) = P (i > D)− P (i > D, j > D), (5.11)

and its estimation is depicted in Fig. 5.3.
Now we are going to estimate this kind of error for guessingN 16-bit blocks of the

key. We denote this error as EN . It is event that we are wrong in rejecting H0 at least

36

0 1 2 3 4 5 6 7 8 9 10 11 12

200

250

300

350

400

450

500

550

600

650

700

227

378

508

566

612
636

650
660 664 665 665 665 665

233

371

477

538

588

617
640

651 659 663 664 665 665

346

501

579

621
641

651 660 663 664 665 665 665 665

348

504

576

620
643 652 660 663 664 665 665 665 665

Order D of the correct key hypothesis

A
bs
ol
ut
e
co
un

ts
of

ke
y
gu

es
ss

uc
ce
ss
es

After 1st CPA using trcs
After 1st CPA using sims
After 2nd CPA using trcs
After 2nd CPA using sims

Figure 5.5: Demonstration of the improvement on results of guessing 665 randomly
and uniformly generated 16-bit keys.

in one 16-bit block of the key. We can look at this problem as independent trials (Eq.
5.1). Therefore, we can write:

P (EN) = PN(i > D)− PN(i > D, j > D). (5.12)

The estimation of this probability is depicted in Fig. 5.4. For instance, if we were
securing the multiplier regarding the simulated power traces in case of D = 6 where
336-bit key can be guessed, we would wrongly reject H0 in more than 55%. It means
that, regarding the simulations, it would seem that the attack is more complex and less
success than it is in reality with probability more than 0.55.

5.2 Improving the CPAAttack against DSA& ECDSA

From the results above (Fig. 5.1), we know that if we take 10 �rst key hypotheses (D
= 9), the attack will success in 100% for measured power traces. In order to improve
the attack (see Fig. 5.5), we took the �rst 10 key hypotheses ordered according to
the correlation coe�cient after the CPA (blue marks) in both cases (measured and
simulated power traces), and performed second CPA attack (red marks) in order to
reorder the �rst 10 key hypotheses. In the second CPA attack, we made HDPM only

37

2 4 6 8 10 12 14 16 18 20 22 24
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Complexity 257.06

Complexity 260

Complexity 258.95

Complexity 259.45

Complexity 241.79

Complexity 238.77Complexity 218.58

Number N of 16-bit blocks of key

Es
tim

at
ed

pr
ob
ab
ili
ty

of
su
cc
es
s

1st CPA: D = 4; 1st CPA: D = 5; 1st CPA: D = 6; 1st CPA: D = 7; 1st CPA: D = 8

2nd CPA: D = 4; 2nd CPA: D = 5; 2nd CPA: D = 6; 2nd CPA: D = 7; 2nd CPA: D = 8

Figure 5.6: Estimations of attack complexity and probability after the second CPA
(black markers) in comparison with the estimations after the �rst CPA (gray mark-
ers).

to the vector of the 16 least signi�cant bits of the possible result of multiplication:

pm,k′ = HD (LSB0...15(hm,k′),LSB0...15(hm+1,k′)) , (5.13)

where the hm,k′ and hm+1,k′ are hypotheses to the multiplication results regarding the
key hypothesis k′. The new order of the 10 �rst key hypotheses brought signi�cant
improvement as can be seen in Figs. 5.5 and 5.6, respectively.

In the Fig. 5.5, we can see that we were successful in more attacks after reordering
the 10 �rst key hypotheses after the second CPA. We can also see that the success
for the simulated power traces was improved into the success level of the measured
power traces. Actually, now it is slightly better than success rate for the measured
power traces. Hence, now there is a negligible deference for D in case of measured
and simulated power traces.

When we look at the guessing of N 16-bit blocks after the second CPA attack (Fig.
5.6), we can see the brought improvement since, now, 368-bit (N = 23 16-bit blocks)
of the key can be guessed with approximated probability 0.613 and complexity 259.45

(D = 5), while after the �rst CPA, only 336-bit (N = 21 16-bit blocks) could be guessed
with probability 0.62 and complexity 258.95 (D = 6). It means that, after the second
attack, only the �rst 6 key hypotheses, instead of 7, for each block of the key can

38

Table 5.1: Di�erence between probability of success and complexity of the attack after
1st and 2nd CPA. Data in this table is mentioned only for the most complex attack. Note,
the max complexity was bounded by 260. For more information about the di�erence,
see Fig. 5.6.

Key size After 1st CPA After 2nd CPA
[bits] Probability Complexity Probability Complexity
368 NA NA 0.613 259.45

352 NA NA 0.626 256.89

336 0.619 258.95 0.853 256.95

320 0.856 260 0.941 260

304 0.866 257 0.944 257

288 0.973 257.06 0.973 257.06

be taken in order to reveal the whole key with higher probability of success and less
complexity.

We can see an improvement in success rate or complexity also for other cases. For
instance, when D = 4, 8 16-bit blocks has been improved to 18 blocks (288-bit) of
the key with complexity 241.79. Further, when D = 6, the probability of success was
improved from cca 0.61 to 0.86. For D = 7 the success rate was improved from cca
0.86 to 0.94. The success rate for D = 8 was not improved signi�cantly.

This result was published in (Repka, Varchola, and Drutarovsky [58]).

5.3 Countermeasure against the CPA Attack against
DSA & ECDSA

This CPA needs to have the secret operand constant and to now some second operands
of the multiplication. One possible countermeasure to thwart this attack, which does
not need special countermeasures, such as hiding (dummy cycles, noise generator,
dual-rail-logic [13]) or masking (boolean, multiplicative [2]), is to use the nonce n (the
per message randomly and uniformly generated number) to mask the key as follows
(Repka, Varchola, and Drutarovsky [58], Varchola et al. [78]):

s = n−1Hash(m) + k
(
n−1r

)
mod q. (5.14)

Before the private key is multiplied by known r, the r is multiplied by the inversion of
an unknown nonce. In order to make these attacks impossible, Step 7 in the ECDSA
(Alg. 4.1), must be replaced by Eq. 5.14.

39

The second option can be to multiply the private key by the nonce, but this would
be not e�ective enough, because the same nonce would be used in both n−1Hash(m)
and n−1k, and therefore if some bits of the hash value would have the same value as
bits the private key, the power consumption of multiplication those blocks with the
equal bits would correlate. If moreover the hash value can be chosen by adversary, the
adversary can then reveal the private key, but this time across another leakage.

The cost of this countermeasure is one more multiplication by the inversion of the
nonce. This countermeasure is e�ective since the nonce is random and not public,
thus it is not known to the adversary, and this countermeasure is e�cient because it
costs only one more multiplication and not other special logic, such as in case of an
additional masking and hiding.

5.4 Implementation of the Original McEliece PKC
This implementation was published in (Repka [52]). More about code-based cryptog-
raphy and post-quantum McElice PKC can by found in our work (Repka and Cayrel
[54]). For McEliece PKC like cryptosystems, we summarize security in work (Repka
and Zajac [59]).

5.4.1 Related work & our contribution

We implemented the most generic original McEliece PKC proposal in order to make
the PKC more available. The adjective generic has been achieved using the Number
Theory Library (NTL) [69], and the generic CPU Tick Measurement Library [20]. Our
implementation is called the McEliece PKC Calculator, since no parameter is �xed in
this implementation, and test vectors for all the important intermediate results (for
all appropriate m and t in limits of hardware and NTL) can be provided for any: en-
cryption, decryption, or key generation. Thanks to the NTL, the Calculator is easy to
understand, use, and modify, since the standard NTL functions, input, and output, are
used. Therefore, if a key-pair not generated by the Calculator is desired to be used
by Calculator, it is not a problem, it must be just formated accordingly. Moreover, a
measurement tool for side-channel analysis has been employed, which test vectors can
be also recorded for. Using this tool, timing leakage can be measured, and using the
measured data, it is also possible to simulate power-consumption and electromagnetic-
emanation leakages. The CPU Tick Library allows to measure CPU Ticks on di�erent
families of processors, and operation systems. To our best knowledge, this is the �rst
such an implementation. Although, there exist several implementations, like [75, 17,
72, 12, 29], of the original, and derived, schemes on hardware, embedded, and also on
a computer platform. However, parameters are �xed, no test vectors are provided, or
no tool for the side channel analysis is employed. The Calculator can be used in the

40

PKC implementation optimization, and further McEliece/Niederreiter like PKCs prop-
erties investigation, as well as in proper key-pairs generation. The Calculator can be
also used in proper parameter choice for a hardware implementation, and the leakage-
measurement tool can provide information on side-channel vulnerabilities. Descrip-
tion of the implementation details follows.

5.4.2 Binary irreducible Goppa codes for the McEliece PKC
Goppa codes was invited by Goppa [24]. In the original McEliece PKC proposal, ran-
dom instances of a binary irreducible Goppa code with maximal length are employed.
These codes are proposed to be corrected by the Patterson’s algebraic decoding algo-
rithm (Alg. 5.5).

Let F2m = F2[X]/m(X) be the �nite �eld, where m(X) is an irreducible polyno-
mial over F2[X], and degm(X) = m.

De�nition 5.4.1 (Binary Irreducible Goppa Polynomial). Binary Irreducible Goppa
polynomial is a monic binary irreducible polynomial g(Z) ∈ F2m [Z], where deg g(Z) =
t.

De�nition 5.4.2 (Code Support). Code support is a vector Λ ∈ Fn2m , Λ = (λi)0≤i≤n−1
consisting of pairwise distinct elements λi ∈ F2m , where g(λi) 6= 0.

Since the Goppa polynomial g(Z) is irreducible, all the �eld elements are in the
code support. Hence, the code length n = 2m.

De�nition 5.4.3 (Binary Irreducible Goppa Code). Binary Irreducible Goppa code
Γ(Λ, g) is a Linear Alternant code de�ned over F2m , wherein the g is a binary irre-
ducible Goppa polynomial, and the Λ is a code support. This code has parameters
[n = 2m, k = n−mt, d = 2t+ 1], and it is de�ned as follows:

Γ(Λ, g) := {c ∈ Fn2 : S(c, Z) ≡ 0 mod g(Z)} , (5.15)

where
S(c, Z) =

∑
0≤i≤n−1

ci
Z − λi

(5.16)

is its syndrome polynomial.

Note, if we have c ∈ Γ(Λ, g), y ∈ Fn2 , and y = c⊕ e, where e is an error vector of
0 ≤ HW(e) ≤ t, then S(e, Z) ≡ S(c, Z) mod g(Z).

De�nition 5.4.4 (Error-Locator Polynomial De�nition). The error-locator polynomial
σ(e, Z) is de�ned, in binary case, as follows:

σ(e, Z) = Πn−1
i=0 (Z − λi)ei . (5.17)

41

Algorithm 5.1 McEliece PKC key generation.
Require: m(X), code length n, and t = deg g(Z).
Ensure: Kpub = Gpub, Kpriv = (Γ(Λ, g), S, P).

1: Generate uniformly a random g(Z). . Determines the secret Γ(Λ, g).
2: Find a generator matrix Gpriv for the random secret Γ(Λ, g) code. . Eq. 5.20, 5.21,

5.22
3: Generate uniformly a random k × k dense invertible binary matrix S.
4: Generate uniformly a random n× n binary permutation matrix P . . Alg. in Alg.

5.2
5: Gpub = SGprivP .
6: Kpub = Gpub.
7: Kpriv = (Γ(Λ, g), S, P).
8: return Kpub, and Kpriv.

The polynomial is de�ned over F2m [Z], and indexes of its roots in the code support
determine error-bit positions in a codeword. In our case, roots are not multiple, and
its maximum degree is t.

5.4.3 Key-pairs Generation
Private key Kpriv consist of a random Γ(Λ, g) code, a random permutation matrix P ,
and a random dense non-singular scramble matrix S.

Kpriv = (Γ(Λ, g), S, P) . (5.18)

The random Γ(Λ, g) code means that the g is chosen randomly. The public key Kpub

is derived from the Kpriv using P and S. The key generation algorithm is in Alg. 5.1.

Kpub = Gpub. (5.19)

As the �rst step in the key generation phase, the Calculator picks up randomly (or
it is chosen by an user) an irreducible polynomial m(X) over F2[X], according to that
the �nite �eld F2m is created. Then a binary irreducible Goppa polynomial g(Z) over
F2m [Z] is generated randomly. Probability that a random polynomial with degree t is
irreducible over the F2m [Z] is approximately 1/t [42].

Now, the code support is initialized. All the elements of F2m are in the support.
If the m(X) polynomial is primitive, all elements can be generated using its roots.
But it is not the case in general. Therefore, in order to initialize the code support,
a generator (�eld primitive element) should be found. The Calculator searches for a
generator using the fact that order of a subgroup divides order of the group. Order of
an element that generates the �eld should be n− 1. Let we have all the factors of the

42

Algorithm 5.2 Random permutation of a sequence of elements.
Require: p, a sequence of elements for permuting.
Ensure: p with randomly permuted elements.

1: for i = 0; i < p.length; i++ do
2: index = rand() mod p.length
3: swap(p[index],p[i])
4: end for
5: return p

integer n− 1. The generator is found by examination degrees of all the �eld elements
respectively. If an element is found that has the desired degree, the search stops, and
the element is used to initialize the code support. We denote this element as λ1. The
�rst element λ0 of the initialized code support is always 0.

Generator matrix Gpriv is found as follows. First, an initial parity check matrix
Hinit is constructed as

Hinit(i, j) = g−1(λj)λ
i
j, (5.20)

where Hinit(i, j) is the i-th row, and the j-th column of the Hinit. This matrix is then
used in its binary form. Therefore, each cell (element of the �nite �led F2m) is repre-
sented as the column of sequence m binary digits. Thus, the matrix in the binary form
consists of mt rows and n columns. Only the binary form of the parity check matrix
is considered hereafter.

The parity check matrix is brought into the reduced row-echelon form using the
Gaussian elimination. If the resulted matrix is not in the systematic form, the system-
atic form is obtained by swapping appropriate columns. Now we have

Hinit = [I|R]. (5.21)

The parity coordinates generator matrixRT has (n−mt) rows andmt columns. Using
RT , the Gpriv is then de�ned as

Gpriv := [RT |I]. (5.22)

In order to be able to construct the secret code support Λ for the code generated
by the secret Gpriv, the permutation of elements of the initial code support must be
corrected according the swaps performed in order to make the Eq. 5.21 held. For that
purpose, only vector of the inverse swaps is important. The vector will be denoted as
b hereafter. Note, the initial parity check matrix Hinit is not a parity check matrix for
the Γ(Λ, g) code generated by Gpriv, since the code support correction.

The dense non-singular matrix S is generated randomly and uniformly by NTL. A
random square matrix is invertible with probability approximately 1/3. One possibility
how to determine whether a square matrix is invertible is to examine its determinant

43

but this would be time consuming. A better approach is to test the actual diagonal el-
ement for zero during the elimination when bringing the square matrix into an upper
echelon form. If the element is zero the matrix is not invertible. For further optimiza-
tion, inner instruction parallelism can be used (Zajac and Jokay [81]).

The permutation matrix P is generated randomly and uniformly using the algo-
rithm shown in Alg. 5.2. This algorithm assume a vector p which is somehow initial-
ized. Hereafter, we consider p as vector of randomly and without replacement gen-
erated integers (a random permutation) that represents the secret permutation matrix
P .

5.4.4 Key-pairs Storing
In the Calculator implementation, almost nothing is �xed, even polynomial m(X) is
chosen randomly, or can be chosen by user. For the private key Kpriv reconstruction:
the m(X), �nite �eld generator element λ1, vector of inverse swaps b, permutation
vector p, matrix S, and, �nally, g(Z), are stored. In case of m = 11, t = 50, it is
4 510 452 bytes.

In order to reconstruct the corresponding public key Kpub = Gpub, only the Gpub is
stored. For m = 11, t = 50, it is 6 138 820 bytes. We recommend to use any compres-
sion method in order to safe the size needed for key-pairs storing. Another possibility
is to order permutations in the way that each permutation can be represented by an
unique integer [65].

5.4.5 Encryption
The encryption algorithm (Fig. 5.3) is very fast and simple. It can be implemented as
several XOR additions in an optimized implementation. In order to generate uniformly
a random secret error vector of hamming weight t and length n, the Calculator imple-
mentation uses the algorithm listed in Alg. 5.2. From the outcome of the algorithm,
only the last t indexes are considered. These indexes determines positions of ones in
the error vector.

5.4.6 Decryption
The decryption algorithm is more time consuming than the encryption one. The most
time consuming is the Step 2.

The Patterson’s algebraic decoding algorithm (Alg. 5.5) is used in order to correct
a code word with t errors in the private Γ(Λ, g) code. For that purpose, we assume
an input binary vector u = yP−1 that is a codeword in the private code with exactly
t errors. Note, t is the maximum number of errors that can be corrected in a Γ(Λ, g)
code, and also that the algorithm in the Alg. 5.5 is capable to correct.

44

Algorithm 5.3 McEliece PKC encryption.
Require: Kpub = Gpub, end message a ∈ Fk2 , where k = 2m − mt (the number of

rows of Gpub).
Ensure: A ciphertext y ∈ Fn2 . . n = 2m.

1: Generate uniformly a random binary vector ex ∈ Fn2 with HW(ex) = t. . HW is
Hamming weight.

2: x = aGpub.
3: y = x⊕ ex.
4: return y.

Algorithm 5.4 McEliece PKC decryption.
Require: Kpriv = (Γ(Λ, g), S, P), and a ciphertext y ∈ Fn2 .
Ensure: Message a ∈ Fk2 .

1: u = yP−1. . u = aSGpriv + exP
−1, the vector p is used instead of P .

2: e = Patterson (u,Γ(Λ, g)). . e = exP
−1, Alg. 5.5.

3: v = u + e. . v = aSGpriv.
4: w = GetInformationCoordinates(v). . w = aS, the last n− k coordinates of

v.
5: a = wS−1.
6: return a.

As the �rst step of the Alg. 5.5, the syndrome of the error vector is computed. One
can compute the syndrome evaluating the syndrome polynomial (Eq. 5.16), but such
an evaluation would be the most time consuming step in the decoding algorithm. On
the other hand, such an evaluation is very useful on a memory constraint devices. In
order to speed up the syndrome evaluation, following look-up table is precomputed
∀0 ≤ i < n:

preSynTab[i] = (Z − λi)−1 mod g(Z). (5.23)
Next possibility how to compute the syndrome is to compute the product uHT

priv,
wherein the Hpriv is a parity-check matrix of the secret Γ(Λ, g) code, and obtain the
syndrome in this way.

The syndrome polynomial S(e, Z) satisi�es

S(e, Z) ≡ σ′(e, Z)

σ(e, Z)
mod g(Z). (5.24)

Since the error of a word is being determined, the �rst derivative of the error-locator
polynomial consists only of all the even terms, i.e. the error-locator polynomial can be
split into squares and non-squares:

σ(e, Z) = α2(e, Z) + Zβ2(e, Z), (5.25)

45

Algorithm 5.5 Patterson’s algebraic decoding algorithm.
Require: u ∈ Fn2 (a private code word with t errors), Γ(Λ, g).
Ensure: Error vector e such that v = u + e, where v ∈ Γ(Λ, g) is the code word.

1: S(e, Z) ≡ S(u, Z) mod g(Z). . Eq. 5.23.
2: T (e, Z) ≡ S−1(e, Z) + Z mod g(Z). . EEA.
3: τ(e, Z) ≡

√
T (e, Z) mod g(Z). . Eq. 5.27

4: Find α(e, Z) and β(e, Z) such that β(e, Z)τ(e, Z) ≡ α(e, Z) mod g(Z). . EEA.
5: σ(e, Z) = α2(e, Z) + Zβ2(e, Z). . Squaring.
6: Find roots of σ(e, Z). . Evaluation over the Λ.
7: Determine indexes of the roots in the support Λ.
8: Set 1 in the determined indexes in error vector e.
9: return e.

where β2(e, Z) = σ′(e, Z). After few modi�cations, the Key Equation can be obtained
as:

β(e, Z)
√
S−1(e, Z) + Z ≡ α(e, Z) mod g(Z). (5.26)

Therefore, in the Step 3 of the Alg. 5.5, the square-root modulo g(Z) is computed.
Let us denote the term S−1(e, Z) +Z as T (e, Z). The Calculator implementation uses
the fact of the perfect square, and thus

τ(e, Z) =
√
T (e, Z) ≡ T 2tm−1

(e, Z) mod g(Z). (5.27)

Such an approach can be very useful on memory constraint devices, but on the other
hand it is very time consuming operation. Another possibility how to compute that
square-root is to use precomputed look-up table, which consist of τi(Z) such that
τ 2i (Z) ≡ Zi mod g(Z) for 0 ≤ i < t.

Subsequently, the key equation is solved using the Extended Euclidean Algorithm
(EEA) that stops when degαj(Z) ≤ b(t+ 1)/2−1c ≤ t/2, where j is the EEA iteration
number.

At the time the error-locator polynomial σ(e, Z) is computed, roots of the error-
locator polynomial shall be found. The Calculator implementation simply evaluate the
σ(e, Z) over the secret code support Λ. Therefore, Steps 6, 7, 8 are conducted in one
loop. This method is also time consuming, and as an alternative, any other factorization
method can be employed. Thus, the decoding algorithm yields the error vector e in
the private code.

When the secret error vector e is removed (Step 3 in Alg. 5.4), only information co-
ordinates are addressed, and the scrambling matrix is removed. Finally, the decrypted
message is obtained.

46

5.4.7 Basic Use Cases
The Calculator can be used as a basic cryptosystem, for key-pairs generation, encryp-
tion, as well as for decryption. It is very important to note that the original McEliece
PKC is vulnerable to (adaptive) chosen-ciphertext. Therefore, the Calculator can be
used for encryption and decryption only if it is plugged into an IND-CCA2-Secure
conversion, like the γ conversion de�ned in [34].

Essentially, the �rst main purpose of the Calculator development was the PKC im-
plementation optimization for an FPGA. Test vectors have been used in order to chose
particular PKC parameters that we have �xed for the implementation in FPGA. After-
wards, test vectors have been used for the FPGA implementation validation. Further,
test vectors can be used in the further McEliece like PKCs properties investigation be-
cause all important intermediate results are recorded. The intermediated results can
be used in order to verify stated hypotheses, or jut to trace behavior. For the PKC
properties investigation, also the information recorded by the side-channel-leakage
measurement tool can be used. The test vectors recording can be turned-on append-
ing any command by a �le name for the test vectors �le. Test vectors are formatted
using the standard NTL output.

More details about this McEiece PKC implementation can be found in (Repka [52]).

5.5 Timing Fault Injection Analysis of McEliece PKC
Decryption

The side-channel-leakage measurement tool records Indicators (Tab. 4.1) measured in
order to preform an attack, and information about secret (Tab. 4.3 and 4.4) used to
compute success rate of an attack. Secret error vector, secret permutation, and secret
Goppa polynomial, respectively can be guessed using the measured data. Also power-
consumption and electromagnetic-emanation leakages can be simulated. Using this
tool, particular keys, and proposed countermeasures can be tested. Thanks to the NTL,
source codes are easy to read, and it is possible to replace a measured operation for a
designer’s one. Not only computation time is measured by the tool, also degrees and
hamming weights of polynomials processed are recored.

The Step 3 (square root) is the most time consuming step in the Calculator’s imple-
mentation of the Patterson’s decoding algorithm. The Step 3 can be sped up using our
proposal to compute p-th roots in �nite �elds of characteristic p ≤ 2 in Sec. 5.8. If the
syndrome computation was implemented as the polynomial evaluation, that would be
the most time consuming step. Steps the computation time depends on HW(e) can be
clearly observed in the Fig. 5.7 and 5.8 respectively. As can be seen from these �gures,
also HW and deg of polynomials are recorded.

47

0 2 4 6 8 10 12 14

0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

av
g
CP

U
Ti
ck
s

m = 7, t = 14

σ(e, Z) (sqr), Step 5.

0 10 20 30 40 50

0

1

2

3

·104 m = 11, t = 50

σ(e, Z) (sqr), Step 5.

0 2 4 6 8 10 12 14

0

0.5

1

1.5

·105

av
g
CP

U
Ti
ck
s

T (e, Z) (EEA), Step 2.
α(e, Z) (EEA), Step 4.

0 10 20 30 40 50

0

0.5

1

1.5

·106

T (e, Z) (EEA), Step 2.
α(e, Z) (EEA), Step 4.

0 2 4 6 8 10 12 14

0

0.5

1

1.5

2

·106

HW(e)

av
g
CP

U
Ti
ck
s

τ(e, Z) (sqrt), Step 3.
σ(e, Z) (eval), Step 6-8.

0 10 20 30 40 50

0

1

2

3

4

5

·107

HW(e)

τ(e, Z) (sqrt), Step 3.
σ(e, Z) (eval), Step 6-8.

Figure 5.7: Timing analysis of Petterson’s decoding algebraic algorithm (Alg. 5.5). One
random key pair and 1000 random messages for m, t McEliece PKC.

48

0 2 4 6 8 10 12 14
4

4.5

5

5.5

6

6.5
·104

av
g
CP

U
Ti
ck
s

m = 7, t = 14

S(e, Z), Step 1.

0 10 20 30 40 50

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

·106 m = 11, t = 50

S(e, Z), Step 1.

0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

av
g
d
eg

0 10 20 30 40 50

0

10

20

30

40

50

S(e, Z), Step 1.
T (e, Z), Step 2.
τ(e, Z), Step 3.
α(e, Z), Step 4.
σ(e, Z), Step 5.

0 2 4 6 8 10 12 14

0

10

20

30

40

50

60

HW(e)

av
g
H
W

0 10 20 30 40 50

0

50

100

150

200

250

300

HW(e)

Figure 5.8: Average CPU Ticks, Degrees, and HW of polynomials processed for the
same instances of McEliece PKC as in Fig. 5.7.

49

0.95 1 1.05 1.1 1.15 1.2

5.5

5.6

5.7

5.8

5.9

6

·104

g14

av
g
CP

U
Ti
ck
s

m = 7, t = 14

HW(e) = 14
HW(e) = 13
HW(e) = 12
HW(e) = 11
HW(e) = 10

0.95 1 1.05 1.1 1.15 1.2
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

·106

g50

m = 11, t = 50

HW(e) = 50
HW(e) = 49
HW(e) = 48
HW(e) = 47
HW(e) = 46

1 2 3 4 5 6

5.5

5.6

5.7

5.8

5.9

6

·104

HW (g13)

av
g
CP

U
Ti
ck
s

3 4 5 6 7 8
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

·106

HW (g49)

0 20 40 60 80 100 120

5.5

5.6

5.7

5.8

5.9

6

·104

g13

av
g
CP

U
Ti
ck
s

0 1,000 2,000 3,000 4,000 5,000 6,000

1.9

2

2.1

2.2

2.3

2.4

2.5

·106

g49

Figure 5.9: Plot for S(e, Z) (inv), Step 1 (Alg. 5.5), measurements of type II (Sec. 4.4.2).
Data are plotted only for the last and the penultimate coe�cients of 46 goppa polyno-
mials (random key pairs) each used with 1000 random messages.

50

0.95 1 1.05 1.1 1.15 1.2

1.52

1.54

1.56

1.58

1.6

1.62

1.64

·105

g14

av
g
CP

U
Ti
ck
sl
eg
en
d
po

s

m = 7, t = 14

HW(e) = 14
HW(e) = 13
HW(e) = 12
HW(e) = 11
HW(e) = 10

0.95 1 1.05 1.1 1.15 1.2

1.5

1.6

1.7

1.8

·106

g50

m = 11, t = 50

HW(e) = 50
HW(e) = 49
HW(e) = 48
HW(e) = 47
HW(e) = 46

1 2 3 4 5 6

1.52

1.54

1.56

1.58

1.6

1.62

1.64

·105

HW (g13)

av
g
CP

U
Ti
ck
s

3 4 5 6 7 8

1.5

1.6

1.7

1.8

·106

HW (g49)

0 20 40 60 80 100 120

1.52

1.54

1.56

1.58

1.6

1.62

1.64

·105

g13

av
g
CP

U
Ti
ck
s

0 1,000 2,000 3,000 4,000 5,000 6,000

1.5

1.6

1.7

1.8

·106

g49

Figure 5.10: Plot for T (e, Z) (EEA), Step 2 (Alg. 5.5), measurements of type II (Sec.
4.4.2). Data are plotted only for the last and the penultimate coe�cients of 46 goppa
polynomials (random key pairs) each used with 1000 random messages.

51

0.95 1 1.05 1.1 1.15 1.2

2

2.05

2.1

2.15

·106

g14

av
g
CP

U
Ti
ck
s

m = 7, t = 14

HW(e) = 14
HW(e) = 13
HW(e) = 12
HW(e) = 11
HW(e) = 10

0.95 1 1.05 1.1 1.15 1.2
4.6

4.8

5

5.2

5.4

5.6

·107

g50

m = 11, t = 50

HW(e) = 50
HW(e) = 49
HW(e) = 48
HW(e) = 47
HW(e) = 46

1 2 3 4 5 6

2

2.05

2.1

2.15

·106

HW (g13)

av
g
CP

U
Ti
ck
s

3 4 5 6 7 8
4.6

4.8

5

5.2

5.4

5.6

·107

HW (g49)

0 20 40 60 80 100 120

2

2.05

2.1

2.15

·106

g13

av
g
CP

U
Ti
ck
s

0 1,000 2,000 3,000 4,000 5,000 6,000
4.6

4.8

5

5.2

5.4

5.6

·107

g49

Figure 5.11: Plot for τ(e, Z) (sqrt), Step 3 (Alg. 5.5), measurements of type II (Sec.
4.4.2). Data are plotted only for the last and the penultimate coe�cients of 46 goppa
polynomials (random key pairs) each used with 1000 random messages.

52

0.95 1 1.05 1.1 1.15 1.2

0.9

1

1.1

1.2

1.3

1.4
·105

g14

av
g
CP

U
Ti
ck
s

m = 7, t = 14

HW(e) = 14
HW(e) = 13
HW(e) = 12
HW(e) = 11
HW(e) = 10

0.95 1 1.05 1.1 1.15 1.2

1.4

1.5

1.6

1.7

1.8

1.9

2

·106

g50

m = 11, t = 50

HW(e) = 50
HW(e) = 49
HW(e) = 48
HW(e) = 47
HW(e) = 46

1 2 3 4 5 6

0.9

1

1.1

1.2

1.3

1.4
·105

HW (g13)

av
g
CP

U
Ti
ck
s

3 4 5 6 7 8

1.4

1.5

1.6

1.7

1.8

1.9

2

·106

HW (g49)

0 20 40 60 80 100 120

0.9

1

1.1

1.2

1.3

1.4
·105

g13

av
g
CP

U
Ti
ck
s

0 1,000 2,000 3,000 4,000 5,000 6,000

1.4

1.5

1.6

1.7

1.8

1.9

2

·106

g49

Figure 5.12: Plot for α(e, Z) (EEA), Step 4 (Alg. 5.5), measurements of type II (Sec.
4.4.2). Data are plotted only for the last and the penultimate coe�cients of 46 goppa
polynomials (random key pairs) each used with 1000 random messages.

53

0.95 1 1.05 1.1 1.15 1.2
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

·104

g14

av
g
CP

U
Ti
ck
s

m = 7, t = 14

HW(e) = 14
HW(e) = 13
HW(e) = 12
HW(e) = 11
HW(e) = 10

0.95 1 1.05 1.1 1.15 1.2

2.4

2.6

2.8

3

3.2

·104

g50

m = 11, t = 50

HW(e) = 50
HW(e) = 49
HW(e) = 48
HW(e) = 47
HW(e) = 46

1 2 3 4 5 6
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

·104

HW (g13)

av
g
CP

U
Ti
ck
s

3 4 5 6 7 8

2.4

2.6

2.8

3

3.2

·104

HW (g49)

0 20 40 60 80 100 120
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

·104

g13

av
g
CP

U
Ti
ck
s

0 1,000 2,000 3,000 4,000 5,000 6,000

2.4

2.6

2.8

3

3.2

·104

g49

Figure 5.13: Plot for σ(e, Z) (sqr), Step 5 (Alg. 5.5), measurements of type II (Sec.
4.4.2). Data are plotted only for the last and the penultimate coe�cients of 46 goppa
polynomials (random key pairs) each used with 1000 random messages.

54

0.95 1 1.05 1.1 1.15 1.2
2.8

3

3.2

3.4

3.6

3.8

4

4.2
·105

g14

av
g
CP

U
Ti
ck
s

m = 7, t = 14

HW(e) = 14
HW(e) = 13
HW(e) = 12
HW(e) = 11
HW(e) = 10

0.95 1 1.05 1.1 1.15 1.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9
·107

g50

m = 11, t = 50

HW(e) = 50
HW(e) = 49
HW(e) = 48
HW(e) = 47
HW(e) = 46

1 2 3 4 5 6
2.8

3

3.2

3.4

3.6

3.8

4

4.2
·105

HW (g13)

av
g
CP

U
Ti
ck
s

3 4 5 6 7 8

2.3

2.4

2.5

2.6

2.7

2.8

2.9
·107

HW (g49)

0 20 40 60 80 100 120
2.8

3

3.2

3.4

3.6

3.8

4

4.2
·105

g13

av
g
CP

U
Ti
ck
s

0 1,000 2,000 3,000 4,000 5,000 6,000

2.3

2.4

2.5

2.6

2.7

2.8

2.9
·107

g49

Figure 5.14: Plot for σ(e, Z) (eval), Step 6-8 (Alg. 5.5), measurements of type II (Sec.
4.4.2). Data are plotted only for the last and the penultimate coe�cients of 46 goppa
polynomials (random key pairs) each used with 1000 random messages.

55

46 46.5 47 47.5 48 48.5 49 49.5 50 50.5 51

0

0.2

0.4

0.6

0.8

1

Number of correct hypotheses to error vector nonzero indexes

Su
cc

es
sr

at
e

of
gu

es
sin

g
di

�e
re

nt
e

1 3 5 7 9
11 13 15 17 19
21 23 25 27 29
31 33 35 37 39
41 43 45 47 49
51 cnt

Figure 5.15: Plot for success rate of error vector guessing for McEliece PKC with m =
11, t = 51. The red line (1) is for guessing error vectors using Alg. 4.2. The next blue
lines (3-51) are for guessing as well but taking error guesses of previous attacks (Tab.
5.2). The black line (cnt) is for guessing regarding number of occurrences at index in
the �rst t position from all the performed attacks.

5.6 Improving the Timing Fault Injection Analysis

This improvement is demonstrated on the guessing the error vector using Alg. 4.2, fo-
cused on the EEA solving the key equation (Step 4 in Alg. 5.5). Plots for computation
time regarding the hamming weight of error vector can be found in Fig. 5.7. That plots
show which steps of the decoding algorithm have got linearly dependent computation
time on the hamming weight of the error vector. Regarding the timing information
hypotheses to the error vector can be constructed. The measured probability a hy-
pothesis is correct for the case m = 11, t = 51 shows the red line in Fig. 5.15. The
improvement is to use counts of hypotheses occurrences at lower positions than t+ 1,
instead of to directly take timing information to order the hypotheses. The counts are
counted from the whole attack vector (Tab. 5.2).

5.7 Countermeasure against the Timing Fault Injec-
tion Analysis

The vulnerability of the Patterson’s algebraic decoding algorithm (Alg. 5.5) in this
issue is that computation time of the Steps 4, 5, and (6, 7, 8) of the Alg. 5.5 are linearly
dependent enough to guess the HW of the error vector. Therefor, there is a possibility
to guess number of iterations of these steps. This leakage can be exploited (Alg. 4.2) to
guess value of error vectors in order to reveal messages and sometimes also the secret

56

of e bit positions 1 3 5 7 9 11 13 15 17 19 21 23 25
of repetitions 1 10 10 10 10 10 5 5 5 5 5 1 3
of e bit positions 27 29 31 33 35 37 39 41 43 45 47 49 51
of repetitions 3 3 3 3 3 3 3 3 3 3 3 3 2

Table 5.2: Attack vector for plot in Fig. 5.15. For instance, 1:1 means guessing error
bit position 1 time using Alg. 4.2; 3:10 means that guessing of error bit position was
performed using 2 guesses with the lowest time from the previous attack, repeated 10
times; 5:10 means that guessing of error bit position was performed using 4 guesses
with the lowest time from the previous attack, repeated 10 times.

permutation regarding the McEliece PKC implementation. The countermeasure that
would be e�ective in this case is to make the computation of these steps of constant
time. For this purpose, one can use dummy cycles processing random data. Further,
the number of iterations of the EEA and also the degrees of polynomials, intermediate
results, such as syndrome, T (e, Z), and error-locator polynomial, should be checked
in order to detect this kind of attacks.

5.8 Computing pth roots in extended �nite �elds of
characteristic p ≥ 2

This part shows how to directly compute pth roots e�ciently and scalable in extended
�nite �elds of characteristic p ≥ 2, wherein the reduction polynomial can be even
random without constrains. This method was published in (Repka [49]).

Let GF(pm) := GF(p)[X]/m(X) be the �nite sub�eld, where m(X) is an irre-
ducible polynomial of degm(X) = m > 0, and p is a prime ≥ 2.

Let g(Z), deg g(Z) = t > 0, be an irreducible polynomial in GF(pm)[Z], then the
extended �nite �eld is de�ned as GF(pmt) := GF(pm)[Z]/g(Z).

We deal with computation of pth root r(Z) of a polynomial n(Z) ∈ GF(pm)[Z],
0 ≤ deg n(Z) ≤ t− 1, modulo the g(Z):

r(Z) ≡ p
√
n(Z) mod g(Z). (5.28)

5.8.1 Related work & our contribution
The pth root computation is important in many applications, like in coding theory [46,
37] and cryptography [29, 68, 7]. Thus, there exist alternatives how to compute the
pth root, however particularly for p = 2, like to exploit perfect square, or to utilize
inversion of a squaring matrix, as well as to exploit discrete logarithm of a primitive
element [52, 16, 67, 28, 33, 15, 73]). In some cases [45] can be used.

57

5.8.2 The computation of pth root

The pth root (5.39) is split to the Left and Right parts, vectors, in the way the Left part
contains terms which do not have to be reduced, and the Right part contains terms
that must be reduced, as follows:

L := (Lj)0≤j<t1 , (5.29)

t1 :=

⌈
t

p

⌉
, (5.30)

Lj := jp, (5.31)

and
R := (Rk)0≤k<t2 , (5.32)

t2 := t− t1. (5.33)

For k : 0 ≤ k ≤ p− 2, k < t2:

Rk := (k + 1)π, (5.34)

where
π := pmt−1 ≡ p−1 (mod pmt − 1), (5.35)

cRk
(Z) ≡ ZRk mod g(Z), (5.36)

and for k : (p− 1) ≤ k < t2:

Rk := Rk−(p−1) + 1. (5.37)

cRk
(Z) ≡ cRk−(p−1)

(Z)Z mod g(Z). (5.38)

The pth root can then be written as:

p
√
n(Z) =

t1−1⊕
j=0

Zj p
√
nLj
⊕

t2−1⊕
k=0

ZRk p
√
nλ(k), (5.39)

where
λ(k) := k + 1 +

⌊
k

p− 1

⌋
. (5.40)

58

The carry terms which must be reduced, the terms in the Right part of the pth root
in (5.39), are substituted to the corresponding carry polynomials in (5.36) and (5.38)
respectively.
Therefore, the pth root modulo g(Z) in (5.28) can be written as:

r(Z) =

t1−1⊕
j=0

Zjnp
−1

Lj
⊕

t2−1⊕
k=0

cRk
(Z)np

−1

λ(k). (5.41)

The products are then added together, such as in (5.41) and (5.42). Multiplications,
additions, and pth roots are operations in the sub�eld.

ZR0 ZR1 · · · ZRt2−1

Z0

...

Zj

... cR0 cR1 · · · cRt2−1

Zt1−1
...
Zt−1

np
−1

λ(0)

np
−1

λ(1)
...

np
−1

λ(t2−1)

⊕

np
−1

L0...
np
−1

Lj

...
np
−1

Lt1−1

0
...
0

= r (5.42)

where cRk
are column vectors of coe�cients of the corresponding carry polynomials

cRk
(Z).

5.8.3 Summary
Direct pth root computation in extended �nite �elds of a prime characteristic p ≥ 2
with reduction polynomial without constrains was shown. The matrix in (5.42) has
t rows and t2 columns, see (5.30) and (5.33). Carry polynomials (5.38) for (5.37) are
computed very quickly based on (5.36). This method is very e�cient, scalable and
can be parallelized well, and it was published in (Repka [49]). Some notes on modular
reduction in extended �nite �elds can be found in the work (Repka [53]).

59

60

Chapter 6
List of Publications & Contributions

In this chapter, chosen contributions of the author are listed. The categorization of the
contributions is made regarding the criteria to evaluate level of research, development,
art, and other creative activities in the complex accreditation of the high school.

6.1 Zoznam príspevkov kategórie A

6.1.1 Current Contents
[49] M. Repka. “Computing pth roots in extended �nite �elds of prime characteristic

p >= 2”. In: Electronics Letters 52.9 (Apr. 2016), pp. 718–719. issn: 0013-5194. doi:
10.1049/el.2015.4141.

6.1.2 Science Citation Index Expanded
[52] Marek Repka. “McEliece PKC Calculator”. In: Journal of Electrical Engineering

65.6 (2014), pp. 333–341.
[53] Marek Repka. “Note on modular reduction in extended �nite �elds and polyno-

mial rings for simple hardware”. In: Journal of Electrical Engineering 67.1 (2016),
pp. 56–60.

[58] Marek Repka, Michal Varchola, and Miloš Drutarovsky. “Improving CPA against
DSA and ECDSA”. In: Journal of Electrical Engineering 66.3 (2015), pp. 159–163.

61

http://dx.doi.org/10.1049/el.2015.4141

6.1.3 Pozvané články
[79] Michal Varchola, Miloš Drutarovský, and Marek Repka. “Robust FPGA based

True Random Number Generator utilizing Oscillatory Metastability in Transi-
tion E�ect Ring Oscillators - Invited Paper”. In: Proceedings of the 9th Interna-
tional Conference on Circuits, Systems, Signal and Telecommunications (CSST’15),
Dubai, United Arab Emirates, February 22-24, 2015. Ed. by Nikos E. Mastorakis
and Zoran Bojkovic. WSEAS press, 2015, pp. 90–98.

6.2 List of Contributions of Category B
[21] Lubos Gaspar et al. “Cryptoprocessor with Native Resistance against Side Chan-

nel and Fault Injection Attacks”. In: Proceedings of the 13th International Con-
ference on Telecommunications and Informatics (TELE-INFO’14), Istanbul, Turkey,
December 15-17, 2014. Ed. by Nikos E. Mastorakis et al. WSEAS press, 2014,
pp. 88–97.

[54] Marek Repka and Pierre-Louis Cayrel. In: Multidisciplinary Perspectives in Cryp-
tology and Information Security. Ed. by Sattar B. Sadkhan Al Maliky and Nidaa A.
Abaas. IGI Global, 2014. Chap. Cryptography Based on Error Correcting Codes:
A Survey, pp. 133–156.

[57] Marek Repka and Michal Varchola. “Correlation Power Analysis using Measured
and Simulated Power Traces based on Hamming Distance Power Model – At-
tacking 16-bit Integer Multiplier in FPGA”. In: International Journal of Computer
Network and Information Security(IJCNIS) 7.6 (2014), pp. 10–16.

[59] Marek Repka and Pavol Zajac. “Overview of the McEliece Cyptosystem and its
Security”. In: Tatra Mt. Math. Publ 60.3 (2014), pp. 57–83.

[78] M. Varchola et al. “Side Channel Attack on Multiprecision Multiplier Used in
Protected ECDSA Implementation”. In: 2015 International Conference on ReCon-
Figurable Computing and FPGAs, ReConFig15, Cancun,Mexico, December 7-9, 2015.
IEEE.

6.3 List of Talks at Conferences
[55] Marek Repka, Lubos Gaspar, and Viktor Fischer. “Correlation Power Analysis of

an AES Implementation in FPGA”. In: TatraCrypt 2012: Book of abstracts. 2012.
[60] Marek Repka et al. “Hamming Distance Power Model Analysis of AES at Ar-

chitecture Level”. In: COSADE 2012: 3rd International Workshop on Constructive
Side-Channel Analysis and Secure Design. Darmstadt, Germany, May 3-4, 2012.
Darmstadt, Technische Universität Darmstadt.

62

Chapter 7
Conclusion

H ardware is more challenging to attack using CPA and protect against the CPA
than software. We can say that ASIC is more challenging to attack and protect

than FGPA and processors respectively. Attacks like DPA [35], CPA [9], DEMA [47] or
CEMA [14] are the most common side channel attacks. They require an appropriate
description of the data-dependent power consumption or electromagnetic emanation.
The most common one is HDPM, and, secondly, it is HWPM. HDPM is more complex
–but also more �tting– than HWPM. In work (Repka et al. [60]) it is shown that by
contemplating a cryptographic algorithm RTL regarding SCAs, some leakages can be
suppressed or even eliminated. This zero-cost countermeasure is presented on various
AES-128 RTL architectures with 128-bit data path and, thus, 16 S-boxes conducted par-
allel. CPA of the most vulnerable AES-128 RTL architecture was presented in (Repka,
Gaspar, and Fischer [55]). Countermeasures against this kind of attacks are investi-
gated in our work (Gaspar et al. [21]).

The Goal 2, which is de�ned in Sec. 3.2, was met by implementing the original
McEliece PKC (Sec. 5.4). This implementation was published in article (Repka [52]).
It can provide test vectors for all important intermediate results. The side-channel
leakage measurement tool (Sec. 4.4) is embedded in the implementation. The tool
was demonstrated in (Repka [51]), and in Sec. 5.5 and 5.6 where timing fault injection
analysis is performed and �nally improved. Countermeasure was discussed in Sec. 5.7.
More about code-based cryptography and post-quantum McElice PKC can by found in
(Repka and Cayrel [54]). Summarization of McEliece like PKCs security can be found
in (Repka and Zajac [59]).

In order to meet the Goal 1 de�ned in Sec. 3.1, an application for power consump-
tion measurements and analyses was made. This application is able to manage the
whole attack analysis process (Sec. 4.3). It remotely con�gure oscilloscopes (Sec. 4.5),
manages the cryptographic devices (Sec. 4.2), and provides data for further analy-
ses. Detailed description of the application is in Sec. 4.4. Afterwards, the analysis of

63

the CPA attack against (EC)DSA was performed (Repka, Tomeček, and Varchola [56];
Sec. 5.1). Possible errors of success rate and complexity approximations according to
simulated CPA was investigated in (Repka and Varchola [57]; Sec. 5.1.4). Finally, the
Goal 1 was met by improving the CPA attack against (EC)DSA (Repka, Varchola, and
Drutarovsky [58]; Sec. 5.2; Fig. 5.6; Tab. 5.1). The improvement was demonstrated
on 16-bit integer multiplier with one constant secret operand, implemented in FPGA.
First CPA is performed to order key hypotheses from the most �tting to the worst
�tting the reality. Afterwards, second CPA is used to reorder the �rst 10 hypotheses
which came from the �rst CPA. Both CPAs use HDPM, however while, in the �rst CPA,
HDPM of the whole multiplication result is considered to order all the possible key hy-
potheses, for the second CPA, HDPM of the �rst half least signi�cant bits is made to
reorder the �rst 10 possible key hypothesis ordered according to the �rst CPA. Thanks
to the improvement, the CPA is more successful, more blocks of key can be guessed,
and errors of simulated CPA are eliminated. Hence, the CPA attack can be simulated
in order to approximate its success rate and complexity after the second CPA. This
improvement is valuable to use especially when ECDSA is implemented on 32-bit or
wider platforms. Such an attack can be thanks to the improvement simulated with
negligible errors. An e�ective and e�cient countermeasure is discussed in Sec. 5.3.
Demonstration of this improvement, such as discussion of the countermeasure, were
published in the work (Repka, Varchola, and Drutarovsky [58]). The countermeasure
is discussed more deeply in (Varchola et al. [78]).

Finally, an e�cient method for p-th roots computations in extended �nite �elds of
characteristic p was invented (Sec. 5.8).

64

Chapter 8
Resumé

K apitola 1 uvádza motiváciu práce a dôvody potreby skúmania útokov postran-
nými kanálmi a protiopatrení proti útokom postrannými kanálmi. Súčasný stav

poznania útokov postrannými kanálmi a protiopatrení voči postranným kanálom je
zmapovaný v Kapitole 2. Nachádza sa tu zoznam postranných kanálov, delenie po-
stranných kanálov, popis krokov útoku postrannými kanálmi, niekoľko príkladov úto-
kov postrannými kanálmi, ako aj delenie opatrení proti útokom postrannými kanálmi.
Ciele dizertačnej práce je možné nájsť v Kapitole 3. Počas realizácie popisovaných
experimentov a dosahovaní požadovaných výsledkov boli analyzované symetrické ako
aj asymetrické kryptosystémy, a to AES, ECDSA a McEliece PKC. Metodológia je pod-
robne popísaná v Kapitole 4.

AES bol implementovaný v dvoch analyzovaných laboratórnych kryptogra�ckých
zariadeniach. V µkontrolery PIC18F2520 a v FPGA ACTEL FUSION M7AFS600, ktoré
sa líšili technológiou ako aj prípadmi použitia. V µkontroler PIC18F2520 bol imple-
mentovaný AES-128 so sekvenčným spracovávaním stavu AES po 8 bitoch, pretože
je to 8-bitový µkontroler. Útok na tento µkontroler s AES-128 bol prezentovaný v
(Repka [50]). V FPGA ACTEL FUSION M7AFS600 bol implementovaný AES-128 so
128-bitovou dátovou cestou. Celý stav AES-128 bol spracovávaný paralelne. ECDSA
bol analyzovaný v FPGA ALTERA Cyclone III, presnejšie bola implementovaná len
časť ECDSA, ktorá bola podrobená útokom. Bola to 16-bitová celočíselná násobička.
McEliece PKC s nástrojom na meranie rôznych únikov postrannej informácie bol im-
plementovaný softvérovo na operačnom systéme Linux a Windows v jazyku C++ za
použitia knižnice NTL, pričom experimenty boli realizované na 64-bitovej platforme.

Uvedené kryptogra�cké zariadenia implementácie AES a ECDSA boli podrobené
skúmaniu útokov korelačnou analýzou spotreby a McEliece PKC bol podrobený skú-
maniu útokov analýzou doby výpočtu v spojení s vnášaním chýb do výpočtu. Na vy-
konanie analýz boli vyvinuté aplikácie v programovacom jazyku C++ na meranie elek-
trickej spotreby, elektromagnetického vyžarovania a meranie doby výpočtu (Časť 4.4).

65

Taktiež boli vyvinuté aplikácie na vykonávania samotných útokov v C++ a na vyko-
nanie analýz boli vyvinuté aplikácie v C++, MATLAB a R. Aplikácie boli vyvinuté s
podporou viac jadrových procesorov, čo zrýchlilo niekoľko násobne realizované vý-
počty. V Časti 4.3 Kapitoly 4 je uvedená topológia útokov a analýz.

Pri zrealizovaných analýzach a útokoch boli použité tri rôzne meracie zariadenia
pre rôzne meracie body (Časť 4.5). Bol použitý osciloskop LeCroy WavePro 7200A s
8-bitobým A/D prevodníkom s 2GHz šírkou pásma a 20GS/s vzorkovaciu frekvenciou,
ktorý bol použitý na meranie spotreby na zemi µkontroler PIC18F2520 pomocou pa-
sívnej napäťovej sondy. Druhým meracím zariadeným bol osciloskop LeCroy WavePro
740Zi s 8-bitovým A/D prevodníkom, 4GHz šírkou pásma a 40GS/s vzorkovaciu frek-
venciou, ktorý bol použitý na meranie spotreby FPGA ACTEL FUSION M7AFS600 na
rezistore umiestnenom na napájacej vetve jadra FPGA pomocou aktívnej diferenciálnej
napäťovej sondy, a tiež bodovou pasívnou elektromagnetickou sondou. Tretie mera-
cie zariadenie, osciloskop AGILENT INFINIIUM DSO9404A s 8-bit A/D prevodníkom,
4GHz šírkou pásma a 20GS/s vzorkovacou frekvenciou, bolo použité na meranie spot-
reby na kondenzátore na napájacej vetve jadra FPGA ALTERA Cyclone III pomocou
koaxiálneho kábla. Pri meraniach bola použitá sekvencia, vďaka čomu boli merania
veľmi rýchle. Napríklad meranie 1M priebehov spotreby trvá 65 s, pričom jeden prie-
beh spotreby obsahuje 2000 vzoriek (50 ns).

Útočiť na registre v programovateľnej logike FPGA (ďalej len „registre“) je jedno-
duchšie (hlavne čo sa týka ACTEL), ako útok na vstavané pamäte, ktoré tvoria súčasť
RAM FPGA, tzv. embedded memory (ďalej len „RAM“). Táto skutočnosť bola prezento-
vaná na FPGA rodiny FUSION M7AFS600 od �rmy ACTEL, kde bol implementovaný
AES S-box. V tomto FPGA sú pamäte RAM smart pamäťami implementovanými pri
jadre FPGA. Tieto pamäte sú napevno dané, ich logika sa neprogramuje, je možné len
do nich zapisovať, alebo z nich čítať. V prípade registra tomu tak nie je. Registre sú
v prípade ACTEL FUSION M7AFS600 tvorené pomocou tzv. „VersaTile“ buniek, pro-
stredníctvom ktorých je možné vytvoriť štandardné logické elementy, ako sú napríklad
OR, NAND, XOR, multiplexery, registre a latche. Princíp programovania je založený na
prepínačoch, ktoré sú realizované �ash pamäťovými bunkami. Prostredníctvom týchto
prepínačov je možné zvoliť aký element má daný VersaTile implementovať. Technoló-
gia s prepínačmi tvorenými �ash pamäťovými bunkami sa nazýva nevolatilna, pretože
po odpojení napájania sa nestratí kon�gurácia FPGA. Zneužiteľná spotreba teda závisí
od zložitosti hardvéru, resp. dĺžky spojov a elementov umiestnených na týchto spojoch,
cez ktoré sa musí vstupný signál pretransformovať, aby sa stal signálom výstupným.
Zabudovanými RAM pamäť je menšia, a teda na realizáciu svojej funkcie spotrebuje
menej elektrickej energie ako register v logike, ktorý je väčší, súčasťou programovateľ-
nými VersaTiles. Práve preto je vo všeobecnosti ťažšie zaútočiť na ASIC, než na FPGA,
pretože ASIC je jednoúčelový a optimalizovaný na jeho jednoúčelovú funkciu.

Útok na µkontroler alebo procesor je zväčša jednoduchší, než na FPGA. Dôvodom

66

je, že procesory majú rovnomernú zbernicu, po ktorej dáta prúdia sem a tam. Táto zber-
nica je symetrická a je konštante široká. Napríklad µkontroler PIC18F2520, ktorý bol
podrobený útokom, má 8-bitov širokú zbernicu, a teda vie spracovávať 8-bitové slová
v jednom takte. Ďalej môže byť šírka zbernice napríklad 16, 32, alebo 64 bitov. Pričom
platí, že čím širšia je zbernica, tým je útok zložitejší, pretože, buď jE SNR pre útok me-
nej priaznivé, alebo je počet hypotéz po zrealizovanom útoku vyšší. Keďže sú zbernice
symetrické, je možné spotrebu a vyžarovanie modelovať jednoduchšie, napr. HW mo-
delom spotreby. Naopak pri FPGA sú zbernice nesymetrické, nie sú rovnako dlhé, a
nie je na každom vodiči rovnaký počet logických elementov. Dokonca pri opätovnej
kon�gurácii FPGA rovnakou funkciou, je funkcia inak implementovaná, keďže syntéza
a spôsob smerovania (rooting) nie sú deterministické. Toto spôsobuje, že HW model
spotreby je v prípade FPGA omnoho menej efektívny než HD model spotreby. Tento
fakt bol potvrdení pri porovnaní útoku na AES-128 v 8-bitovom µkontroléri v (Repka
[50]), kde boli spracovávaný stav jedného kola sekvenčne S-box po S-boxe, narozdiel
od FPGA v (Repka, Gaspar, and Fischer [55]), kde bolo implementované spracováva-
nie celého stavu paralelne a teda všetkých 16 S-boxov súčasne. V práci k dizertačnej
skúške ďalej bolo ukázané, že počet hypotéz, závisí od architektúry kryptogra�ckého
algoritmu. Kryptogra�cký algoritmus môže byť implementovaný rôznym usporiada-
ním funkčných blokov a registrov. Práve preto je možné učiniť útok postranným kaná-
lom zložitejším a niekdy aj nemožným, ak sa tieto funkčné bloky a registre usporiadajú
s ohľadom na možnosti zostrojovania hypotéz. Takéto protiopatrenie zväčša nevyža-
duje žiadne ďalšie zdroje a tak môže byť takéto protiopatrenie klasi�kované ako „cost-
e�cient“, dokonca niekedy aj „zero-cost“ protiopatrenie. Takéto protiopatrenie bolo
prezentované na rôznych možnostiach RTL architektúry šifry AES-128 v (Repka et al.
[60]) a v (Repka [48]). Na úrovni architektúry bol tento typ protiopatrení využitý aj pri
návrhu kryptoprocesora v (Gaspar et al. [21]), ktorý vďaka tomuto prístupu získal pri-
rodzenú odolnosť voči niektorým typom postranných útkov, ako FIA, CPA, CEMA, na
určitej úrovni. Využilo sa usporiadanie funkčných blokov a návrh multiplexovania tak,
aby niektoré útoky neboli vôbec možné, a iné zasa viac zložité. K týmto protiopatre-
niam môžeme zaradiť aj návrh hierarchie manažmentu šifrovacích kľúčov a nastavenie
počtu použití kľúčov na rôznych úrovniach, pretože univariačné a multivariačné útoky
z rodiny DPA a CPA potrebujú, aby sa rovnaký kľuč použil niekoľko krát. Chvíľka po-
zornosti bola venovaná aj boolovskému maskovaniu S-boxu, ktorého aplikovanie musí
byť tiež zvážené na úrovni algoritmu, architektúry a implementácie, s ohľadom na mož-
nosti zostrojovania hypotéz, pretože pri nesprávnom alebo nedostatočnom maskovaní
nie je citlivý medzivýsledok zamaskovaný dostatočne, alebo je zamaskovaný na jed-
nom mieste, avšak na iných miestach zamaskovaný nemusí byť vôbec. Pri správnom
prístupe maskovania má byť maskovanie aplikované hneď na vstupe ešte pred prvou
registráciou v obvode a nová nezávislá maska má byť aplikovaná pred každým ďalším
spracovávaním alebo registrovaním. Výsledok má byť demaskovaný až pri výstupe z

67

obvodu po čítaní výsledku z registra. Maska má byť nezávislá nie len naprieč časovej
osi tak, ako sa dáta spracúvajú, ale aj naprieč šírky dát, napríklad ak sa dáta delia na
menšie bloky, ktoré sú spracovávané samostatne inými alebo rovnakými funkciami.

Kapitola 5 popisuje ďalšie dosiahnuté výsledky. Okrem útokov na symetrické šifry
boli skúmané aj útoky na asymetrickú kryptogra�u. Skúmanie bolo upriamené na elek-
tronický podpis ECDSA, ktorý je dnes veľmi využívaný (Časť 5.1.2). Doposiaľ bolo
publikovaných veľa útokov postrannými kanálmi na eliptické krivky a tiež adekvátne
protiopatrenia na eliminovanie publikovaných útokov. Pri útoku na ECDSA bolo uká-
zané, že nie len samotné operácie na eliptických krivkách môžu byť zraniteľné, a teda,
že nestačí aplikovať protiopatrenia len na ne, ale že aj operácie ako celočíselné násobe-
nie môžu poskytnúť únik o privátnom kľúči. Toto platí hlavne pri podpisoch z rodiny
DSA, pretože architektúra algoritmov týchto podpisov používa privátny kľúč až pri
konci algoritmu ako jeden z operandov celočíselného násobenia, kde druhý operand
tohto násobenia je známy, je časťou podpisu. Vďaka tomu sú útoky typu DPA, CPA, a
CEMA účinnými. Keďže tieto podpisy sú dnes zväčša implementované na smart kar-
tách, alebo iných zariadeniach využívajúce procesory, ktoré obsahujú 8, 16, alebo 32
bitové celočíselné násobičky, tieto útoky radikálne zužujú množinu možných privát-
nych kľúčov. V prácach (Repka, Tomeček, and Varchola [56]), (Repka and Varchola
[57]), (Repka, Varchola, and Drutarovsky [58]), bol vyšetrovaný tento aspekt. Úspeš-
nosť útoku s reálne nameranými dátami dosahuje vyšších hodnôt, ako úspešnosť útoku
so simulovanými vzorkami.Preto malo prínos uvažovať chybu odhadu zložitosti útoku
(reprezentovanú počtom zostávajúcich hypotéz po útoku) a úspešnosti útoku (prav-
depodobnosti, že medzi tými zostávajúcimi hypotézami je tá správna). V rámci tejto
úvahy boli vysvetlené chyby prvého a druhého druhu, ako aj bola zade�novaná rele-
vantná chyba z pohľadu analýzy úrovne zraniteľnosti kryptosystému. Významným prí-
nosom bolo zlepšenie úspešnosti v oboch prípadoch (Časť 5.2), v prípade nameraných
vzoriek, ako aj v prípade simulovaných vzoriek. Boli aplikované v sérii dva CPA útoky
s HD modelom spotreby. Prvý CPA útok zoradil všetky možné hypotézy o bloku kľúča.
V danom prípade bola použitá 16-bitová násobička v ALTERA FPGA. Za účelom dosia-
hnutia čo najpriaznivejšieho SNR pre útok, bol použitý HD model spotreby popisujúci
celú 32-bitovú šírku výsledku násobenia. Z predošlých experimentov bolo zistené, že
ak sa zoberie prvých 10 takto zoradených hypotéz po takto zrealizovanom CPA, tak je
medzi nimi správna hypotéza o privátnom kľúči s pravdepodobnosťou veľmi blízkou
1. V sérii druhý útok bol aplikovaný na týchto prvých 10 hypotéz za účelom ich prezo-
radenia. V druhom útoku bol použitý HD model spotreby popisujúci len spodných 16
bitov výsledku násobenia. Tento postup priniesol značné zlepšenie pri útoku s použi-
tím nameraných vzoriek a ešte väčšie zlepšenie úspešnosti v prípade použitia simulo-
vaných vzoriek. Prínos sa prejavil aj v znížení zložitosti a zvýšení úspešnosti útoku. Po
zrealizovaní tohto druhého útoku sa chyba simulovaného útoku stáva zanedbateľnou,
čo ma veľký význam pri odhadoch zložitosti a úspešnosti útokov na základe simulácií.

68

Porovnanie úspešnosti a zložitosti útoku po prvom a druhom CPA je možné nájsť v
(Repka, Varchola, and Drutarovsky [58]; Sec. 5.2; Obr. 5.6; Tab. 5.1).

Ako protiopatrenie voči tomuto útoku bolo navrhnuté efektívne protiopatrenie ne-
vyžadujúce žiadne ďalšie zdroje, až na jedno násobenie navyše (Repka, Varchola, and
Drutarovsky [58]; Varchola et al. [78]; Časť 5.3). Na maskovanie bolo použité náhodné
číslo, ktoré sa používa v rámci (EC)DSA na konci výpočtov. Toto náhodné číslo bolo
použité na zamaskovanie citlivého násobenia známeho výstupného operandu s privát-
nym (16-bit blok privátneho kľúča).

V práci (Varchola, Drutarovský, and Repka [79]) sa tiež zaoberáme skutočne ná-
hodnými generátormi.

Doposiaľ boli skúmané útoky využívajúce únik citlivej informácie v spotrebe elek-
trickej energie alebo v elektromagnetickom vyžarovaní. Avšak v práci boli skúmané aj
útoky využívajúce postranný kanál doby výpočtu algoritmu alebo jeho častí. Pri skú-
maní tohto typu postranného útoku bol analýze doby výpočtu podrobený Pattersonov
algebraický dekódovací algoritmus, ktorý je súčasťou dešifrovacieho procesu McEliece
kryptosystému s verejným kľúčom. Ešte pred samotným podrobením tohto krypto-
systému analýze doby výpočtu bolo nutné tento algoritmus implementovať. Bola vy-
vinutá implementácia originálneho McEliece PKC (Časť 5.4), presne podľa popisu sa-
mého McEliece (1978). Táto implementácia, ak je správne použitá (CCA2 bezpečne),
je považovaná za post-kvantový kryptosystém s verejným kľúčom, teda kryptosystém
odolný voči kvantovej kryptoanalýze, kryptoanalýze využívajúcej kvantový počítač.
Táto implementácia bola nazvaná McEliece PKC Calculator (Repka [52]), práve preto,
že poskytuje testovacie vektory pre každý relevantný medzivýsledok, a navyše im-
plementuje aj nástroj na meranie doby výpočtu jednotlivých krokov Pattersonovho
algebraického dekódovacieho algoritmu. Tento nástroj na meranie doby výpočtu je
prezentovaný v (Repka [51]). Prehľad rôznych variant tohto kryptosystému a jeho bez-
pečnosti je možné nájsť v (Repka and Zajac [59]), ako aj v (Repka and Cayrel [54]), kde
je poskytnutý celkový pohľad na kryptogra�u založenú na lineárnych samoopravných
kódoch. Analýza doby výpočtu rôznych krokov dekódovacieho algoritmu je uvedená
v Častiach 5.5 a 5.6 kde je aj táto analýza vylepšená. Protiopatrenie je diskutované v
Časti 5.7. Niekoľko poznámok nad modularnou redukciou v rozšírených konečných
poliach je možné nájsť v práci (Repka [53]). V poradí posledným zaujímavým výsled-
kom je efektívna metóda na výpočet p-tej odmocniny v rozšírených konečných poliach
charakteristiky p ≥ 2 (Sec. 5.8). Táto metóda bola publikovaná v Repka [49]. Kapitoly
6 a 7 uvádzajú zoznam príspevkov autora a záver.

69

70

References

[1] SPS Project Number: 984520. Secure implementation of post-quantum cryptogra-
phy. 2013. url: http://re-search.info/node/27.

[2] Mehdi-Laurent Akkar and Christophe Giraud. “An Implementation of DES and
AES, Secure against Some Attacks”. English. In: Cryptographic Hardware and
Embedded Systems—CHES 2001. Ed. by ÇetinK. Koç, David Naccache, and Christof
Paar. Vol. 2162. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2001, pp. 309–318. isbn: 978-3-540-42521-2. doi:10.1007/3-540-44709-
1_26. url: http://dx.doi.org/10.1007/3-540-44709-1_26.

[3] Mehdi-Laurentm Akkar and Christophe Giruad. “An Implementation of DES and
AES, Secure against Some Attacks”. In: Cryptographic Hardware and Embedded
Systems - CHESS 2001, Third InterationalWorkshop, Paris, France, May 14-16, 2001,
Proceedings. Springer, 2001, pp. 309–318.

[4] Alessandro Barenghi et al. “Exploring the Feasibility of Low Cost Fault Injec-
tion Attacks on Sub-Threshold Devices through an example of a 65nm AES
implementation”. In: Workshop on RFID Security – RFIDSec’11. Amherst, Mas-
sachusetts, USA, 2011.

[5] Lyonel Barthe, Pascal Benoit, and Lionel Torres. “Investigation of a Masking
Countermeasure against Side-Channel Attacks for RISC-based Processor Archi-
tectures”. English. In: FPL’10: Field Programmable Logic and Applications. Milan,
Italy, 2010, pp. 139 –144. url: http://hal-lirmm.ccsd.cnrs.fr/
lirmm-00548802/en/.

[6] Lejla Batina et al. “Mutual Information Analysis: a Comprehensive Study”. En-
glish. In: Journal of Cryptology 24.2 (2011), pp. 269–291. issn: 0933-2790. doi:
10.1007/s00145-010-9084-8. url: http://dx.doi.org/10.
1007/s00145-010-9084-8.

71

http://re-search.info/node/27
http://dx.doi.org/10.1007/3-540-44709-1_26
http://dx.doi.org/10.1007/3-540-44709-1_26
http://dx.doi.org/10.1007/3-540-44709-1_26
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00548802/en/
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00548802/en/
http://dx.doi.org/10.1007/s00145-010-9084-8
http://dx.doi.org/10.1007/s00145-010-9084-8
http://dx.doi.org/10.1007/s00145-010-9084-8

[7] DanielJ. Bernstein, Tanja Lange, and Christiane Peters. “Wild McEliece Incog-
nito”. English. In: Post-Quantum Cryptography. Ed. by Bo-Yin Yang. Vol. 7071.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 244–
254. isbn: 978-3-642-25404-8. doi: 10.1007/978-3-642-25405-5_16.
url: http://dx.doi.org/10.1007/978-3-642-25405-5_16.

[8] Andrey Bogdanov et al. “Di�erential Cache-Collision Timing Attacks on AES
with Applications to Embedded CPUs”. In: Topics in Cryptology - CT-RSA 2010.
Ed. by Josef Pieprzyk. Vol. 5985. Lecture Notes in Computer Science. 10.1007/978-
3-642-11925-5_17. Springer Berlin / Heidelberg, 2010, pp. 235–251. isbn: 978-3-
642-11924-8. url: http://dx.doi.org/10.1007/978-3-642-
11925-5_17.

[9] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation Power Analysis
with a Leakage Model”. In: CHES. 2004, pp. 16–29.

[10] Florent Bruguier et al. “A New Process Characterization Method for FPGAs
Based on Electromagnetic Analysis”. English. In: FPL’11: 21st International Con-
ference on Field Programmable Logic and Applications. Greece, Sept. 2011, N/A.
url: http://hal-lirmm.ccsd.cnrs.fr/lirmm-00616954/
en/.

[11] David Brumley and Dan Boneh. “Remote timing attacks are practical”. In: Pro-
ceedings of the 12th conference on USENIX Security Symposium - Volume 12. Wash-
ington, DC: USENIX Association, 2003, p. 1. url: http://portal.acm.
org/citation.cfm?id=1251354.

[12] Pierre-Loius Cayerl. Code based cryptography. 2012. url: http://cayrel.
net/research/code-based-cryptography/code-based-
cryptosystems/.

[13] J.-L. Danger et al. “Overview of Dual rail with Precharge logic styles to thwart
implementation-level attacks on hardware cryptoprocessors”. In: Signals, Cir-
cuits and Systems (SCS), 2009 3rd International Conference on. 2009, pp. 1–8. doi:
10.1109/ICSCS.2009.5412599.

[14] Guo Liang Ding et al. “Correlation Electromagnetic Analysis for Cryptographic
Device”. In: Proceedings of the 2009 Paci�c-Asia Conference on Circuits, Com-
munications and Systems. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 388–391. isbn: 978-0-7695-3614-9. doi: 10.1109/PACCS.2009.144.
url: http://dl.acm.org/citation.cfm?id=1636711.
1637668.

72

http://dx.doi.org/10.1007/978-3-642-25405-5_16
http://dx.doi.org/10.1007/978-3-642-25405-5_16
http://dx.doi.org/10.1007/978-3-642-11925-5_17
http://dx.doi.org/10.1007/978-3-642-11925-5_17
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00616954/en/
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00616954/en/
http://portal.acm.org/citation.cfm?id=1251354
http://portal.acm.org/citation.cfm?id=1251354
http://cayrel.net/research/code-based-cryptography/code-based-cryptosystems/
http://cayrel.net/research/code-based-cryptography/code-based-cryptosystems/
http://cayrel.net/research/code-based-cryptography/code-based-cryptosystems/
http://dx.doi.org/10.1109/ICSCS.2009.5412599
http://dx.doi.org/10.1109/PACCS.2009.144
http://dl.acm.org/citation.cfm?id=1636711.1637668
http://dl.acm.org/citation.cfm?id=1636711.1637668

[15] Javad Doliskani and Éric Schost. “Computing in Degree 2K 2K-extensions of
Finite Fields of Odd Characteristic”. In:Des. Codes Cryptography 74.3 (Mar. 2015),
pp. 559–569. issn: 0925-1022. doi: 10.1007/s10623-013-9875-7. url:
http://dx.doi.org/10.1007/s10623-013-9875-7.

[16] Martin Döring. “On the Theory and Practice of Quantum-Immune Cryptogra-
phy”. PhD thesis. Darmstadt: Technische Universität, 2008. url: http://
tuprints.ulb.tu-darmstadt.de/1072/.

[17] Thomas Eisenbarth et al. “MicroEliece: McEliece for Embedded Devices”. In:
CHES. Ed. by Christophe Clavier and Kris Gaj. Vol. 5747. LNCS. Springer, 2009,
pp. 49–64. isbn: 978-3-642-04137-2.

[18] Daniela Engelbert, Raphael Overbeck, and Arthur Schmidt. “A Summary of McEliece-
Type Cryptosystems and their Security”. In: J.Mathematical Cryptology 1.2 (2007),
pp. 151–199.

[19] Junfeng Fan et al. “State-of-the-art of secure ECC implementations: a survey
on known side-channel attacks and countermeasures”. In: Hardware-Oriented
Security and Trust (HOST), 2010 IEEE International Symposium on. 2010, pp. 76–
87. doi: 10.1109/HST.2010.5513110.

[20] Matteo Frigo and Steven G. Johnson. “The Design and Implementation of FFTW3”.
In: Proceedings of the IEEE 93.2 (2005). Special issue on Program Generation, Op-
timization, and Platform Adaptation, pp. 216–231.url:http://www.fftw.
org/.

[21] Lubos Gaspar et al. “Cryptoprocessor with Native Resistance against Side Chan-
nel and Fault Injection Attacks”. In: Proceedings of the 13th International Con-
ference on Telecommunications and Informatics (TELE-INFO’14), Istanbul, Turkey,
December 15-17, 2014. Ed. by Nikos E. Mastorakis et al. WSEAS press, 2014,
pp. 88–97.

[22] Daniel Genkin, Adi Shamir, and Eran Tromer. “RSA Key Extraction via Low-
Bandwidth Acoustic Cryptanalysis”. In: Advances in Cryptology - CRYPTO 2014
- 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part I. Ed. by Juan A. Garay and Rosario Gennaro. Vol. 8616. Lecture
Notes in Computer Science. Springer, 2014, pp. 444–461. isbn: 978-3-662-44370-
5. doi: 10.1007/978-3-662-44371-2_25. url: http://dx.doi.
org/10.1007/978-3-662-44371-2_25.

[23] Daniel Genkin et al. “Stealing Keys from PCs Using a Radio: Cheap Electromag-
netic Attacks on Windowed Exponentiation”. In: Cryptographic Hardware and
Embedded Systems - CHES 2015 - 17th InternationalWorkshop, Saint-Malo, France,
September 13-16, 2015, Proceedings. 2015, pp. 207–228. doi: 10.1007/978-

73

http://dx.doi.org/10.1007/s10623-013-9875-7
http://dx.doi.org/10.1007/s10623-013-9875-7
http://tuprints.ulb.tu-darmstadt.de/1072/
http://tuprints.ulb.tu-darmstadt.de/1072/
http://dx.doi.org/10.1109/HST.2010.5513110
http://www.fftw.org/
http://www.fftw.org/
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-662-44371-2_25
http://dx.doi.org/10.1007/978-3-662-48324-4_11
http://dx.doi.org/10.1007/978-3-662-48324-4_11
http://dx.doi.org/10.1007/978-3-662-48324-4_11

3-662-48324-4_11. url: http://dx.doi.org/10.1007/978-
3-662-48324-4_11.

[24] V. D. Goppa. “A New Class of Linear Error Correcting Codes”. In: Probl. Pered.
Inform. 6 (Sept. 1970), pp. 24–30.

[25] Christopher Hadnagy. Social engineering : the art of human hacking. Hoboken,
N.J. Wiley Chichester: John Wiley, 2011. isbn: 978-0-470-63953-5. url: http:
//opac.inria.fr/record=b1133491.

[26] J. Alex Halderman et al. “Lest We Remember: Cold-boot Attacks on Encryp-
tion Keys”. In: Commun. ACM 52.5 (May 2009), pp. 91–98. issn: 0001-0782. doi:
10.1145/1506409.1506429. url: http://doi.acm.org/10.
1145/1506409.1506429.

[27] Annelie Heuser and Michael Zohner. “Intelligent Machine Homicide”. English.
In:Constructive Side-Channel Analysis and Secure Design. Ed. by Werner Schindler
and SorinA. Huss. Vol. 7275. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, pp. 249–264. isbn: 978-3-642-29911-7. doi: 10.1007/978-
3-642-29912-4_18. url: http://dx.doi.org/10.1007/978-
3-642-29912-4_18.

[28] Stefan Heyse. “Low-Reiter: Niederreiter Encryption Scheme for Embedded Mi-
crocontrollers”. In: Post-Quantum Cryptography, Third International Workshop,
PQCrypto 2010, Darmstadt, Germany,May 25-28, 2010. Proceedings. Ed. by Nicolas
Sendrier. Vol. 6061. Lecture Notes in Computer Science. Springer, 2010, pp. 165–
181. isbn: 978-3-642-12928-5. doi: 10.1007/978-3-642-12929-2_13.
url: http://dx.doi.org/10.1007/978-3-642-12929-2_13.

[29] Stefan Heyse and Tim Güneysu. “Towards One Cycle per Bit Asymmetric En-
cryption: Code-Based Cryptography on Recon�gurable Hardware”. In: CHES.
Ed. by Emmanuel Prou� and Patrick Schaumont. Vol. 7428. LNCS. Springer,
2012, pp. 340–355. isbn: 978-3-642-33026-1.

[30] Martin Hlaváč. “Využití postranných kanálů v symetrické a asymetrické kryp-
toanalýze”. In:Disertačná práce. Universita Karlova v Praze, Matematicko-fyzikální
fakulta, Katedra algebry, 2010.

[31] Naofumi Homma et al. “High-Resolution Side-Channel Attack Using Phase-Based
Waveform Matching”. In:Cryptographic Hardware and Embedded Systems - CHES
2006. Ed. by Louis Goubin and Mitsuru Matsui. Vol. 4249. Lecture Notes in Com-
puter Science. 10.1007/11894063_15. Springer Berlin / Heidelberg, 2006, pp. 187–
200. isbn: 978-3-540-46559-1. url: http://dx.doi.org/10.1007/
11894063_15.

74

http://dx.doi.org/10.1007/978-3-662-48324-4_11
http://dx.doi.org/10.1007/978-3-662-48324-4_11
http://dx.doi.org/10.1007/978-3-662-48324-4_11
http://dx.doi.org/10.1007/978-3-662-48324-4_11
http://dx.doi.org/10.1007/978-3-662-48324-4_11
http://opac.inria.fr/record=b1133491
http://opac.inria.fr/record=b1133491
http://dx.doi.org/10.1145/1506409.1506429
http://doi.acm.org/10.1145/1506409.1506429
http://doi.acm.org/10.1145/1506409.1506429
http://dx.doi.org/10.1007/978-3-642-29912-4_18
http://dx.doi.org/10.1007/978-3-642-29912-4_18
http://dx.doi.org/10.1007/978-3-642-29912-4_18
http://dx.doi.org/10.1007/978-3-642-29912-4_18
http://dx.doi.org/10.1007/978-3-642-12929-2_13
http://dx.doi.org/10.1007/978-3-642-12929-2_13
http://dx.doi.org/10.1007/11894063_15
http://dx.doi.org/10.1007/11894063_15

[32] Michael Hutter et al. “Attacking ECDSA-Enabled RFID Devices”. English. In: Ap-
plied Cryptography and Network Security. Ed. by Michel Abdalla et al. Vol. 5536.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009, pp. 519–
534. isbn: 978-3-642-01956-2. doi: 10.1007/978-3-642-01957-9_32.
url: http://dx.doi.org/10.1007/978-3-642-01957-9_32.

[33] “IEEE Standard Speci�cations for Public-Key Cryptography”. In: IEEE Std 1363-
2000 (2000), pp. 1–228. doi: 10.1109/IEEESTD.2000.92292.

[34] Kazukuni Kobara and Hideki Imai. “Semantically Secure McEliece Public-Key
Cryptosystems-Conversions for McEliece PKC”. In: Public Key Cryptography.
Ed. by Kwangjo Kim. Vol. 1992. LNCS. Springer, 2001, pp. 19–35. isbn: 3-540-
41658-7.

[35] Paul C. Kocher, Joshua Ja�e, and Benjamin Jun. “Di�erential Power Analysis”.
In: Proceedings of the 19th Annual International Cryptology Conference on Ad-
vances in Cryptology. CRYPTO ’99. London, UK: Springer-Verlag, 1999, pp. 388–
397. isbn: 3-540-66347-9. url: http://dl.acm.org/citation.cfm?
id=646764.703989.

[36] PaulC. Kocher. “Timing Attacks on Implementations of Di�e-Hellman, RSA,
DSS, and Other Systems”. English. In: Advances in Cryptology — CRYPTO ’96. Ed.
by Neal Koblitz. Vol. 1109. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1996, pp. 104–113. isbn: 978-3-540-61512-5. doi: 10.1007/3-
540-68697-5_9. url: http://dx.doi.org/10.1007/3-540-
68697-5_9.

[37] J.S. Lemos-Neto and V.C. da Rocha. “Cyclically permutable codes speci�ed by
roots of generator polynomial”. In: Electronics Letters 50.17 (2014), pp. 1202–1204.
issn: 0013-5194. doi: 10.1049/el.2014.0296.

[38] Huiyun Li, Keke Wu, and Fengqi Yu. “Enhanced correlation power analysis at-
tack against trusted systems”. In: Security and CommunicationNetworks 4.1 (2011),
pp. 3–10.

[39] H. Maghrebi et al. “Evaluation of countermeasure implementations based on
Boolean masking to thwart side-channel attacks”. In: Proc. 3rd Int Signals, Cir-
cuits and Systems (SCS) Conf. 2009, pp. 1–6. doi: 10.1109/ICSCS.2009.
5412597. url: http://dx.doi.org/10.1109/ICSCS.2009.
5412597.

[40] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks -
revealing the secrets of smart cards. Springer, 2007. isbn: 978-0-387-30857-9.

75

http://dx.doi.org/10.1007/978-3-642-01957-9_32
http://dx.doi.org/10.1007/978-3-642-01957-9_32
http://dx.doi.org/10.1109/IEEESTD.2000.92292
http://dl.acm.org/citation.cfm?id=646764.703989
http://dl.acm.org/citation.cfm?id=646764.703989
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1049/el.2014.0296
http://dx.doi.org/10.1109/ICSCS.2009.5412597
http://dx.doi.org/10.1109/ICSCS.2009.5412597
http://dx.doi.org/10.1109/ICSCS.2009.5412597
http://dx.doi.org/10.1109/ICSCS.2009.5412597

[41] Philippe Maurine et al. “Local and Direct Power Injection on CMOS Integrated
Circuits”. English. In: The 8thWorkshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC 2011). Nara, Japan, Sept. 2011, pp. 001 –010. url: http://
hal-lirmm.ccsd.cnrs.fr/lirmm-00607868/en/.

[42] R. J. McEliece. “A public-key cryptosystem based on algebraic coding theory”.
In: DSN progress report 42.44 (1978), pp. 114–116. url: http://www.cs.
colorado.edu/~jrblack/class/csci7000/f03/papers/
mceliece.pdf.

[43] Marcel Medwed and Elisabeth Oswald. “Template Attacks on ECDSA”. English.
In: Information Security Applications. Ed. by Kyo-Il Chung, Kiwook Sohn, and
Moti Yung. Vol. 5379. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2009, pp. 14–27. isbn: 978-3-642-00305-9. doi: 10.1007/978-3-
642-00306-6_2. url: http://dx.doi.org/10.1007/978-3-
642-00306-6_2.

[44] Elisabeth Oswald et al. “Practical Second-Order DPA Attacks for Masked Smart
Card Implementations of Block Ciphers”. English. In: Topics in Cryptology – CT-
RSA 2006. Ed. by David Pointcheval. Vol. 3860. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, 2006, pp. 192–207. isbn: 978-3-540-31033-4.
doi: 10.1007/11605805_13. url: http://dx.doi.org/10.
1007/11605805_13.

[45] D. Panario and D. Thomson. “E�cient pth root computations in �nite �elds
of characteristic p”. English. In: Designs, Codes and Cryptography 50.3 (2009),
pp. 351–358. issn: 0925-1022. doi: 10.1007/s10623-008-9236-0. url:
http://dx.doi.org/10.1007/s10623-008-9236-0.

[46] N. J. Patterson. “The algebraic decoding of Goppa codes”. In: IEEE Transactions
on Information Theory 21 (2 1975), pp. 203–207. doi: 10.1109/TIT.1975.
1055350.

[47] Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic Analysis (EMA):
Measures and Counter-Measures for Smart Cards”. In: Proceedings of the Inter-
national Conference on Research in Smart Cards: Smart Card Programming and
Security. E-SMART ’01. London, UK, UK: Springer-Verlag, 2001, pp. 200–210.
isbn: 3-540-42610-8. url: http://dl.acm.org/citation.cfm?id=
646803.705980.

[48] Gaspar Ľuboš Repka Marek. “Hamming Distance Power Model is Architecture
Dependent”. In: ELOSYS. Elektrotechnika, informatika a telekomunikácie 2012 Trenčín,
9.-12.10.2012. Nakladateľstvo STU, 2012.

76

http://hal-lirmm.ccsd.cnrs.fr/lirmm-00607868/en/
http://hal-lirmm.ccsd.cnrs.fr/lirmm-00607868/en/
http://www.cs.colorado.edu/~jrblack/class/csci7000/f03/papers/mceliece.pdf
http://www.cs.colorado.edu/~jrblack/class/csci7000/f03/papers/mceliece.pdf
http://www.cs.colorado.edu/~jrblack/class/csci7000/f03/papers/mceliece.pdf
http://dx.doi.org/10.1007/978-3-642-00306-6_2
http://dx.doi.org/10.1007/978-3-642-00306-6_2
http://dx.doi.org/10.1007/978-3-642-00306-6_2
http://dx.doi.org/10.1007/978-3-642-00306-6_2
http://dx.doi.org/10.1007/11605805_13
http://dx.doi.org/10.1007/11605805_13
http://dx.doi.org/10.1007/11605805_13
http://dx.doi.org/10.1007/s10623-008-9236-0
http://dx.doi.org/10.1007/s10623-008-9236-0
http://dx.doi.org/10.1109/TIT.1975.1055350
http://dx.doi.org/10.1109/TIT.1975.1055350
http://dl.acm.org/citation.cfm?id=646803.705980
http://dl.acm.org/citation.cfm?id=646803.705980

[49] M. Repka. “Computing pth roots in extended �nite �elds of prime characteristic
p >= 2”. In: Electronics Letters 52.9 (Apr. 2016), pp. 718–719. issn: 0013-5194. doi:
10.1049/el.2015.4141.

[50] Marek Repka. “DPA of an AES Implementation”. In: KOZÁKOVÁ, A. ELITECH
2011: 13th Conference of Doctoral Students Faculty of Electrical Engineering and
Information Technology. Bratislava, Slovak Republic, 17 May, 2011.Nakladateľstvo
STU, 2011, pp. 1–6. isbn: 978-80-227-3500-1.

[51] Marek Repka. “Leakage Measurement Tool of McEliece PKC Calculator”. In: Pro-
ceedings of the 13th International Conference on Telecommunications and Infor-
matics (TELE-INFO’14), Istanbul, Turkey, December 15-17, 2014. Ed. by Nikos E.
Mastorakis et al. WSEAS press, 2014, pp. 124–132.

[52] Marek Repka. “McEliece PKC Calculator”. In: Journal of Electrical Engineering
65.6 (2014), pp. 333–341.

[53] Marek Repka. “Note on modular reduction in extended �nite �elds and polyno-
mial rings for simple hardware”. In: Journal of Electrical Engineering 67.1 (2016),
pp. 56–60.

[54] Marek Repka and Pierre-Louis Cayrel. In: Multidisciplinary Perspectives in Cryp-
tology and Information Security. Ed. by Sattar B. Sadkhan Al Maliky and Nidaa A.
Abaas. IGI Global, 2014. Chap. Cryptography Based on Error Correcting Codes:
A Survey, pp. 133–156.

[55] Marek Repka, Lubos Gaspar, and Viktor Fischer. “Correlation Power Analysis of
an AES Implementation in FPGA”. In: TatraCrypt 2012: Book of abstracts. 2012.

[56] Marek Repka, Jozef Tomeček, and Miachal Varchola. “Correlation Hamming Dis-
tance Power Analysis of 16-bit Integer Multiplier in FPGA”. In: Proceedings of
the 13th International Conference on Telecommunications and Informatics (TELE-
INFO’14), Istanbul, Turkey, December 15-17, 2014. Ed. by Nikos E. Mastorakis et
al. WSEAS press, 2014, pp. 49–53.

[57] Marek Repka and Michal Varchola. “Correlation Power Analysis using Measured
and Simulated Power Traces based on Hamming Distance Power Model – At-
tacking 16-bit Integer Multiplier in FPGA”. In: International Journal of Computer
Network and Information Security(IJCNIS) 7.6 (2014), pp. 10–16.

[58] Marek Repka, Michal Varchola, and Miloš Drutarovsky. “Improving CPA against
DSA and ECDSA”. In: Journal of Electrical Engineering 66.3 (2015), pp. 159–163.

[59] Marek Repka and Pavol Zajac. “Overview of the McEliece Cyptosystem and its
Security”. In: Tatra Mt. Math. Publ 60.3 (2014), pp. 57–83.

77

http://dx.doi.org/10.1049/el.2015.4141

[60] Marek Repka et al. “Hamming Distance Power Model Analysis of AES at Ar-
chitecture Level”. In: COSADE 2012: 3rd International Workshop on Constructive
Side-Channel Analysis and Secure Design. Darmstadt, Germany, May 3-4, 2012.
Darmstadt, Technische Universität Darmstadt.

[61] Matthieu Rivain. “Di�erential Fault Analysis on DES Middle Rounds”. In: Cryp-
tographic Hardware and Embedded Systems - CHES 2009. Ed. by Christophe Clavier
and Kris Gaj. Vol. 5747. Lecture Notes in Computer Science. Springer, 2009,
pp. 457 –469.

[62] Matthieu Rivain. “On the Exact Success Rate of Side Channel Analysis in the
Gaussian Model”. English. In: Selected Areas in Cryptography. Ed. by Rober-
toMaria Avanzi, Liam Keliher, and Francesco Sica. Vol. 5381. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2009, pp. 165–183. isbn: 978-3-
642-04158-7. doi: 10.1007/978-3-642-04159-4_11. url: http:
//dx.doi.org/10.1007/978-3-642-04159-4_11.

[63] Matthieu Rivain and Emmanuel Prou�. “Provably Secure Higher-Order Masking
of AES”. In: Cryptographic Hardware and Embedded Systems, CHES 2010, 12th
International Workshop. Ed. by Stefan Mangard and François-Xavier Standaert.
Vol. 6225. Lecture Notes in Computer Science. Springer, 2010, pp. 413 –427.

[64] Werner Schindler, Kerstin Lemke, and Christof Paar. “A Stochastic Model for
Di�erential Side Channel Cryptanalysis”. English. In: Cryptographic Hardware
and Embedded Systems –CHES 2005. Ed. by JosyulaR. Rao and Berk Sunar. Vol. 3659.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2005, pp. 30–
46. isbn: 978-3-540-28474-1. doi: 10.1007/11545262_3. url: http:
//dx.doi.org/10.1007/11545262_3.

[65] Robert Sedgewick. “Permutation Generation Methods”. In: ACM Comput. Surv.
9.2 (June 1977), pp. 137–164. issn: 0360-0300. doi: 10 . 1145 / 356689 .
356692. url: http://doi.acm.org/10.1145/356689.356692.

[66] Nicolas Sendrier, ed. Post-Quantum Cryptography, Third International Workshop,
PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings. Vol. 6061.
Lecture Notes in Computer Science. Springer, 2010. isbn: 978-3-642-12928-5.
doi: 10.1007/978-3-642-12929-2. url: http://dx.doi.
org/10.1007/978-3-642-12929-2.

[67] Daniel Shanks. “Five number-theoretic algorithms”. In: Proceedings of the Sec-
ond Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg,
Man., 1972). Winnipeg, Man.: Utilitas Math., 1973.

[68] Abdulhadi Shoufan et al. “A Novel Cryptoprocessor Architecture for the McEliece
Public-Key Cryptosystem”. In: IEEE Trans. Computers 59.11 (2010), pp. 1533–
1546.

78

http://dx.doi.org/10.1007/978-3-642-04159-4_11
http://dx.doi.org/10.1007/978-3-642-04159-4_11
http://dx.doi.org/10.1007/978-3-642-04159-4_11
http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1007/11545262_3
http://dx.doi.org/10.1145/356689.356692
http://dx.doi.org/10.1145/356689.356692
http://doi.acm.org/10.1145/356689.356692
http://dx.doi.org/10.1007/978-3-642-12929-2
http://dx.doi.org/10.1007/978-3-642-12929-2
http://dx.doi.org/10.1007/978-3-642-12929-2

[69] V. Shoup. NTL: A Library for doing Number Theory (version 6.0.0). 2013. url:
http://www.shoup.net/ntl/.

[70] Sergei P. Skorobogatov. “Semi-invasive attacks – A new approach to hardware
security analysis”. In: UCAM-CL-TR-630. 2005. url: http://www.cl.
cam.ac.uk/techreports/UCAM-CL-TR-630.pdf.

[71] François-Xavier Standaert, TalG. Malkin, and Moti Yung. “A Uni�ed Framework
for the Analysis of Side-Channel Key Recovery Attacks”. English. In: Advances
in Cryptology - EUROCRYPT 2009. Ed. by Antoine Joux. Vol. 5479. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2009, pp. 443–461. isbn: 978-
3-642-01000-2. doi: 10.1007/978-3-642-01001-9_26. url: http:
//dx.doi.org/10.1007/978-3-642-01001-9_26.

[72] Falko Strenzke. “A smart card implementation of the mceliece PKC”. In: The 4th
IFIP WG 11.2, Proceedings. WISTP’10. Passau, Germany: Springer-Verlag, 2010,
pp. 47–59. isbn: 3-642-12367-8, 978-3-642-12367-2. doi: 10.1007/978-3-
642-12368-9_4.

[73] Falko Strenzke. “A Smart Card Implementation of the McEliece PKC”. In: Infor-
mation Security Theory and Practices. Security and Privacy of Pervasive Systems
and Smart Devices, 4th IFIP WG 11.2 International Workshop, WISTP 2010, Passau,
Germany, April 12-14, 2010. Proceedings. 2010, pp. 47–59. doi: 10.1007/978-
3-642-12368-9_4. url: http://dx.doi.org/10.1007/978-
3-642-12368-9_4.

[74] Falko Strenzke. “A Timing Attack against the Secret Permutation in the McEliece
PKC”. In: PQCrypto. Ed. by Nicolas Sendrier. Vol. 6061. Lecture Notes in Com-
puter Science. Springer, 2010, pp. 95–107. isbn: 978-3-642-12928-5. doi: 10.
1007/978-3-642-12929-2. url: http://dx.doi.org/10.
1007/978-3-642-12929-2.

[75] Falko Strenzke. “E�ciency and Implementation Security of Code-based Cryp-
tosystems”. PhD thesis. Germany: Universitat Darmstadt, 2013.

[76] Falko Strenzke. “Timing Attacks against the Syndrome Inversion in Code-Based
Cryptosystems”. In: PQCrypto. Ed. by Philippe Gaborit. Vol. 7932. LNCS. Springer,
2013, pp. 217–230. isbn: 978-3-642-38615-2.

[77] Falko Strenzke et al. “Side Channels in the McEliece PKC”. In: PQCrypto. Ed. by
Johannes Buchmann and Jintai Ding. Vol. 5299. LNCS. Springer, 2008, pp. 216–
229. isbn: 978-3-540-88402-6.

[78] M. Varchola et al. “Side Channel Attack on Multiprecision Multiplier Used in
Protected ECDSA Implementation”. In: 2015 International Conference on ReCon-
Figurable Computing and FPGAs, ReConFig15, Cancun,Mexico, December 7-9, 2015.
IEEE.

79

http://www.shoup.net/ntl/
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-01001-9_26
http://dx.doi.org/10.1007/978-3-642-12368-9_4
http://dx.doi.org/10.1007/978-3-642-12368-9_4
http://dx.doi.org/10.1007/978-3-642-12368-9_4
http://dx.doi.org/10.1007/978-3-642-12368-9_4
http://dx.doi.org/10.1007/978-3-642-12368-9_4
http://dx.doi.org/10.1007/978-3-642-12368-9_4
http://dx.doi.org/10.1007/978-3-642-12929-2
http://dx.doi.org/10.1007/978-3-642-12929-2
http://dx.doi.org/10.1007/978-3-642-12929-2
http://dx.doi.org/10.1007/978-3-642-12929-2

[79] Michal Varchola, Miloš Drutarovský, and Marek Repka. “Robust FPGA based
True Random Number Generator utilizing Oscillatory Metastability in Transi-
tion E�ect Ring Oscillators - Invited Paper”. In: Proceedings of the 9th Interna-
tional Conference on Circuits, Systems, Signal and Telecommunications (CSST’15),
Dubai, United Arab Emirates, February 22-24, 2015. Ed. by Nikos E. Mastorakis
and Zoran Bojkovic. WSEAS press, 2015, pp. 90–98.

[80] Serge Vaudenay. “Security Flaws Induced by CBC Padding - Applications to SSL,
IPSEC, WTLS ...” In: EUROCRYPT. Ed. by Lars R. Knudsen. Vol. 2332. Lecture
Notes in Computer Science. Springer, 2002, pp. 534–546. isbn: 3-540-43553-0.

[81] Pavol Zajac and Matus Jokay. “Computing indexes and periods of all Boolean
matrices up to dimension n= 8”. In:Computing and Informatics 31.6 (2013), pp. 1329–
1344.

[82] Xin jie Zhao et al. “MDASCA: An Enhanced Algebraic Side-Channel Attack
for Error Tolerance and New Leakage Model Exploitation”. In: COSADE. Ed. by
Werner Schindler and Sorin A. Huss. Vol. 7275. Lecture Notes in Computer Sci-
ence. Springer, 2012, pp. 231–248. isbn: 978-3-642-29911-7.

80

	List of Figures
	List of Tables
	List of Algorithms
	Introduction & Motivation
	State of the Art
	Side Channel Kinds
	Scale of Side Channel Attacks
	Scale regarding the manipulation by the computation
	Scale regarding the destruction of the device
	Scale regarding the statistical analysis

	Steps of Side Channel Attacks
	Side-channel analysis
	Leakage modeling
	Measurements
	Distinguishing

	Countermeasures
	Hiding
	Masking

	Goals
	Improve CPA of 16-bit Integer Multiplier in FPGA
	Timing Fault Injection Analysis of chosen steps of McEliece PKC

	Methodology
	Analyzed Implementations
	DSA & ECDSA: 16-bit integer multiplier in FPGA
	McElice PKC in 64-bit CPU

	Analyzed Devices
	Altera DISIPA FPGA board

	Measurements & Attacks Setup
	Measurement & Analysis Tools
	Application for power consumption measurements & analyses
	Application for time measurements & analyses

	Measurement Devices
	List of Oscilloscopes
	List of Probes
	Triggering the Signal Recording

	Performed Analyses
	CPA of the 16-bit integer multiplier in FPGA
	Fault injection & timing analysis

	Results
	CPA Attack against DSA & ECDSA
	Related work & our contribution
	Attack complexity & success for one 16-bit block of the key
	Attack complexity & success estimation for N key blocks
	Errors of simulated CPA attack

	Improving the CPA Attack against DSA & ECDSA
	Countermeasure against the CPA Attack against DSA & ECDSA
	Implementation of the Original McEliece PKC
	Related work & our contribution
	Binary irreducible Goppa codes for the McEliece PKC
	Key-pairs Generation
	Key-pairs Storing
	Encryption
	Decryption
	Basic Use Cases

	Timing Fault Injection Analysis of McEliece PKC Decryption
	Improving the Timing Fault Injection Analysis
	Countermeasure against the Timing Fault Injection Analysis
	Computing pth roots in extended finite fields of characteristic p 2
	Related work & our contribution
	The computation of pth root
	Summary

	List of Publications & Contributions
	Zoznam príspevkov kategórie A
	List of Contributions of Category B
	List of Talks at Conferences

	Conclusion
	Resumé
	References

