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ABSTRACT

The present thesis focuses on the QC-LDPC McEliece cryptosystem and the QC-
MDPC McEliece cryptosystem. Both cryptosystems are candidates for post-quantum
cryptography, and compared to the original McEliece cryptosystem they have the advan-
tage of smaller public keys.

The thesis is a compilation of three research papers. In the first paper, we presented
a reaction attack on the QC-LDPC McEliece cryptosystem. Our attack was inspired
by the previous work of Guo et al., who invented a reaction attack on the QC-MDPC
McEliece cryptosystem. Their attack is based on the observation that when a bit-flipping
decoding algorithm is used in QC-MDPC McEliece, then there exists a dependence be-
tween the secret matrix H and the failure probability of the bit-flipping algorithm. This
dependence can be exploited to reveal the matrix H which constitutes the private key
in the cryptosystem. It was conjectured that such dependence is present even when a
soft-decision decoding algorithm is used instead of a bit-flipping algorithm. Our paper
shows that a similar dependence between the secret matrix H and the failure probability
of a decoding algorithm is also present in the QC-LDPC McEliece cryptosystem. Unlike
in QC-MDPC MckEliece, the secret key in QC-LDPC McEliece also contains matrices S
and @ in addition to the matrix H. We observed that there also exists a dependence be-
tween the failure probability and the matrix ). We showed that these dependencies leak
enough information to allow an attacker to construct a sparse parity-check matrix for the
public code. This parity-check matrix can then be used for decrypting ciphertexts. We
tested the attack on an implementation of the QC-LDPC McEliece using a soft-decision
decoding algorithm. Thus, we also confirmed that soft-decision decoding algorithms can
be vulnerable to leaking information about the secret key.

In our second paper, we presented a simple power analysis attack on the QC-LDPC
McEliece cryptosystem. Our attack was inspired by the previous work of Heyse et al.,
who demonstrated that a naive implementation of the decryption algorithm in the original
McEliece cryptosystem allows an attacker to recover the secret matrix P by measuring the
power consumption. We showed that a similar threat is present in the QC-LDPC variant
of the McEliece cryptosystem. We considered a naive implementation of the decryption
algorithm in the QC-LDPC McEliece cryptosystem employing a bit-flipping algorithm.
We demonstrated that this implementation leaks information about positions of ones in
the secret matrix (). We argued that this leakage allows an attacker to completely recover

the matrix (). In addition, we noted that the quasi-cyclic nature of the matrix () allows



to accelerate the attack significantly.

Although the attack from our first paper suggests that the QC-LDPC McEliece cryp-
tosystem may not be suitable for the deployment in circumstances where a long-term use
of keys is required, it may still be considered for situations where ephemeral keys are
required, such as in key exchange protocols. In such situations, the cryptosystem is, how-
ever, still threatened by the squaring attack from Shooshtari et al.. To avoid this attack,
the dimension of circulant blocks in the cryptosystem has to be odd. QC-LDPC McEliece
requires generating matrices S and (), which are invertible and are composed of blocks
of circulant matrices of the dimension p. In addition, S is dense and () is sparse with
a prescribed low number of ones in a row. In their proposal of the QC-LDPC McEliece
cryptosystem, its authors also proposed a method how to construct matrices satisfying
these requirements for the case when p is a power of 2. In case p is not a power of 2,
their method, however, does not necessarily produce an invertible matrix. In our third
paper, we studied how to construct matrices S and ) when p is odd. We firstly studied
how to construct invertible circulant binary matrices with a prescribed number of ones.
In a previous work of von Maurich and Giineysu, this problem was solved by repeatedly
generating random circulant matrices with the prescribed number of ones until an invert-
ible matrix was obtained. We proposed alternative algorithms for generating invertible
circulant matrices with a prescribed number of ones. Compared with the approach of von
Maurich and Giineysu, our algorithms have the advantage that they generate matrices
satisfying all the requirements on the first attempt. On the other hand, their disadvantage
is that they generate matrices from a smaller pool. Subsequently, we proposed algorithms
to construct matrices S and @) in the QC-LDPC McEliece cryptosystem. Our algorithms
assume that the size of blocks in S and () is odd.

Keywords: QC-LDPC McEliece cryptosystem, QC-MDPC McEliece cryptosystem,
reaction attack, power analysis attack, invertible circulant matrices with a prescribed

number of ones



SUHRN (in Slovak)

Prezentovana praca sa zaoberd QC-LDPC McEliece kryptosystémom a QC-MDPC
McEliece kryptosystémom. Obidva kryptosystémy patria medzi kandidatov pre post-
kvantovu kryptografiu. Oproti povodnému McElieceovmu kryptosystému maju tieto kryp-
tosystémy vyhodu v mensej velkosti verejnych klicov.

Dizertacnd praca je suborom troch vedeckych ¢lankov. V prvom clanku prezen-
tujeme reakény utok na QC-LDPC McEliece kryptosystém. Nas tutok bol inSpirovany
pracou autorov Guo, Johansson a Stankovski, ktori zrealizovali reakény utok na QC-
MDPC McEliece kryptosystém. Ich utok je zalozeny na pozorovani, ze ak sa v QC-
MDPC McEliece kryptosystéme pouziva na dekdédovanie algoritmus preklapania bitov
(anglicky "bit-flipping algorithm"), potom vznika zavislost medzi sikromnym klicom H a
pravdepodobnostou chyby pri dekdédovani. Tuto zavislost moze ttocénik vyuzit na ziskanie
sikromného kluca H. Guo, Johansson a Stankovski vyslovili vo svojej praci domnienku,
ze ich utok je mozné realizovat aj v pripade, ak sa v QC-MDPC McEliece kryptosys-
téme namiesto algoritmu preklapania bitov pouziva dekdédovaci algoritmus s jemnym
rozhodovanim (anglicky "soft-decision decoding algorithm"). V nasom ¢lanku sme ukézali,
ze podobnd zavislost medzi maticou H a pravdepodobnosfou chyby pri dekédovani exis-
tuje aj v QC-LDPC McEliece kryptosystéme. Na rozdiel od QC-MDPC McEliece kryp-
tosystému, obsahuje sikromny klu¢ v QC-LDPC McEliece kryptosystéme okrem matice H
este aj matice S a (). Ukazali sme tiez, ze existuje aj zavislost medzi pravdepodobnostou
chyby pri dekédovani a maticou ). V clanku sme vysvetlili, ze ttocénik moze vyuzit
tieto dve zavislosti na skonstruovanie riedkej kontrolnej matice pre verejny kéd pouzi-
vany v QC-LDPC McEliece kryptosystéme. S pomocou tejto matice vie potom tutoénik
desifrovat zasifrované spravy. NA&S dtok sme otestovali na verzii QC-LDPC McEliece
kryptosystému, ktora vyuzivala dekédovaci algoritmus s jemnym rozhodovanim. Tym
sme zaroven potvrdili domnienku, ze uto¢nik mdze ziskat informécie o sikromnom kIuci
aj v pripade, ze kryptosystém pouziva dekédovaci algoritmus s jemnym rozhodovanim.

V druhom ¢lanku prezentujeme ttok na QC-LDPC McEliece kryptosystém s vyuzitim
merania spotreby elektrickej energie kryptografického zariadenia. Nas titok bol inspirovany
utokom autorov Heyse, Moradi a Paar na pévodnui verziu McElieceovho kryptosystému.
Heyse, Moradi a Paar ukézali, Ze v pripade jednoduchej implementacie desifrovacieho algo-
ritmu v pévodnom McElieceovom kryptosystéme mdoze titoénik pomocou merania spotreby
elektrickej energie kryptografického zariadenia pocas desifrovania odhalit maticu P, ktora

je sucastou sukromného kluca. V nasom c¢lanku sme ukazali, ze podobné nebezpecenstvo



existuje aj pri QC-LDPC McEliece kryptosystéme. Sktimali sme jednoduchd implementa-
ciu desifrovacieho algoritmu v QC-LDPC McEliece kryptosystéme, ktora na dekdédovanie
vyuzivala algoritmus preklapania bitov. Zistili sme, ze pomocou merania spotreby elek-
trickej energie pocas desifrovania je mozné ziskat informéacie o poziciach jednotiek v tajnej
matici Q). Vysvetlili sme, ze pomocou tychto informéacii je mozné maticu ) kompletne
zrekonstruovat. Takisto sme vysvetlili, ze kvazicyklicka struktira matice () umoznuje
vykonat ttok s mensim poc¢tom merani.

Vysledok z prvého ¢lanku implikuje, ze QC-LDPC McEliece kryptosystém momen-
talne nie je vhodny na pouzitie v podmienkach, v ktorych sa pouziva ten isty verejny klic
po dlhsiu dobu. Tento vysledok ale nebrani pouzitiu QC-LDPC McEliece kryptosystému
v situaciach, v ktorych sa vyzaduju iba jednorazové kluce, ako napriklad v protokoloch
na vymenu klaca. V takom pripade moze ale QC-LDPC McEliece kryptosystém stéale
byt ohrozeny ttokom od autorov Shooshtari a spol.. Tomuto itoku sa da predist tak, ze
rozmer cyklickych blokov p sa zvoli ako neparne ¢islo. Ako siicast sitkromného kluca v QC-
LDPC McEliece kryptosystéme sa musia vygenerovat matice S a (). Obidve tieto matice
musia byt invertovatelné a zlozené z cyklickych blokov rozmeru p x p. Okrem toho musi
matica S byt husta a matica () naopak musi byt riedka s predpisanym poctom jednotiek.
V navrhu QC-LDPC McEliece kryptosystému navrhli jeho autori sposob ako generovat
matice S a ) v pripade, Ze p je mocninou ¢isla 2. V pripade, Ze p nie je mocninou ¢isla 2,
navrhovany spdsob generovania negarantuje, ze vysledné matice budu invertovatelné. V
nasom tretom clanku sme sa zaoberali otazkou ako generovaf matice S a ) v pripade, Ze p
je neparne. Najprv sme riesili otazku ako generovat invertovatelné cyklické matice s pred-
pisanym poctom jednotiek. V ¢lanku od autorov von Maurich a Gilineysu bolo generovanie
takychto matic riesené tak, ze sa generovali ndhodné cyklické matice s predpisanym poc-
tom jednotiek, az kym jedna z nich nebola invertovatelna. V nasom c¢lanku sme navrhli
alternativne algoritmy na generovanie invertovatelnych cyklickych matic s predpisanym
poctom jednotiek. V porovnani s algoritmom od autorov von Maurich a Gilineysu maju
nade algoritmy vyhodu, Ze generuji matice spliiajice vetky poziadavky hned na prvy
pokus. Ich nevyhodou ale je, ze generuji matice iba z obmedzenej mnoziny - nie je po-
mocou nich mozné vygenerovat [ubovolnt invertovatelni cyklickd maticu s predpisanym
poc¢tom jednotiek. Nasledne sme v nasom ¢lanku navrhli algoritmy na generovanie matic
S a @ v QC-LDPC McEliece kryptosystéme pre pripad, ze rozmer cyklickych blokov p je
neparny.

Klhicové slova: QC-LDPC McEliece kryptosystém, QC-MDPC McEliece kryptosys-

tém, reakény utok, utok s vyuzitim merania spotreby elektrickej energie kryptografického



zariadenia, invertovatelné cyklické matice s predpisanym poctom jednotiek



Declaration

I hereby declare that I am the sole author of this thesis, with the exception of the
included copies of three research papers. These research papers are herein presented with
the full list of authors. Further, I confirm that in writing this thesis I used only the

referenced sources.

Bratislava, 16.8.2017

Tom4és Fabsicé



Acknowledgments

I would like to thank professor Otokar Grosek, professor Peter Hordk and associate
professor Pavol Zajac for their advice and support and for many insightful discussions.
Furthermore, I would like to thank my coauthors for very enjoyable and productive col-
laborations. In addition, I thank every member of the Institute of Computer Science and
Mathematics at FEI STU for creating a very pleasant working environment. Finally, I

would like to express my deep gratitude to my parents for their continual support.



Contents

Resumé (in Slovak) 13
I Introduction to the Thesis 21
1 Goals and Organization of the Thesis 22
2 Linear Codes 24
3 McEliece Cryptosystem 25
3.1 Description of the McEliece Cryptosystem . . . . . ... .. ... .. ... 25
3.2 Niederreiter Cryptosystem . . . . . . . . . . ... ... ... ... 25
3.3 Security of the McEliece Cryptosystem . . . . . . ... .. ... ... ... 26
3.4 Parameters and Public Key Size . . . . . . . . .. ... 0. 26
3.5 Information-Set Decoding Attacks . . . . . . . . . ... ... .. ... 27
3.6 CCA2 Security . . . . . . . . 29
3.6.1 Attacks on McEliece without a CCA2 conversion . . . . ... ... 29

3.6.2 CCA2 Conversions for McEliece . . . . ... ... ... ... .... 31

4 QC-LDPC and QC-MDPC Variants of the McEliece Cryptosystem 33

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8

4.9

LDPC Codes and QC-LDPC Codes . . . . . . . .. ... ... ... .... 33
4.1.1 Soft-Decision Decoding of LDPC Codes . . . . . . .. .. ... ... 34
4.1.2 Hard-Decision Decoding of LDPC Codes . . . . . .. .. ... ... 35
Description of the QC-LDPC McEliece Cryptosystem . . . . . . . . .. .. 35
Remarks on the QC-LDPC McEliece Cryptosystem . . . . . .. .. . ... 36
MDPC Codes and QC-MDPC Codes . . . . . . .. ... ... ... .... 37
Description of the QC-MDPC McEliece Cryptosystem . . . . . . . . .. .. 38
Remarks on the QC-MDPC McEliece Cryptosystem . . . . . . . .. .. .. 39
Parameters and Public Key Sizes . . . . . . .. .. ... ... ... .... 39
Security of QC-LDPC and QC-MDPC Variants of the McEliece Cryptosystem 40
4.8.1 Squaring Attacks . . . .. ... 41
4.8.2 Rational Reconstruction Attack and Weak Keys in the QC-MDPC
McEliece cryptosystem . . . . . . . .. ... 41
4.8.3 Reaction Attack on the QC-MDPC McEliece Cryptosystem . . . . 41

Implementations and Side-Channel Attacks . . . . . . ... ... ... ... 42



5 Our Contribution 44
5.1 Reaction Attack on QC-LDPC McEliece . . . . . . ... ... ... ... .. 44
5.2 Power Analysis Attack on QC-LDPC McEliece . . . . . . . ... ... ... 45

5.3  Generating Invertible Circulant Matrices with a Prescribed Number of Ones 46

References 48

II' A Reaction Attack on the QC-LDPC McEliece Cryp-
tosystem 55

IIT Simple Power Analysis Attack on the QC-LDPC McEliece
Cryptosystem 57

IV On Generating Invertible Circulant Binary Matrices with
a Prescribed Number of Ones 59



Resumé (in Slovak)

Ciele dizertacnej prace

V roku 1999 dokézal P. W. Shor [17], Ze s vyuzitim kvantového pocitaca je mozné riesit
problémy prvociselnej faktorizacie a diskrétneho logaritmu v polynomidlnom c¢ase. Ddsled-
kom tohto zistenia je, Ze v pripade, ze technologicky pokrok umozni postavenie dostatocne
vykonného kvantového pocitaca, nebudu v stcasnosti pouzivané asymetrické kryptosys-
témy moct byt povazované za bezpecéné. Mnoho vedcov sa v sicasnosti domnieva, ze
postavenie vykonného kvantového pocitaca je uz iba otazkou casu a niektori odbornici
dokonca predpovedaji, ze do 20 rokov budi existovat kvantové pocitace s vykonom dosta-
tocnym na prelomenie akejkolvek momentélne pouzivanej asymetrickej sifry [14]. V roku
2016 zverejnil americky narodny institit standardov a technolégie (National Institute of
Standards and Technology, NIST) spravu, v ktorej upozoriuje na hrozbu kvantovych
pocitacov a vyzyva na Standardizaciu novych asymetrickych kryptosystémov odolnych
voci utokom kvantovymi pocitacmi [4].

7 tychto dévodov sa vyznamna cast stcasného vyskumu v kryptografii ststredi na
navrh novych asymetrickych kryptosystémov odolnych voéi titokom kvantovymi poci-
tacmi. Takéto kryptosystémy musia byt zalozené na matematickych problémoch, ktoré
nie je mozné efektivne riesit ani pomocou kvantového pocitaca. Jednym z takychto prob-
lémov je problém dekédovania ndhodného linedarneho kédu. Je zname, ze tento problém
je NP-tuplny [3] a v stcasnosti neexistuji efektivne algoritmy na riesenie NP-tiplnych
problémov ani s vyuzitim kvantového pocitaca.

Prvy asymetricky kryptosystém zalozeny na probléme dekdédovania nahodného linear-
neho kédu bol zverejneny uz v roku 1978. Jeho autorom bol R. J. McEliece [11] a dnes ho
oznacujeme ako McElieceov kryptosystém. McElieceov kryptosystém nebol do dnesného
dna prelomeny, ale jeho nevyhodou st velké verejné kltuce. Z tohto dévodu bol v minulosti
McElieceov kryptosystém v praxi pouzivany iba minimélne. V poslednych rokoch ale
kvoli hrozbe kvantovych pocitacov zaujem o McElieceov kryptosystém vyrazne narédstol a
v sucasnosti je tento kryptosystém predmetom velmi aktivneho akademického vyskumu.

V odbornej literatire bolo navrhnutych viacero variantov McElieceovho kryptosys-
tému s cielom znizit velkost verejnych klucov. Medzi takéto navrhy patri aj variant
McElieceovho kryptosystému vyuzivajuci kvazicyklické kédy s riedkou kontrolnou mati-
cou. Tieto kody sa oznacuji ako QC-LDPC kddy (skratka QC-LDPC pochédza z anglick-



ého "quasi-cyclic low-density parity-check codes"). Prvy variant McElieceovho kryptosys-
tému s QC-LDPC kédmi bol publikovany autormi Baldi a Chiaraluce v préci [1]. V préaci
[15] bolo ale ukézané, ze na tento kryptosystém je mozné vykonat itok, pomocou ktorého
sa d4 zistit sikromny kIuc. Nésledne v préci [2] prezentovali Baldi, Bodrato a Chiaraluce
mierne pozmeneny variant ich kryptosystému z [1], ktory je odolny voci utoku z [15].
Tento pozmeneny variant je v stucasnosti znamy ako QC-LDPC McEliece kryptosystém.
V roku 2013 bol publikovany navrh pribuzného kryptosystému - QC-MDPC McEliece
kryptosystému [12]. Od QC-LDPC McEliece kryptosystému sa QC-MDPC McEliece lisi
najma tym, ze vyuziva kvazicyklické kody s hustejSou kontrolnou maticou (to znamena,
ze kontrolnd matica obsahuje vacsi podiel jednotiek ako v pripade QC-LDPC kddov).
Skratka QC-MDPC pochadza z anglického "quasi-cyclic moderate-density parity-check
codes".

Prezentovana dizertacna praca sa zameriava prave na QC-LDPC McEliece kryptosys-

tém a QC-MDPC McEliece kryptosystém. Praca si kladie nasledovné ciele:

1. Cliel 1: Prispiet ku kryptoanalyze variantov McElieceovho kryptosystému zalozenych
na QC-LDPC kédoch.

2. Cliel 2: Navrhnuf metédy na generovanie invertovatelnych riedkych cyklickych matic
vhodnych na vyuzitie vo variantoch McElieceovho kryptosystému zalozenych na QC-
LDPC koédoch.

Dosiahnuté vysledky

Prezentovand dizertacnd préca je stiborom troch vedeckych ¢lankov [5, 6, 7]. V ¢lanku
[5] prezentujeme reakény ttok na QC-LDPC McEliece kryptosystém. V ¢lanku [6] prezen-
tujeme utok na QC-LDPC McEliece kryptosystém s vyuzitim merania spotreby elektrickej
energie kryptografického zariadenia. V ¢élanku [7] navrhujeme met6dy na generovanie in-
vertovatelnych riedkych cyklickych matic s predpisanym poc¢tom jednotiek v riadku. Tak-
tiez vysvetlujeme, ako je mozné nami navrhnuté metody pouzit v QC-LDPC McEliece

kryptosystéme pri generovani sukromného kluca.

Reakény atok na QC-LDPC McEliece kryptosystém
V ¢lanku [5] sme prezentovali reakény ttok na QC-LDPC McEliece kryptosystém.

N&$ utok bol inSpirovany pracou autorov Guo, Johansson a Stankovski [8], ktori zre-
alizovali reakény ttok na QC-MDPC McEliece kryptosystém. Ich utok je zalozeny na
pozorovani, ze ak sa v QC-MDPC McEliece kryptosystéme pouziva na dekdédovanie algo-

ritmus preklapania bitov (anglicky "bit-flipping algorithm"), potom vzniké zavislost medzi



sukromnym klicom H a pravdepodobnostou chyby pri dekédovani. Tuto zavislost moze
utoc¢nik vyuzif na ziskanie sukromného kliuca H.

Namiesto algoritmu preklapania bitov je v QC-LDPC McEliece kryptosystéme a
v QC-MDPC McEliece kryptosystém mozné pouzit dekdédovaci algoritmus s jemnym
rozhodovanim (anglicky "soft-decision decoding algorithm"). Guo, Johansson a Stankovski
vyslovili vo svojej praci domnienku, ze ich ttok je mozné realizovat aj v pripade, ak sa v
QC-MDPC McEliece kryptosystéme namiesto algoritmu preklapania bitov pouziva deko-
dovaci algoritmus s jemnym rozhodovanim.

V nasom ¢lanku sme ukézali, ze podobnd zavislost medzi maticou H a pravdepodob-
nostou chyby pri dekédovani existuje aj v QC-LDPC McEliece kryptosystéme. Na rozdiel
od QC-MDPC McEliece kryptosystému, obsahuje sikromny klic¢c v QC-LDPC McEliece
kryptosystéme okrem matice H esSte aj matice S a (). Ukazali sme tiez, Ze existuje aj
zavislost medzi pravdepodobnostou chyby pri dekdédovani a maticou ). V ¢lanku sme
vysvetlili, Ze itocnik moze vyuzit tieto dve zavislosti na skonstruovanie riedkej kontrolnej
matice pre verejny kod pouzivany v QC-LDPC McEliece kryptosystéme. S pomocou tejto
matice vie potom utoc¢nik desifrovat zasifrované spravy.

Na vykonanie titoku musi tto¢nik (Alica) poslat obeti (Bob) velké mnozstvo sprav za-
sifrovanych Bobovym verejnym kltic¢om. Pri toku predpokladame, ze o kazdej odoslanej
sprave sa Alica dozvie, ¢i bola tspesne desifrovand alebo nie (komunikaény protokol méze
byt napriklad nastaveny tak, ze v pripade, ze sa Bobovi nepodari spravu desifrovat, odosle
Bob Alici poziadavku na opatovné zaslanie spravy). To umozni Alici odhadntt pravde-
podobnost chyby pri dekédovani.

Je zname, ze povodny McElieceov kryptosystém nie je bezpeény v pripade, zZe je
pouzity vo svojom zakladnom tvare. Pre dosiahnutie bezpecnosti je nutné pouzivat
McElieceov kryptosystém spolu s takzvanou CCA2 konverziou. Rovnako to plati aj pre
QC-MDPC McEliece kryptosystém a pre QC-LDPC McEliece kryptosystém. N&s$ ttok
sme realizovali za predpokladu, ze Alica nema moznost zvolit si konkrétnu podobu za-
sifrovanych textov, ktoré odosle Bobovi. To znamend, Ze nas utok je zrealizovatelny aj
v pripade, ze QC-LDPC McEliece kryptosystém je pouzivany spolu s CCA2 konverziou.
Rovnako je tomu aj v pripade ttoku autorov Guo, Johansson a Stankovski na QC-MDPC
McEliece kryptosystém.

Nas utok sme otestovali na verzii QC-LDPC McEliece kryptosystému, ktora vyuzivala
dekdédovaci algoritmus s jemnym rozhodovanim. Tym sme zaroven potvrdili domnienku,
ze utoénik moéze ziskat informéacie o sikromnom kluc¢i aj v pripade, ze kryptosystém

pouziva dekddovaci algoritmus s jemnym rozhodovanim.



Nasmu ttoku a utoku od autorov Guo, Johansson a Stankovski by sa dalo zabranit
tym, ze by sa dosiahlo vyrazné znizenie pravdepodobnosti chyby pri dekdédovani v QC-
LDPC McEliece kryptosystéme a v QC-MDPC McEliece kryptosystéme. Vo svojom
¢lanku [8] Guo, Johansson a Stankovski odportcaju znizit ttito pravdepodobnost na hod-
notu 275, kde K je tiroveni bitovej bezpe¢nosti vyzadovanej od kryptosystému. V stcéas-
nosti ale nie st zndme ziadne efektivne dekdédovacie algoritmy pre QC-LDPC kédy alebo
pre QC-MDPC koédy, ktoré by dokazatelne mali taki nizku pravdepodobnost chyby. Z
toho dovodu QC-LDPC McEliece kryptosystém a QC-MDPC McEliece kryptosystém mo-
mentalne nie st vhodné na pouzitie v podmienkach, v ktorych sa pouziva ten isty verejny
kIia¢ po dlhsiu dobu. Nase zistenia a zistenia autorov Guo, Johansson a Stankovski ale
nebrania pouzitiu tychto kryptosystémov v situaciach, v ktorych sa vyzaduja iba jedno-

razové kluce, ako napriklad v protokoloch na vymenu kluca.

Utok na QC-LDPC McEliece kryptosystém s vyuZitim merania
spotreby elektrickej energie

V ¢lanku [6] sme prezentovali titok na QC-LDPC McEliece kryptosystém s vyuzitim
merania spotreby elektrickej energie kryptografického zariadenia. Nas titok bol inspirovany
utokom autorov Heyse, Moradi a Paar [9] na povodni verziu McElieceovho kryptosystému.
Heyse, Moradi a Paar ukazali, ze v pripade jednoduchej implementacie desifrovacieho algo-
ritmu v pévodnom McElieceovom kryptosystéme méze titoénik pomocou merania spotreby
elektrickej energie kryptografického zariadenia pocas desifrovania odhalit maticu P, ktord
je sucastou siukromného kluca.

V nasom clanku sme ukézali, Ze podobné nebezpecenstvo existuje aj pri QC-LDPC
McEliece kryptosystéme. Skumali sme jednoduchti implementaciu desifrovacieho algo-
ritmu v QC-LDPC McEliece kryptosystéme, ktora na dekédovanie vyuzivala algoritmus
preklapania bitov. Zistili sme, ze pomocou merania spotreby elektrickej energie pocas
desifrovania je mozné ziskat informéacie o pozicidch jednotiek v tajnej matici (). Vysvetlili
sme, ze pomocou tychto informacii je mozné maticu ) kompletne zrekonstruovat. Tak-
isto sme vysvetlili, ze kvazicyklickd struktira matice () umoznuje vykonat titok s mensim
poctom merani. Nas ttok je mozné zrealizovat aj v pripade, ze QC-LDPC McEliece kryp-
tosystém je pouzivany spolu s CCA2 konverziou. V zavere clanku sme vysvetlili, Ze ndSmu
utoku sa déa predist v pripade, ze je deSifrovaci algoritmus v QC-LDPC McEliece kryp-
tosystéme implementovany odlisnym sposobom. Odporudili sme pouzit rovnaky sposob
implementéacie, ako navrhli Heyse, Moradi a Paar v ¢lanku [9].

Ako uz bolo spomenuté v predchadzajicej kapitole, vysledok z nasho ¢lanku [5] im-

plikuje, ze QC-LDPC McEliece kryptosystém momentalne nie je vhodny na pouzitie v



podmienkach, v ktorych sa pouziva ten isty verejny klic¢ po dlhsiu dobu. Pri nasom utoku
s vyuzitim merania spotreby staci ale ttocnikovi poslat obeti vyrazne menej sprav ako
v pripade utoku z [5]. Preto nas tutok s meranim spotreby ukazuje, ze ak je QC-LDPC
McEliece kryptosystém implementovany s nejakym hornym limitom na pocet desifrovani
(stanovenym tak, aby nebolo mozné vykonat ttok z [5]), potom je este stile potrebné
dbat na to, aby bol desifrovaci algoritmus implementovany spésobom, ktory neumozni
vykonat utok s vyuzitim merania spotreby elektrickej energie.

Generovanie invertovatelnych cyklickych matic s predpisanym

poctom jednotiek

Ako uz bolo spomenuté, vysledok z nasho ¢lanku [5] implikuje, ze QC-LDPC McEliece
kryptosystém momentalne nie je vhodny na pouzitie v podmienkach, v ktorych sa pouziva
ten isty verejny kli¢ po dlhsiu dobu. Tento vysledok ale nebrani pouzitiu QC-LDPC
McEliece kryptosystému v situaciach, v ktorych sa vyzaduju iba jednorazové kluce, ako
napriklad v protokoloch na vymenu klaca. V takom pripade méze ale QC-LDPC McEliece
kryptosystém stéle byt ohrozeny itokom od autorov Shooshtari a spol.[16]. Tomuto atoku
sa da predist tak, ze rozmer cyklickych blokov p sa zvoli ako neparne cislo.

Ako sucast sikromného kluca v QC-LDPC McEliece kryptosystéme sa musia vyge-
nerovat matice S a (). Obidve tieto matice musia byt invertovatelné a zlozené z cyklickych
blokov rozmeru p x p. Okrem toho musi matica S byt hustd a matica ) naopak musi byt
riedka s predpisanym poc¢tom jednotiek. V navrhu QC-LDPC McEliece kryptosystému [2]
navrhli jeho autori spésob ako generovat matice S a () v pripade, Ze p je mocninou ¢isla
2. V pripade, Ze p nie je mocninou ¢isla 2, navrhovany sposob generovania negarantuje,
ze vysledné matice budu invertovatelné.

V ¢lanku [7] sme sa zaoberali otdzkou ako generovat matice S a @ v pripade, Ze
p je neparne. Najprv sme riesili otazku ako generovat invertovatelné cyklické matice
s predpisanym poctom jednotiek. V ¢lanku od autorov von Maurich a Giineysu [10]
bolo generovanie takychto matic riesené tak, ze sa generovali nahodné cyklické mat-
ice s predpisanym poc¢tom jednotiek, az kym jedna z nich nebola invertovatelna. V
nasom c¢lanku sme navrhli alternativne algoritmy na generovanie invertovatelnych cyk-
lickych matic s predpisanym poctom jednotiek. V porovnani s algoritmom od autorov
von Maurich a Giineysu [10] maji nase algoritmy vyhodu, Ze generuji matice spliiajtce
vsetky poziadavky hned na prvy pokus. Ich nevyhodou ale je, ze generuji matice iba z
obmedzenej mnoziny - nie je pomocou nich mozné vygenerovat Iubovolnu invertovatelni
cyklicki maticu s predpisanym poc¢tom jednotiek. Pre kazdy z nasich algoritmov sme

urcili velkost mnoziny moznych vygenerovanych matic. Velkost tejto mnoziny zavisi od



ireducibilnej faktorizécie polynému P + 1 (p tu oznacCuje rozmer matice), konkrétne od
stupna d najmensieho polynému iného ako x + 1 v tejto faktorizacii. Najmensim polyné-
mom tu myslime polyném najmensieho stupna. Na dosiahnutie velkej mnoziny moznych
vygenerovanych matic je potrebné zvolit p tak, aby hodnota d bola vysoka. V ¢lanku
vysvetlujeme, ze hodnota d sa da jednoducho urcit.

Nasledne sme v nasom c¢lanku navrhli algoritmy na generovanie matic S a @ v QC-
LDPC McEliece kryptosystéme pre pripad, ze rozmer cyklickych blokov p je neparny.
Opét velkost mnoziny moznych vygenerovanych matic (a tiez efektivnost algoritmu na
generovanie matice S) zavisi od ireducibilnej faktorizécie polynému z” + 1 (p tu oznacuje
rozmer cyklickych blokov). Z tohto dovodu sa ako najlepsia volba pre rozmer cyklickych
blokov javi prvocislo p také, ze multiplikativny rad cisla 2 modulo p je p — 1. Podla
Artinovej hypotézy o primitivnych korenoch priblizne 37% prvocisel spliia tito podmienku
[13].

Prirodzene sa ponuka pouzit nase algoritmy na generovanie invertovatelnych cyk-
lickych matic s predpisanym poctom jednotiek aj pri generovani matice H v QC-LDPC
McEliece kryptosystéme a v QC-MDPC McEliece kryptosystéme. V obidvoch kryptosys-
témoch je uzitocné, ak je posledny cyklicky blok matice H invertovatelny. V nasom c¢lanku
ale upozornujeme na to, ze ak je hodnota d vyrazne nizsia ako rozmer cyklického bloku
p, potom pouzitie nasich algoritmov by umoznilo ito¢nikovi vykonat vyrazne efektivne;jsi
ISD utok. V takych pripadoch odporicame generovat posledny blok matice H metédou
z [10], t.j. postupnym generovanim néhodnych cyklickych matic s predpisanym poctom

jednotiek, az kym jedna z matic nie je invertovatelna.
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1 Goals and Organization of the Thesis

In [67], P. W. Shor demonstrated that prime factorization and discrete logarithms
can be solved in polynomial time on a quantum computer. This means that building a
sufficiently large quantum computer would render currently used public key cryptosystems
insecure. Many scientists now believe that building a large-scale quantum computer is
merely a significant engineering challenge and some engineers even predict that within
the next 20 years sufficiently large quantum computers will be built to break essentially
all public key schemes currently in use [52]. In 2016, the National Institute of Standards
and Technology (NIST) has issued an announcement recognizing this threat and calling
for the standardization and transition to post-quantum public key cryptography in the
near future [22].

For these reasons, a lot of research in cryptography is currently focused on devising
new public key cryptosystems which would be quantum-resistant. These cryptosystems
have to be based on problems which cannot be efficiently solved even on a quantum
computer. One of such problems is the problem of decoding a general linear code. It
is known that this problem is NP-complete [10] and currently no efficient algorithms for
solving NP-complete problems are known even for a quantum computer.

The first public key cryptosystem based on the problem of decoding a general linear
code was proposed already in 1978 by R. J. McEliece [48]. This cryptosystem is now
known as the McEliece cryptosystem, and it still remains unbroken. The cryptosystem
has never been adopted widely, mainly due to the large size of the public key. Due to the
threat of quantum computers, the interest in the McEliece cryptosystem has, however,
risen recently and currently it is a very active topic of scientific research.

A number of variants of the McEliece cryptosystem have been proposed with the
intention to reduce the size of the public key. Among these proposals are variants which
employ quasi-cyclic low-density parity-check (QC-LDPC) codes. The present thesis fo-

cuses on these variants. In particular, the thesis has the following objectives:

1. Objective 1: To contribute to the cryptanalysis of variants of the McEliece cryp-
tosystem based on QC-LDPC codes.

2. Objective 2: To propose methods to generate invertible sparse circulant matrices

suitable for use in variants of the McEliece cryptosystem based on QC-LDPC codes.

The thesis is a compilation of three research papers [24, 25, 26]. The papers [24, 25]
address Objective 1, while the paper [26] addresses Objective 2.
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The three papers are preceded by the introductory part. In the introductory part,
we review the theoretical background on the original McEliece cryptosystem and its later

variants employing QC-LDPC codes, and we summarize our contributions.
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2 Linear Codes

In this section, we present basic definitions regarding linear codes. Our presentation
follows the presentation from [12].

A binary [n, k| code is a binary linear code of length n and dimension k, i.e., it is a
k-dimensional linear subspace of F}' . All codes considered in this thesis are binary.

A generator matriz of an [n, k] code C'is a k x n matrix G such that
C:{IGZ xGFf}

We say that G generates the code C.

A parity-check matriz of an [n, k] code C'is an (n — k) X n matrix H such that
C={ceFy: H" =0}.

The linear code generated by H is called the dual code to the code C.

A systematic generator matrix of an [n, k] code C' is a generator matrix of the form
(1x|Q) where I, is the k x k identity matrix and @ is a k x (n — k) matrix. There might
not exist a systematic generator matrix for C', but there exists a systematic generator
matrix for an equivalent code obtained by permuting columns of C'

The classical decoding problem is to find the closest codeword ¢ € C'to a given y € F7,
assuming that there is a unique closest codeword. Here "close" means that the difference

¢ — y has a small Hamming weight.
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3 McEliece Cryptosystem

The presentation in this section was inspired by the overview of the McEliece cryp-

tosystem in [64].
3.1 Description of the McEliece Cryptosystem

The McEliece cryptosystem [48] is a public key cryptosystem based on the problem
of decoding a general linear code. The essential part of the secret key in this cryptosystem
is a secret linear error-correcting code with an efficient decoding algorithm. In McEliece’s
original proposal [48], Goppa codes with Patterson’s decoding algorithm [57] were used
in this role. Definitions of Goppa codes and Patterson’s algorithm are not needed for
understanding the later parts of this thesis, and therefore we omit them.

Suppose that the secret code is able to correct t errors. Let G be a generator matrix
of the secret code of dimension k x n. Bob will generate his public key G’ as G' = S-G- P,
where S is a secret non-singular k£ x k matrix and P is a secret n X n permutation matrix.
Thus, Bob’s private key consists of matrices G, S and P and his public key consists of
the matrix G'.

Suppose Alice wants to send a message u € F¥ to Bob. Then Alice encrypts u as
c=u-G + e, where e is a randomly generated error vector of length n and weight ¢.

To recover the original message, Bob first computes ¢ = ¢- P~1. We have
d=c-pP!
=(u-S-G-P+e)- P!
—u-S-G+e P
Thus, ¢ is a codeword of the Goppa code G, affected by the error vector e- P~! of weight
t. Therefore, Bob can use Patterson’s algorithm [57] to decode ¢/. After decoding he

obtains the vector u' = u - S. Finally, he recovers u as u = u’ - S7%.
3.2 Niederreiter Cryptosystem

A closely related cryptosystem was proposed by Niederreiter in 1986 [54]. The original
version of the cryptosystem used generalized Reed-Solomon codes but this choice was
shown to be insecure [68]. However, it was shown that when the Niederreiter cryptosystem
is used with Goppa codes, then it has the same security as the McEliece cryptosystem
[40].

The secret key in the Niederreiter cryptosystem consists of an n x n permutation

matrix P, a non-singular (n — k) x (n — k) matrix S, and a parity-check matrix H for
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a secret, code of dimension k and error-correcting capability ¢. Using the secret key, Bob
can generate his public key H as H' =S - H - P.

If Alice wants to send Bob a message, she needs to embed the message in a vector u
of length n and Hamming weight ¢. Afterwards, she computes the encrypted message ¢
as ¢ = H' - u" and sends it to Bob.

To recover u, Bob firstly finds (using linear algebra) z such that H - 27 = S~ . c.
Then H(z — uPT)T = 0, which means that z — uPT is a codeword of the secret code.
Thus, Bob can apply a decoding algorithm for the secret code to z and extract the error

uPT. After multiplication by P, Bob obtains the original message w.

3.3 Security of the McEliece Cryptosystem

The security of the McEliece Cryptosystem rests on the following two assumptions:

1. Let G’ be the public key in the McEliece Cryptosystem. Let C’ be the code with
the generator matrix G’. There is no algorithm that can solve the decoding problem
in " (without the knowledge of the secret key) more efficiently than in an arbitrary

linear code.

2. It is difficult to solve the decoding problem in an arbitrary linear code. This problem
is known to be NP-hard [10].

The most efficient algorithms for solving the decoding problem in an arbitrary linear
code are information-set decoding algorithms. Hence, the security level of the McEliece
cryptosystem is estimated by the efficiency of information-set decoding (ISD) attacks. We
review ISD attacks in Section 3.5.

Apart from ISD attacks, McEliece is also threatened by attacks which exploit the
specifics of the encryption algorithm. We describe these attacks as well as methods to

prevent them in Section 3.6.

3.4 Parameters and Public Key Size

The original parameters, proposed by McEliece, were n = 1024, k = 524 and t = 50.
However, these are now considered insecure, as they offer only 50-bit security [13]. A
number of other parameter choices has been proposed in the literature. We present them
together with the corresponding values of the security level in Table 1. (Table 1 is a
replication of a similar table presented in [64].)

The disadvantage of the McEliece cryptosystem is the large size of public keys. As

we can see in Table 1, to achieve a security level of 80 bits or more, it is recommended to
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Table 1: Recommended parameters for the McEliece cryptosystem.[64]

Sec. | Ref. (n,k,t) Public key size [kB]
Level Full Systematic
50 | [48] | (1024,524,50) 66 32
80 | [12] | (2048,1751,27) 438 64
80 | [53] | (1702,1219,45) 254 72
80 | [16] | (2048,1696,32) 424 73
128 | [13] | (3178,2384,68) 925 232
128 | [16] | (4096,3604,41) | 1802 217
256 | [13] | (6944,5208,136) | 4415 1104

use a public key of hundreds of kilobytes. In [12], it was noted that when the McEliece

cryptosystem is used with a CCA2-secure!

conversion, then the public key can be rep-
resented in systematic form without reducing the security of the system. Although this
leads to a reduction in public key sizes, the reduced sizes are in tens or hundreds of kilo-
bytes, i.e., the public keys are still significantly larger than public keys in currently used
cryptosystems, such as RSA. (The public key in RSA 1024 has only approximately 0.1
kB.) The size of the public key in systematic form for various parameter choices for the

McEliece cryptosystem is presented in Table 1.

3.5 Information-Set Decoding Attacks

Information-set decoding (ISD) algorithms are the most efficient known algorithms
for solving the decoding problem in an arbitrary linear code, i.e. the problem on which
the security of the McEliece cryptosystem relies.

The study of ISD attacks was initiated by Prange in [60]. The possibility of applying
an ISD attack to the McEliece cryptosystem was already recognized by R.J. McEliece in
[48]. R.J. McEliece proposed the following form of an ISD attack. Let ¢ be a ciphertext
encrypted by the McEliece cryptosystem. Select k£ coordinates of ¢. The probability
that none of the selected coordinates is affected by an error is (”:)/(Z) Provided
that the k& columns in G’ corresponding to the k selected coordinates are all linearly
independent, the original message can then be found simply by solving & linear equations
in k unknowns. The estimated running time of the attack is then £* (Z) / (”;t) In [39], a
generalization of this method was introduced, allowing a small number of errors in the k

selected coordinates.

'We discuss CCA2-secure conversions of the McEliece cryptosystem in Section 3.6
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Table 2: Performance of ISD algorithms.[36]

Author(s) | Ref. | Year | maxo<r<i o (R, Way)
Prange | [60] | 1962 0.1207
MMT | [46] | 2011 0.1114
BIMM | [9] | 2012 0.1019
MO | [47] | 2015 0.0966

The currently most efficient ISD attacks are based on Stern’s algorithm [69] for finding
codewords with a low Hamming weight. Let ¢ = u-G’+e be a ciphertext encrypted by the

McEliece cryptosystem, where e is an error vector with the Hamming weight ¢t. Consider

(%)

Consider the linear code generated by this matrix. The shortest non-zero codeword in this

the matrix

code (i.e., the codeword with the lowest non-zero Hamming weight) is e. Thus, one can
use Stern’s algorithm on this code to find the error vector e and consequently determine
the plaintext w.

The standard conjecture is that the best possible generic algorithm for decoding
linear codes takes exponential time for any constant asymptotic code rate R and constant

aoBW)to()n  for some positive real number

asymptotic error fraction W: i.e., time 2(
a(R,W)if k/n — R and t/n — W as n — oo [13].

A number of enhanced variants of Stern’s algorithm have been proposed in the litera-
ture [13, 46, 9, 47] and the best currently known ISD algorithm is by May and Ozerov [47].
However, all these efforts only managed to decrease the exponent a(R, W) slightly. In
Table 2, we present an overview of the performance of currently existing ISD algorithms.
The table is a replication of a similar table presented in [36] and it shows the average time
complexity of the algorithms when W is the Gilbert-Varshamov distance dgy (n, k) of the
code. The Gilbert-Varshamov distance is defined as dgy(n, k) = nHy ' (1 — %), where
H, is the binary entropy function Hy(z) = —x logy(z) — (1 — ) logy(1 — x) and Hy ' is its
inverse defined from [0, 1] to [0, %} It corresponds to the largest distance for which we
may still expect a unique solution to the decoding problem. In Table 2, Wy is defined
as Way = dGVT("’k).

The complexity of ISD gets lower, when the attacker only needs to decode one out of
many ciphertexts. In [65], Sendrier showed that ISD attacks can be speeded up by almost

V' N using N instances of the problem. When the attacker has access to an unlimited

28



Table 3: Performance of quantum ISD algorithms.[36]

Author(s) | Ref. | Year | maxo<r<i o (R, Way)
Bernstein | [11] | 2010 0.06035

KT | [36] | 2017 0.05970

KT | [36] | 2017 0.05869

number of instances, the complexity exponent is multiplied by value only slightly larger
than 2/3. This attack scenario is particularly important for variants of McEliece based on
QC-LDPC and QC-MDPC codes, which we discuss in Section 4. In these variants, any
block-wise cyclic shift of the ciphertext provides a proper new instance of the decoding
problem. The solution for the shifted ciphertext is equal to the solution for the original
ciphertext, up to a block-wise cyclic shift.

The possibility of applying quantum algorithms to speed up ISD algorithms was
studied in [56, 11, 36]. It has been shown that with a use of quantum algorithms the value
of maxo<p<1 @ (R, Wgy) can be reduced to below 0.06 [36]. We present the performance
of current quantum ISD algorithms in Table 3. The table is a replication of a similar
table presented in [36].

3.6 CCA2 Security

Information-set decoding attacks can be avoided by selecting large enough parameters
in the McEliece cryptosystem. However, McEliece is also threatened by attacks which
exploit the specifics of the encryption algorithm. To prevent these attacks, McEliece
must be used with a proper conversion secure against adaptive chosen-ciphertext attacks
(CCA2 conversion). As stated in [64]: In ideal case, a proper CCA2 conversion transforms
the original message (plaintext) into a random string of bits (cleartext), which is then
encrypted with the classical McFEliece. Once the recipient decodes the whole cleartext, he

can decrypt the original message, as well as verify the integrity of the ciphertext.

3.6.1 Attacks on McEliece without a CCA2 conversion
In this section, we follow the presentation in [38].
Known-Partial-Plaintext Attack. A partial knowledge of the target plaintext
reduces the computational cost of ISD attacks on the McEliece cryptosystem [18, 37]. For
example, let m; and m, denote the left k; bits and the remaining k, bits in the target

plaintext m. Suppose that an attacker knows m,. Let GG} and G! be the upper k; rows
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and the remaining lower k, rows in G'. We have

c=m-G +e
c=my-G+m, -G +e
c+m, - G

T

=my -G, +e.

Since ¢+ m, - G.. is known to the attacker, this computation shows that the attacker can
learn the plaintext by performing an ISD attack on the code generated by G}, which has
a lower dimension k;.

Related-Message Attack [14]. Suppose that two messages m; and my are en-
crypted as ¢; and ¢y, respectively, where ¢; = m;G’ + e; and ¢ = moG’' + e5. Suppose
that an attacker knows a linear relation between the plaintexts, e.g. dm = my+ms. Since
e1 + ea = 0mG’ + ¢; + co, the attacker knows the value of e; + e5. Since the Hamming
weight of an error vector is small compared to its length, the attacker knows that if the
i-th bit in e; + es is zero, then with a high probability the ¢-th bit is zero in both e; and
es. Thus, the attacker can increase the efficiency of an ISD attack on either ¢; or ¢y by
choosing k coordinates whose values are zero in e; + e5. A special case of this attack is
when messages m; and msy are identical.

Reaction Attack [31]. The attacker flips the i-th bit of the target ciphertext c. Let
¢ denote the flipped ciphertext. The attacker sends ¢’ to the proper receiver and observes
his/her reaction. If the receiver returns a repeat request due to an uncorrectable error,
the attacker knows that with a high probability the flipped bit resulted in the ciphertext
having more errors than the decoding algorithm could correct. Thus, the attacker knows
that with a high probability the ¢-th bit of the error vector in the target ciphertext is
zero. Repeating this process, the attacker can learn more information about the error
vector, and thus can increase the efficiency of an ISD attack on c¢. A similar attack was
independently proposed in [70].

Malleability Attack. Let ¢ be the ciphertext corresponding to a plaintext m. For
any vector dm of length k, an attacker can create a new ciphertext ¢’ corresponding to
m' = m + om even without knowing m [37, 70]. To see this, let G’[i] denote the i-th row
of G" and let I = {iy,1a,...} denote the set of coordinates whose value is 1 in m. Then
the attacker can construct ¢ as ¢ = ¢+ ;c; G'[i] = (m+dm)G’ +e. Let us consider the
chosen-ciphertext scenario, where an attacker can ask an decryption oracle to decrypt a
polynomial number of ciphertexts (excluding the target ciphertext ¢). Then the attacker
can decrypt any ciphertext ¢ as follows. The attacker asks the oracle to decrypt ¢/. The

oracle returns m’, from which the attacker can compute m as m = m' + om.
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3.6.2 CCA2 Conversions for McEliece

In [38], Kobara and Imai studied how to convert the McEliece cryptosystem into
a public key cryptosystem indistinguishable against adaptive chosen-ciphertext attacks.
They observed that generic conversions by Pointcheval [59] and by Fujisaki and Okamoto
[27] can be applied to McEliece for this purpose. Furthermore, Kobara and Imai proposed
three new conversions specifically designed for the McEliece cryptosystem and proved that
in the random oracle model breaking the indistinguishability of encryption of their conver-
sions in an adaptive chosen-ciphertext scenario is polynomial equivalent to decrypting the
whole plaintext of an arbitrarily given ciphertext of the original McEliece cryptosystem
without any help of decryption oracles and any knowledge on the target plaintext.

The conversions of Kobara and Imai have the advantage of lower data redundancy
when compared to the conversions of Pointcheval and Fujisaki-Okamoto. Here, we present
the most efficient conversion of Kobara and Imai, the conversion v. We use the following

notation:
e C(n,t) : The number of combinations taking ¢ out of n elements.

e Prep(m) : Preprocessing to a message m, such as data-compression, data-padding

and so on. Its inverse is represented as Prep™'().

e Hash(z) : One-way hash function of an arbitrary length binary string x to a fixed
length binary string.

e Conv(Zz) : Bijective function which converts an integer z € Zy, where N = C(n, t)

into the corresponding error vector z. Its inverse is represented as Conv™!().

e Gen(x) : Generator of a cryptographically secure pseudo random sequences of ar-

bitrary length from a fixed length seed x.
e Len(x) : Bit-length of x.
e Msb,, (x3) : The left 21 bits of xs.
e Lsb, (x3) : The right x; bits of z.
e Const : Predetermined constant used in public.

e Rand : Random source which generates a truly random (or computationally indis-

tinguishable pseudo random) sequence.
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Figure 1: Kobara-Imai ~ conversion [38] for the McEliece cryptosystem: Len(ys) = k,
Len(yy) = log, C(n,t) , Len(ys) = Len(m) + Len(Const) + Len(r) — Len(ys) — k. If
Len(m) + Len(Const) + Len(r) = Len(ys) + k, remove ys.

x,z) : Encryption of = using the original McEliece cryptosystem with an

o DMcElicce(1) + Decryption of x using the original McEliece cryptosystem.

We present the Kobara-Imai v conversion in Figure 1.
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4 QC-LDPC and QC-MDPC Variants of
the McEliece Cryptosystem

As noted in Section 3.1, the disadvantage of the original McEliece cryptosystem is the
large size of public keys. For this reason, variants of McEliece have been proposed with
the ambition to reduce the size of public keys. Among these proposals are variants based
on quasi-cyclic low-density parity-check (QC-LDPC) codes and quasi-cyclic moderate-
density parity-check (QC-MDPC) codes. These proposals replace the secret Goppa code
in the original McEliece by a QC-LDPC code or by a QC-MDPC code. Before we describe

these proposals in more detail, we first review the basic theory on LDPC codes.

4.1 LDPC Codes and QC-LDPC Codes

Low-density parity-check (LDPC) codes were invented by Gallager in [28]. Here we

review important definitions and decoding algorithms regarding these codes.

Definition 1. A low-density parity-check (LDPC) code is a binary linear code which
admits a parity-check matrix H with a low number of 1s among its entries (i.e. H has a

low density). Typically, 1% or fewer of the entries of H are 1s.

.....

generated by successive cyclic right shifts of the first row. Thus, C' is of the form

Co C1 Cy ... Cp—1

Cn—1 Co Ci ... Cp—2

C = Ch—2 Cp—1 Co ... Cp_3
C1 (&) C3 ... Co

Definition 3. A quasi-cyclic low-density parity-check (QC-LDPC) code is a LDPC code

which admits a low-density parity-check matrix H in the form

H070 HO,l cee HO,ng—l
Hl,O Hl,l < Hl,nfl
H = . . . )
Hro—l,O Hro—l,l s Hro—l,n—l

where each H; ; is a p X p circulant matrix.

Definition 4. Let C' be a LDPC [n, k] code with a (n — k) x n low-density parity-check

matrix H. To C we associate its Tanner graph defined as follows. Tanner graph is a
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bipartite graph which has n left nodes (also called "variable nodes") and n — k right nodes
(also called "check nodes"). An edge between a variable node v; and a check node ¢; exists
if and only if the entry h;; in H is equal to one.

4.1.1 Soft-Decision Decoding of LDPC Codes

Several soft-decision decoding algorithms exist for LDPC codes. Below, we describe
the Gallager Sum-Product Algorithm as presented in [63]. Let y be the vector to be
decoded. We consider a special case where we assume that every bit y; of y is erroneous
with probability e. Then the Gallager Sum-Product Algorithm is described in Algorithm 1.
In the algorithm, N(7) represents the set of variable nodes in the Tanner graph connected
to the check node ¢;. Similarly, N(j) represents the set of check nodes connected to the

variable node v;.

Algorithm 1

INPUT: a low-density parity-check matrix H of an LDPC code and its correspond-
ing Tanner graph; vector y to be decoded
OUTPUT: decoded codeword z or a decoding error message

1. Initialization: For all j, initialize L; as

Prob(z; = 0ly;) , 1—e
LA — l J J = —]_ Y 1 < > .
5708 (Prob(zj = 1y;) (=1)" log €

Then for every pair (vj,¢;) of a variable node v; and a check node ¢; which are

connected by an edge in the Tanner graph, initialize the message going from the

variable node v; to the check node ¢; as L;_,; = Lj;.

2. Check nodes update: For every pair (v;,¢;) of a variable node v; and a check
node ¢; which are connected by an edge in the Tanner graph, compute the message

from ¢; to v; as

1
Li—>j = Qtanh_l ( H tanh (2[/]/_”)) .

J'EN(i)—{5}
3. Variable nodes update: For every pair (v;,¢;) of a variable node v; and a check

node ¢; which are connected by an edge in the Tanner graph, compute the message

from v; to ¢; as

i'EN(5)—{i}
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4. Log-likelihood ratio total: For all j compute
L =Lj+ > Lis.

iEN ()

5. Stopping criteria: For all j set

R 1 if L;Otal <0,
Y; =
0 else,

to obtain a vector .
If jHT = 0, return z = 9.
If the maximum number of iterations was reached, return a decoding error message.

Else, go to Step 2.

4.1.2 Hard-Decision Decoding of LDPC Codes

Another method to decode an LDPC code is to use a hard-decision decoding (also
called "bit-flipping") algorithm. Compared to soft-decision decoding algorithms, bit-
flipping algorithms are simpler but less efficient (in terms of the number of errors they
can correct). These algorithms are again iterative and their principle is as follows. The
variable nodes of the Tanner graph are initially filled with the bits of the received code-
word ¢ (possibly affected by errors). In each iteration, the message sent from each check
node ¢; to each neighboring variable node v, is the sum of the values of all its neighboring
variable nodes. Thus, the node v; will learn whether the i-th parity-check equation is
satisfied or not (i.e. whether the i-th element of Hc! is zero or not). Thus, the node
v; can count the number of unsatisfied parity-check equations which it is involved in. If
this number exceeds some threshold b, then v; flips its value. The next iteration uses the
updated values of variable nodes. The process continues until all parity-check equations
are satisfied or until a maximum number of iterations is reached.

4.2 Description of the QC-LDPC McEliece Cryptosys-
tem

The possibility of using LDPC codes in the McEliece cryptosystem was firstly studied
in [50]. The authors, however, concluded that the low density of LDPC codes does not
allow a reduction in the public key size, since the passage from the secret key to the
public key must involve a dense transformation matrix. Otherwise, the secret key can be

extracted from the public key.
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In [2], Baldi and Chiaraluce proposed to use QC-LDPC codes in the McEliece cryp-
tosystem to reduce the size of the public key. Their cryptosystem is now known as the
QC-LDPC McEliece cryptosystem. The proposal was later amended in [3] to prevent the
attacks of Otmani, Tillich and Dallot [55]. Here we present the version of the cryptosystem
from [3].

A part of the private key in the QC-LDPC McEliece cryptosystem is formed by an
(n — k) x n low-density parity-check matrix H of an LDPC code able to correct ¢ errors.
The matrix H is formed by a row {Hy,..., H,,_1} of ngp = n/(n — k) binary circulant
blocks of size p x p, where p = n — k. Each block has a row weight (i.e. the number of
ones in a row) equal to a number w. If H,,_; is invertible, a generator matrix G for the

code can be obtained as

(H;ol—l ’ HO)T

(Hits - Hos)

The remaining part of the private key is formed by two other matrices; a dense invertible
k x k matrix S and a sparse invertible n x n matrix (). The matrices S and () are formed
by blocks of circulant p x p matrices. In addition, @) has a fixed row weight m. The public
key is then computed as G' = S~1-G - QL.

Encryption is done as follows. Let the original message be u. Alice encrypts u as
x = u -G + e, where e is a randomly generated error vector of length n and Hamming
weight wy(e) =1 < L.

When Bob receives the encrypted message x, he first computes
r=2-Q=u-St-G+e-Q.

The vector 2’ is a codeword of the LDPC code chosen by Bob (corresponding to the
information vector v’ = u - S71), affected by the error vector e - ), whose maximum
weight is t. Bob is able to correct all the errors with very high probability by means of
an LDPC decoding algorithm, thus recovering «’. Finally, Bob recovers u by multiplying
u' by S.

4.3 Remarks on the QC-LDPC McEliece Cryptosystem

Remark 1. The public key G’ in the QC-LDPC McEliece Cryptosystem is a matrix com-
posed of blocks of p x p circulant matrices. This allows a more efficient representation of

the public key.
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Remark 2. The method of masking the secret code in the QC-LDPC McEliece Cryp-
tosystem is very similar to the method in the original McEliece cryptosystem, except in
QC-LDPC McEliece a matrix () with a fixed row weight m is used instead of a permu-
tation matrix P. The denser matrix () is used in order to prevent the dual code to the
public code to contain words with a very small Hamming weight. If such words were
present in the dual code, then they could be found using Stern’s algorithm. This could
possibly lead to the construction of a low-density parity-check matrix for the public code,

which could be used to decode ciphertexts.

Remark 3. In their first proposal of the QC-LDPC McEliece cryptosystem in [2], Baldi and
Chiaraluce suggested the matrix S to be sparse and the matrix () to have block-diagonal
structure, meaning that the only nonzero blocks in ) would appear along the diagonal.
In [55], Otmani, Tillich and Dallot, however, showed that these two features make the
cryptosystem vulnerable against a structural attack. In reaction to these findings, Baldi,
Bodrato and Chiaraluce proposed a new version of their cryptosystem in [3]. The new
version uses a dense matrix S and a matrix ) which is no longer block-diagonal, and is

therefore immune against the attack from [55].

Remark 4. In [2] and [3], Baldi, Bodrato and Chiaraluce proposed to construct the secret
matrix H by the technique of random difference families [2], in order to avoid short cycles
in the corresponding Tanner graph. It is known that the presence of short cycles deterio-
rates decoding properties of LDPC codes. However, in [4], Baldi, Bianchi and Chiaraluce
showed that in LDPC codes with parameters as in the QC-LDPC McEliece cryptosys-
tem, the impact of short cycles on decoding properties of the code is not significant and
they concluded that blocks in the matrix H can be generated at random from the set of

circulant matrices with w ones in a row.

Remark 5. The security and the complexity of the QC-LDPC McEliece cryptosystem is
further analyzed in [5].

Remark 6. In [6], Baldi et al. showed that a better error correction performance can be
achieved in the QC-LDPC McEliece cryptosystem if circulant blocks in the matrix H are

allowed to have mutually different row weights.

Remark 7. In [4], Baldi et al. proposed a procedure for selecting the density of the private

parity-check matrix H, based on the security level and the decryption complexity.

4.4 MDPC Codes and QC-MDPC Codes

In [49], Misoczki et al. introduced MDPC codes QC-MDPC codes.
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Definition 5. A moderate-density parity-check (MDPC) code is a binary linear code
which admits a parity-check matrix H with a number of 1s which is higher than in LDPC
codes but which is still low. More precisely, the number of 1s in a row of H scales in
O(v/nlogn), where n is the length of the code.

Definition 6. A quasi-cyclic moderate-density parity-check (QC-MDPC) code is an
MDPC code which admits a moderate-density parity-check matrix H in the form

HO,O HO,l cee HO,no—l
Hl,O Hl,l <. Hl,nfl
H = . . . )
Hro—l,O Hr0—171 s Hro—l,n—l

where each H; ; is a p X p circulant matrix.

Similarly as in LDPC codes, we can associate a Tanner graph to an MDPC code and

we can use soft-decision and hard-decision decoding algorithms to decode these codes.

4.5 Description of the QC-MDPC McEliece Cryptosys-
tem

Misoczki et al. introduced MDPC codes and QC-MDPC codes, in order to propose
new cryptosystems - the MDPC McEliece cryptosystem and the QC-MDPC McEliece
cryptosystem [49]. Here we describe the QC-MDPC McEliece cryptosystem.

The private key in the QC-MDPC McEliece cryptosystem is formed by an (n—k) xn
moderate-density parity-check matrix H of an MDPC code able to correct ¢ errors. The
matrix H is formed by a row {Hy,..., H,,—1} of ng = n/(n — k) binary circulant blocks
of size p X p, where p = n — k. Each row of H has its weight (i.e. the number of ones in
the row) equal to a number .

The public key is a generator matrix G of the MDPC code. If H,,,_; is invertible, G
can be obtained as

(120

no—1
G = I :
(Hils - Hogs)

As remarked by Misoczki et al., if the cryptosystem is used with a suitable CCA2 con-

version, the public key can be in systematic form without threatening the security of the
cryptosystem.

Encryption is done as follows. Let the original message be u. Alice encrypts u as

x = u -G + e, where e is a randomly generated error vector of length n and Hamming

weight wy(e) = t.
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To decrypt the message x, Bob can use a soft-decision or a hard-decision decoding
algorithm to remove the error vector e from z. Afterwards, Bob can recover the original
message u simply by linear algebra (or he can read it from first &k entries of the vector

x — e in case G is in systematic form).

4.6 Remarks on the QC-MDPC McEliece Cryptosystem

Remark 8. The public key G in the QC-MDPC McEliece cryptosystem is a matrix com-
posed of blocks of p x p circulant matrices. This allows a more efficient representation of

the public key.

Remark 9. Apart from the QC-MDPC McEliece cryptosystem, Misoczki et al. also pro-
posed a version of the McEliece cryptosystem based on MDPC codes which do not feature
the quasi-cyclic property. However, in that case, the public key does not have the nice
feature of being composed by blocks of circulant matrices. This leads to significantly

larger public keys.
Remark 10. In the original proposal of the QC-MDPC McEliece cryptosystem in [49], the

matrix H has the property that its rows have a constant weight w. In many subsequent
papers on this cryptosystem, this property is replaced by the stricter property that in

every circulant block of H every row has a constant weight T%

Remark 11. In [29], Guo and Johansson proposed a variant of the QC-MDPC McEliece

cryptosystem working over a larger finite field then F5.

Remark 12. In [7], Baldi et al. proposed a variant of the QC-MDPC McEliece cryptosys-

tem where real-valued errors are added to a message during encryption.

Remark 13. For the protection against timing side-channel attacks, it is useful to have a
constant-time decryption. In [19], Chaulet and Sendrier studied how to design an efficient

constant-time decoder for the QC-MDPC McEliece cryptosystem.
4.7 Parameters and Public Key Sizes

In [3], Baldi et al. proposed two sets of parameters for the QC-LDPC McEliece
cryptosystem. We present these parameters in Table 4. In this table, we also present
sizes of the corresponding public keys, assuming that the public keys are in systematic
form.

In [49], Misoczki et al. proposed parameters for the QC-MDPC McEliece cryptosys-
tem for various security levels. We present their parameters in Table 5. Again, we present
sizes of the corresponding public keys, assuming that the public keys are in systematic

form.
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Table 4: Recommended parameters for the QC-LDPC McEliece cryptosystem.|[3]

Security level | ng n p | t' | w | m | Public key size kB]
71 4 116384 | 4096 | 27 |13 | 7 ~ 1.5
80 24576 | 8192 | 40 | 13 | 11 ~ 2.0

Table 5: Recommended parameters for the QC-MDPC McEliece cryptosystem.[49]

Security level | ng n p w t | Public key size [kB]|
80 2 | 9602 | 4801 | 90 | &4 ~ 0.6
80 3 [ 10779 | 3593 | 153 | 53 ~ 0.9
80 4 112316 | 3079 | 220 | 42 ~ 1.2
128 2 [ 19714 | 9857 | 142 | 134 ~ 1.2
128 3 122299 | 7433 | 243 | 85 ~ 1.9
128 4 127212 | 6803 | 340 | 68 ~ 2.5
256 2 | 65542 | 32771 | 274 | 264 ~ 4.1
256 3 | 67593 | 22531 | 465 | 167 ~ 5.6
256 4 | 81932 | 20483 | 644 | 137 ~T.7

In Table 6, we present a comparison of public key sizes in QC-LDPC McEliece, QC-
MDPC McEliece and the original McEliece with Goppa codes. We assume that public

keys are in systematic form.

4.8 Security of QC-LDPC and QC-MDPC Variants of
the McEliece Cryptosystem

Similarly as the original McEliece cryptosystem, the security of the QC-LDPC and
the QC-MDPC McEliece cryptosystems relies on the following two assumptions:

1. It is impossible to extract an information from the public key which would allow to

decode the corresponding code more efficiently than an arbitrary linear code.

Table 6: Comparison of public key sizes in QC-LDPC McEliece, QC-MDPC McEliece

and the original McEliece with Goppa codes. Sizes are approximate and are in kilobytes.

Security level | QC-LDPC [3] | QC-MDPC [49] | Goppa [12]
80 2.0 0.6 57.6
128 - 1.2 192.2
256 - 4.1 958.5
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2. It is difficult to solve the decoding problem in an arbitrary linear code.

Like in the original McEliece cryptosystem, the most efficient algorithms threaten-
ing the security of the QC-LDPC and the QC-MDPC McEliece cryptosystems are ISD
algorithms. However, unlike in the original McEliece where ISD algorithms can be used
only to recover plaintexts, in QC-LDPC and QC-MDPC McEliece ISD can also be used
to reconstruct the secret key. This can happen provided that the public code contains
codewords with sufficiently small Hamming weight as we described in Remark 2 in Section
4.3.

For QC-LDPC and QC-MDPC McEliece, the reduction in the complexity of ISD
attacks associated with the task of decoding one out of many ciphertexts [65] is particularly
relevant, since in these variants any block-wise cyclic shift of the ciphertext provides a
proper new instance of the decoding problem. The solution for the shifted ciphertext is
equal to the solution for the original ciphertext, up to a block-wise cyclic shift.

Like the original McEliece, QC-LDPC and QC-MDPC McEliece are also vulnerable
to the attacks described in Section 3.6.1, but can be protected against these attacks by
conversions from Section 3.6.2.

4.8.1 Squaring Attacks

In [41] and [66], it was shown that when the value of the block size p in the QC-LDPC
and the QC-MDPC McEliece cryptosystems is even, then a more efficient ISD attack can
be built.

4.8.2 Rational Reconstruction Attack and Weak Keys in the
QC-MDPC McEliece cryptosystem

In [8], Bardet et al. introduced the rational reconstruction attack on the QC-MDPC
McEliece cryptosystem. They showed that private keys satisfying certain hypotheses can
be recovered through this attack and they estimated the number of these weak keys.

4.8.3 Reaction Attack on the QC-MDPC McEliece Cryptosys-
tem

In [30], Guo et al. presented a reaction attack on the QC-MDPC McEliece cryp-
tosystem. They demonstrated that if the QC-MDPC McEliece cryptosystem employes a
bit-flipping decoding algorithm in its decryption procedure, then there exists a dangerous
dependence between the probability of decoding error and the secret key.

Guo et al. demonstrated their attack on a version of the cryptosystem with two
blocks in the secret parity-check matrix H. Since the blocks are circulant, the block H is
determined by its first row hy. They showed that an attacker who sends a large number

of messages encrypted by the public key, and for each message learns whether it was
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successfully decrypted, can learn distances between ones in hy. The distance between two
ones in positions p; and py, py > p1, in hg is defined as min {p, — p1,p — (p2 — p1)}, where
p is the length of hy (i.e. the distance is computed cyclically). With the knowledge of
distances in hg, the attacker can reconstruct hy and recover the private key.

Guo et al. considered two different scenarios in their paper. In the first scenario,
the attacker is allowed to choose the error vector e that is added to the message during
encryption. In the second scenario, the attacker has no such freedom and the error
vector is always chosen at random. In both scenarios, the attacker constructs for every
d € {1,...p/2} the set ¥, of messages where the error vector contains the distance d.
Guo et al. observed that if d is present in hg, then the estimate for the probability of
the decoding failure based on the set X, is smaller than the estimate obtained from 3,
when d is not present in hg. Thus, after computing estimates for the probability of the
decoding failure from each ¥4, the attacker can learn which distances are present in hyg.

The successful execution of the attack in the second scenario implies that the attack
is possible even when QC-MDPC McEliece is used with a CCA2-secure conversion, such
as Kobara-Imai 7 conversion [38], for example.

Guo et al. also conjectured that their attack is possible even when the cryptosystem
uses a soft-decision decoding algorithm in its decryption procedure.

To avoid the attack, Guo et al. suggested that the probability of the decoding error
should be approximately 27, where K is the security level required from the cryptosys-
tem. Some preliminary work in the direction of reducing the probability of the decoding
error was done in [19]. However, at present no efficient decoding algorithms for MDPC
codes exist that would provably have as low probability of the decoding error as advised
by Guo et al.. Until this issue is resolved, the QC-MDPC McEliece cryptosystem cannot
be securely used in circumstances where a long-term use of keys is required. However, it
seems that QC-MDPC McEliece can still be used in situations where ephemeral keys are

required, such as in key exchange protocols.
4.9 Implementations and Side-Channel Attacks

Implementation of the QC-MDPC McEliece cryptosystem has received considerable
attention in [15, 33, 42, 43, 44]. The cryptosystem was also implemented in the crypto-
graphic library BitPunch [17] developed at FEI STU.

A CCA-secure hybrid encryption protocol using the Niederreiter cryptosystem with
QC-MDPC codes was implemented in [45]. The protocol is based on the proposal in [58].

In [23], Chou presented QcBits. QcBits is an implementation of a variant of the protocol
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in [58], and it again features the Niederreiter cryptosystem with QC-MDPC codes. In
addition, QcBits operates in constant time, which is a useful protection against timing
side-channel attacks.

In [43], von Maurich and Giineysu showed that AVR/ARM microcontroller implemen-
tations of QC-MDPC McEliece can be vulnerable against simple power analysis attacks.
In addition, they proposed countermeasures to prevent their attacks and to make their
implementation run in constant time.

In [20, 21], differential power analysis attacks were presented on a lightweight FPGA
implementation of QC-MDPC McEliece from [42] and possible countermeasures were
discussed.

In [62], Rossi et al. presented a differential power analysis attack on QcBits [23] and

proposed a countermeasure.
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5 Our Contribution

We contributed to the analysis of the QC-LDPC McEliece cryptosystem in papers
24, 25, 26].

5.1 Reaction Attack on QC-LDPC McEliece

In [24], we presented a reaction attack on the QC-LDPC McEliece cryptosystem. The
inspiration for this attack came from the work of Guo et al. [30], where a reaction attack
on QC-MDPC McEliece was presented (a description of the attack in [30] is presented in
Section 4.8.3).

Similarly as in [30], we showed that there exists a dependence between the secret
matrix H and the failure probability of a decoding algorithm in the QC-LDPC McEliece
cryptosystem. In addition, we observed that there also exists a dependence between the
failure probability and the matrix (). We argued that these dependencies leak enough
information to allow an attacker to construct a sparse parity-check matrix for the public
code. This parity-check matrix can then be used for decrypting ciphertexts.

To exploit this vulnerability, an attacker (Alice) has to send to a victim (Bob) a
large number of messages encrypted by Bob’s public key. We assumed, that for each
message Alice will learn whether Bob successfully decrypted it or not (for instance, Alice
can receive a message resend request in case of a decryption failure). We showed that
with these information Alice can learn distances between ones in rows in circulant blocks
of H and distances between ones in rows in circulant blocks of (). We defined the distance
between two ones in positions p; and pa, pa > pi, as min {ps — p1,p — (p2 — p1)}, where p
is the dimension of circulant blocks in H and ). We showed that, with the knowledge of
distances in H and Q, Alice can reconstruct the matrix H = H x QT which is a sparse
parity-check matrix for the public code and which can be used for decrypting ciphertexts.

To learn distances in H and @, Alice constructs for every d € {1,...p/2} the set ¥,
as follows. 3, is the set of those messages sent to Bob where the error vector contains
the distance d. We observed that the estimate for the probability of the decoding failure
based on the set >, is smaller when d is present in H and that it is even smaller when d is
present in (). Thus, after computing estimates for the probability of the decoding failure
from each X4, Alice can learn which distances are in H and which are in Q.

Similarly as in [30], we showed that Alice can execute the attack even if she has no
freedom to choose what error vectors are added to the messages sent to Bob, i.e. the error

vectors are generated randomly. This implies that the attack is possible even when QC-
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LDPC McEliece is used with a CCA2-secure conversion, such as Kobara-Imai + conversion
[38], for example.

We verified our attack ideas on a version of the QC-LDPC McEliece cryptosystem
which employed a soft-decision decoding algorithm. Thus, our results also confirm the
conjecture from [30] that soft-decision decoding algorithms can be vulnerable to leak
information about the secret parity-check matrix.

To prevent an attacker to learn distances in H and @), it would help if the probability
of the decoding failure decreased dramatically. In [30], Guo et al. suggested that the
probability of the decoding error should be approximately 2=, where K is the security
level required from the cryptosystem. To our best knowledge, however, no efficient LDPC
decoding algorithms currently exist that would provably have such negligible probabil-
ity of the decoding error. Similarly as QC-MDPC McEliece, the QC-LDPC McEliece
cryptosystem, therefore, currently appears not suitable for use in circumstances where a
long-term use of keys is required. However, it seems that it can still be used in situations

where ephemeral keys are required, such as in key exchange protocols.
5.2 Power Analysis Attack on QC-LDPC McEliece

In [32], it was shown that a naive implementation of the decryption algorithm in
the original McEliece cryptosystem allows an attacker to recover the secret matrix P
by measuring the power consumption. In [25], we demonstrated that a similar threat is
present in QC-LDPC McEliece, as well.

We considered a naive implementation of the decryption algorithm in the QC-LDPC
McEliece cryptosystem. Our implementation was based on the project BitPunch [17]
and featured a bit-flipping algorithm in the decoding procedure. We demonstrated that
this implementation leaks information about positions of ones in the secret matrix Q).
We argued that an adversary, who sends a victim ciphertexts with Hamming weight 1
and measures the power consumption during the decryption, can completely recover the
matrix (). In addition, we remarked that the quasi-cyclic nature of the matrix () allows to
accelerate the attack significantly. This attack is possible even when QC-LDPC McEliece
is used with the Kobara-Imai v conversion [38], for example. We further observed that
the same countermeasure as was proposed in [32] can be applied in QC-LDPC McEliece,
as well.

As already noted in Section 5.1, the reaction attack from [24] suggests that the QC-
LDPC McEliece cryptosystem might not be suitable for the deployment in circumstances

where a long-term use of keys is required. Compared to the reaction attack in [24], the
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adversary needs to send significantly fewer ciphertexts in the simple power analysis attack.
Therefore, our result shows that if QC-LDPC McEliece was deployed with some upper
bound on the number of decryptions it can perform (designed to prevent the reaction
attack from [24]), then a careful implementation might be needed to avoid the simple

power analysis attack.

5.3 Generating Invertible Circulant Matrices with a Pre-
scribed Number of Ones

As noted in Section 5.1, the QC-LDPC McEliece cryptosystem appears not suitable
for the deployment in circumstances where a long-term use of keys is required. However,
it seems that it can still be used in situations where ephemeral keys are required, such as
in key exchange protocols. In such situations, the cryptosystem is still threatened by the
squaring attack described in [66]. To avoid this attack, the dimension of circulant blocks
in the cryptosystem has to be odd.

QC-LDPC McEliece requires generating matrices S and (), which are invertible and
are composed of blocks of circulant matrices of the dimension p. In addition, S is dense
and @) is sparse with a prescribed low number of ones in a row. In [3], Baldi et al. proposed
a method how to construct matrices satisfying these requirements for the case when p is
a power of 2. In case p is not a power of 2, their method, however, does not necessarily
produce an invertible matrix.

In [26], we studied how to construct matrices S and @ when p is odd, which is the
requirement to avoid the attack from [66]. We firstly studied how to construct invertible
circulant binary matrices with a prescribed number of ones. In [43], this problem was
solved by repeatedly generating random circulant matrices with the prescribed number
of ones until an invertible matrix was obtained. The number of all invertible circulant
matrices of a given size over Z, can be computed by a formula [35]. Therefore, if a
circulant binary matrix with a random number of ones was generated, the probability of
the matrix being invertible could be computed. However, to the best of our knowledge,
no general formula for computing the number of invertible circulant binary matrices of
a given size and with a prescribed number of ones exists. Therefore, except for special
cases, the expected number of repeated generations cannot be directly computed and
can be only estimated by simulations. These extra generations and the associated extra
invertibility tests can be costly in terms of time and in terms of entropy needed to generate
extra random bits.

We proposed alternative algorithms for generating invertible circulant matrices with
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a prescribed number of ones. Compared with the approach from [43], our algorithms
have the advantage that they generate matrices satisfying all the requirements on the
first attempt. On the other hand, their disadvantage is that they generate matrices from
a smaller pool. For each of our algorithms a formula for the size of the pool was derived.
Thus, a user is allowed to evaluate whether the size of the pool is sufficient for his/her
application. The size of the pool depends on the degree d of a smallest polynomial (in
terms of degree) other than = + 1 appearing in the irreducible factorization of z? + 1 (p
represents the size of the matrix). In order to achieve a large pool, the value of p should
be chosen so that this degree is large. As we explain in the paper, the value of d can be
easily determined.

Subsequently, we proposed algorithms to construct matrices S and @ in the QC-
LDPC McEliece cryptosystem. Our algorithms assume that the size of blocks in S and
Q) is odd. Again, the size of the pool (and also the efficiency of the algorithm for S)
depends on the irreducible factorization of z” + 1 (here p represents the size of blocks).
With this in mind, the best choice for the block size appears to be a prime p such that
the multiplicative order of 2 modulo p is equal to p — 1. According to Artin’s conjecture
on primitive roots, approximately 37% of primes satisfy this condition [51].

It might be tempting to use our algorithms for generating invertible circulant matrices
with a prescribed number of ones in the construction of the parity-check matrix H in the
QC-LDPC McEliece cryptosystem and the QC-MDPC McEliece cryptosystem. In both
these cryptosystem, it is useful if the last circulant block of H is invertible. However,
we explained that in cases when d is significantly smaller than p, using our algorithm
might allow an adversary to build a much more efficient ISD attack. In such cases, we
recommend to generate the last block of H by repeatedly generating random circulant

matrices with the prescribed number of ones until an invertible matrix is obtained, as was
done in [43].
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