
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
FACULTY OF ELECTRICAL ENGINEERING AND

INFORMATION TECHNOLOGY

Registration number: FEI-104372-53536

POST-QUANTUM KEY ESTABLISHMENT

DOCTORAL THESIS

2022 Ing. Peter Špaček

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
FACULTY OF ELECTRICAL ENGINEERING AND

INFORMATION TECHNOLOGY

Registration number: FEI-104372-53536

POST-QUANTUM KEY ESTABLISHMENT

DOCTORAL THESIS

Study Programme: Applied Informatics
Field Number: 2511
Study Field: 9.2.9 Applied Informatics
Training Workplace: Institute of Computer Science and Mathematics
Supervisor: prof. Ing. Pavol Zajac, PhD.

Bratislava 2022 Ing. Peter Špaček

ABSTRACTÚ
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECHNOLOGY

Study Programme: Applied Informatics
Author: Ing. Peter Špaček
Doctoral thesis: Post-Quantum key es-

tablishment
Supervisor: prof. Ing. Pavol Zajac, PhD.
Place and year of submission: Bratislava 2022

This dissertation thesis deals with the problem of secure post-quantum key exchange. It
focuses on the TLS communication protocol and its security in the post-quantum world.
Quantum computers and algorithms developed for them are able to break the security of
currently used mechanisms, which provide confidentiality and integrity of messages. In
this work, we present concepts needed to understand the domain and explain how quan-
tum technologies threaten communication security. We describe cryptographic protocols,
especially the TLS protocol, on which we focus in this work. We identify the mecha-
nisms that need to be replaced to achieve post-quantum security in TLS key exchange.
The NIST standardization process to create a new post-quantum public-key cryptography
standard brings together a collection of candidates we can use to address this issue. We
design, implement, and test post-quantum key exchange in TLS Handshake using these
algorithms. Operational security is also considered. Using the concept of Trusted Exe-
cution Environment (TEE) and propose a post-quantum HSM, which serves to separate
the unsecured and secured environment. Here we also take into account side-channel
resistance. The work analyzes and proposes solutions for several scenarios:

1. The post-quantum key exchange in TLS protocol

2. The post-quantum key exchange in TLS protocol in limited (IoT) devices

3. The post-quantum key exchange in TLS protocol using HSM module

4. Introducing the concept of the PQcube post-quantum HSM module, which includes
exchange, administration, and secure key usage.

We introduce a set of experiments that test our solutions. We list unique measurements
from the use of post-quantum key exchange in the TLS protocol in the scenarios mentioned
above. In this work we show that our solutions can be used in the real world, and we
prove this using various benchmarks.

Keywords: Post-quantum, TLS, IoT, Protocol, HSM

SÚHRN
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE
FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Študijný program: Aplikovaná informatika
Autor: Ing. Peter Špaček
Dizertačná práca: Bezpečná post-

kvantová kryptografia
Vedúci záverečnej práce: prof. Ing. Pavol Zajac, PhD.
Miesto a rok predloženia práce: Bratislava 2022

Táto dizertačná práca sa zaoberá problematikou bezpečnej post-kvantovej výmeny kľúčov.
Bližšie sa zameriava na komunikačný protokol TLS a jeho bezpečnosť v post-kvantovom
svete. Kvantové počítače a algoritmy pre ne vyvinuté sú schopné prelomiť bezpečnosť
aktuálne využívaných mechanizmov na zabezpečenie dôvernosti a integrity správ. V práci
predstavujeme koncepty potrebné na pochopenie problematiky a vysvetľujeme, ako kvan-
tové technológie ohrozujú bezpečnosť komunikácie. Opisujeme používané kryptografické
protokoly, a hlavne protokol TLS, na ktorý sa v práci zameriavame. Identifikujeme mech-
anizmy, ktoré treba vymeniť na dosiahnutie post-kvantovej bezpečnosti pri probléme vý-
meny kľúčov. Štandardizačný proces NIST na vytvorenie nového post-kvantového štan-
dardu kryptografie s verejným kľúčom priniesol niekoľko vhodných kandidátov, ktorých
vieme využiť na riešenie tohoto problému. Navrhujeme, implementujeme a testujeme
post-kvantovú výmenu kľúčov v TLS Handshake s využitím práve týchto algoritmov. V
práci zohľadňujeme aj operačnú bezpečnosť. Nasledujeme trend Trusted Execution En-
vironment (TEE) a navrhujeme koncept post-kvantového modulu HSM, ktorý slúži na
oddelenie nezabezpečeného a zabezpečeného prostredia. Tu zohľadňujeme aj odolnosť
voči útokom s využitím postranných kanálov. Práca analyzuje a navrhuje riešenia pre
niekoľko scenárov:

1. Post-kvantová výmena kľúčov v TLS protokole

2. Post-kvantová výmena kľúčov v TLS protokole v limitovaných (IoT) zaradeniach

3. Post-kvantová výmena kľúčov v TLS protokole za využitia HSM modulu

4. Predstavenie konceptu post-kvantového HSM modulu PQcube, zahrňajúceho vý-
menu, správu, aj bezpečné využívanie kľúčov.

Prinášame sadu experimentov, ktoré nami navrhované a implementované riešenia testujú,
a prinášame jedinečné merania z využitia post-kvantovej výmeny kľúčov v TLS protokole
v našich scenároch. V práci ukazujeme, že nami navrhované riešenia je možné využiť v
praxi a toto tvrdenie podkladáme meraniami.

Kľúčové slová: Post-kvantová kryptografia, TLS, HSM, protokol, IoT

Acknowledgments
I would like to express gratitude to my thesis supervisor prof. Ing. Pavol Zajac, PhD. I
would like to thank Institute of Computer Science and Mathematics, Faculty of Electrical
Engineering and Information Technology and Slovak University of Technology for provid-
ing a stimulating environment for me to be able to grow academically and professionally.
I would like to thank European Union, NATO and SAIA for support of academic visits
and collaboration with other universities. I am deeply grateful to my parents and my wife
for support, help and assistance during my studies.

Contents

Introduction 16

1 Preliminaries 19
1.1 Security in the post-quantum world . 20

1.1.1 Impact on asymmetric cryptography 21
1.1.2 Impact on symmetric cryptography 21
1.1.3 Impact on hash functions . 21

1.2 Transport Layer Security . 22
1.2.1 Authenticated Encryption with Associated Data 23
1.2.2 Sub-protocols . 24
1.2.3 Comparison of SSL and TLS . 32

1.3 Algorithms used in IoT security . 33
1.4 Post-quantum movement . 34

1.4.1 Post-quantum algorithms principles 34
1.4.2 NIST . 35
1.4.3 Key Encapsulation Mechanism . 37
1.4.4 Security Strength Categories . 39

1.5 TLS Implementations . 40
1.5.1 OpenSSL . 40
1.5.2 LibreSSL and BoringSSL . 40
1.5.3 NSS . 40
1.5.4 s2n . 40
1.5.5 Mbed TLS and wolfSSL . 41

1.6 Operational Security . 42
1.7 Side-channel attacks . 43
1.8 Trusted environment . 44

1.8.1 Hardware security modules . 44
1.9 Similar efforts and related projects . 46

1.9.1 PQClean . 46
1.9.2 Open Quantum Safe . 46
1.9.3 OpenSSLNTRU . 47
1.9.4 Post-quantum algorithms prototyping in TLS 47
1.9.5 Post-Quantum TLS 1.3 on Embedded Systems 48
1.9.6 Post-Quantum TLS Without Handshake Signatures 48

8

1.9.7 pqm4 . 48

2 Designing post-quantum-handshake key exchange 49
2.1 Post-quantum algorithms replacing RSA/DH 50
2.2 Decoding problem . 51
2.3 NTRU . 51
2.4 LWE, LWR, module-LWE, and module-LWR problem 51
2.5 Basic post-quantum TLS Handshake concept 53

2.5.1 Client-side pre-computation . 55
2.5.2 ClientHello . 55
2.5.3 Server-side pre-computation . 57
2.5.4 ServerHello . 58

2.6 Post-quantum TLS for limited devices . 59
2.6.1 ClientHello . 60
2.6.2 Server-side Pre-computation . 61
2.6.3 ServerHello . 61
2.6.4 Client-side Pre-computation . 62
2.6.5 Client Key Exchange . 62
2.6.6 Differences between pqTLS and pqlimTLS 62

2.7 Post-quantum authentication . 63

3 TEE-based post-quantum TLS 64
3.1 SEcube . 64

3.1.1 SEcube SDK . 64
3.1.2 Side-channel attack resistance . 66

3.2 Symmetric cryptography in a trusted environment 67
3.2.1 GCM . 67
3.2.2 HSM symmetric cipher in TLS . 68

3.3 Secret keys stored in the trusted environment 69
3.4 Post-quantum public-key algorithms in TE 70
3.5 Post-quantum cube TLS - pq3TLS . 71
3.6 Side-channel attack resistance . 74

4 Implementation details 77
4.1 New public-key ciphers integration into s2n 77

4.1.1 Classic McEliece . 77

9

4.1.2 CRYSTALS-KYBER . 78
4.1.3 NTRU . 78
4.1.4 SABER . 79

4.2 Implementation of pqTLS protocol . 80
4.2.1 Client Hello . 81
4.2.2 Server Hello . 81

4.3 Implementation of pqlimTLS protocol . 83
4.3.1 Client Hello . 83
4.3.2 Server Hello . 83
4.3.3 Client Key Exchange . 84

4.4 Modification of s2n code to enable external device 85
4.5 New symmetric cipher integration into s2n 85
4.6 AES-GCM implementation in PQcube . 86
4.7 Post-quantum algorithms suitable for devices with limited resources 87

4.7.1 PQClean implementation of algorithms 87
4.7.2 Source of randomness . 87
4.7.3 Hash function implementation . 87
4.7.4 Classic McEliece . 87
4.7.5 CRYSTALS-KYBER . 88
4.7.6 NTRU . 88
4.7.7 SABER . 88

4.8 Side-channel resistance . 88
4.9 PQcube system . 89

4.9.1 Implementation of HSM KEM . 89
4.9.2 Key Derivation . 89
4.9.3 s2n PQcube handshake . 89
4.9.4 s2n PQcube record . 90

5 Experiments 91
5.1 Measurement Methods . 91

5.1.1 Time measurements . 91
5.1.2 CPU cycles . 92
5.1.3 SysTick System Timer . 92
5.1.4 Data Watchpoint and Trace . 93

5.2 Measurements and results . 94

10

5.2.1 Post-quantum algorithms in TLS 95
5.2.2 Post-quantum TLS protocol . 97
5.2.3 Post-quantum TLS for lightweight client 99
5.2.4 Benchmarking post-quantum security on SEcube 101
5.2.5 Benchmarking masked implementation of Kyber 103
5.2.6 SEcube post-quantum KEMs integration in s2n 104
5.2.7 PQcube Client-Server Handshake 106
5.2.8 PQcube for symmetric crypto . 108

5.3 Evaluation of results . 110

6 Conclusion 113

Resumé 115

Bibliography 120

Appendix I

A GitHub Repository II
A.1 PQcube repository structure . III
A.2 PQ s2n repository structure . IV

B Run Relevant Unit Tests V

11

List of Figures and Tables
Figure 1 TLS Record Packet . 22
Figure 2 TLS ClientHello Packet . 25
Figure 3 TLS ServerHello Packet . 26
Figure 4 TLS Handshake Diagram . 27
Figure 5 Cryptographic negotiations . 29
Figure 6 TLS 1.3 handshake time reduction [29] 29
Figure 7 KEM conversion using Public Key Encryption 37
Figure 8 Key exchange using KEM . 38
Figure 9 Isolation of critical functions into HSM 45
Figure 10 Basic pqTLS concept . 54
Figure 11 pqTLS ClientHello Extensions Packet 57
Figure 12 pqTLS ServerHello Extensions Packet 58
Figure 13 pqlimTLS concept . 59
Figure 14 pqlimTLS ClientHello Extensions Packet 61
Figure 15 pqlimTLS ServerHello Extensions Packet 61
Figure 16 Client Key Exchange Packet . 62
Figure 17 The architecture of the SEcube SDK [89] 65
Figure 18 Integration of HSM GCM to TLS record 68
Figure 19 Post-Quantum Cube TLS . 71
Figure 20 kem.c file structure . 77
Figure 21 Minimal pqTLS state machine . 80
Figure 22 Minimal pqlimTLS state machine 83
Figure 23 Post-Quantum KEMs . 96
Figure 24 Post-Quantum TLS . 98
Figure 25 Post-Quantum TLS for limited devices 100
Figure 26 Post-Quantum CUBE KEMs . 105
Figure 27 Post-Quantum TLS . 107
Figure 28 Performance of post-quantum handshake using Saber with and

without HSM . 111
Figure 29 Performance of post-quantum handshake using Kyber with and

without HSM . 111

12

Figure 30 Performance of post-quantum handshake using NTRU with and
without HSM . 112

Table 1 NIST post-quantum first-round candidates distribution 35
Table 2 NIST post-quantum second-round candidates distribution 35
Table 3 NIST post-quantum third-round candidates distribution 36
Table 4 NIST post-quantum alternate third-round candidates distribution 36
Table 5 Summary of experiments . 94
Table 6 Post-Quantum KEMs Benchmarks 95
Table 7 Post-Quantum TLS Benchmarks 97
Table 8 Benchmarks of post-quantum TLS for limited devices 100
Table 9 Table of Kyber1024 speed in CPU ticks on Cortex-M4 101
Table 10 Table of ntruhps4096821 speed in CPU ticks on Cortex-M4 101
Table 11 Table of FireSaber speed in CPU ticks on Cortex-M4 102
Table 12 Performance of masked kyber in CPU cycles. 103
Table 13 Post-Quantum CUBE KEMs Benchmarks 104
Table 14 Post-Quantum TLS Benchmarks 106
Table 15 SECube HSM overheads . 108

13

List of Abbreviations
AEAD Authenticated encryption with associated data
AES Advanced Encryption Standard
API Application Programming Interface
DH Diffie-Hellman
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
EdDSA Edwards-curve Digital Signature Algorithm
GCM Galois/Counter Mode
HMAC Hash-based message authentication code
HSM Hardware security module
IoT Internet of things
IV Initialisation Vector
KEM Key Encapsulation Mechanism
LWE Learning With Errors
LWR Learning With Rounding
NIST National Institute of Standards and Technology
NSS Network Security Services
NTT Number theoretic transform
OQS Open Quantum Safe
OSI Open Systems Interconnection
PMS Pre-Master Secret
pq3 Post Quantum Cube
pq3TLS Post-Quantum Cube TLS
pqlimTLS Post-Quantum TLS for limited devices
pqTLS Post-Quantum TLS
PRF Pseudorandom Function
PSK Pre-Shared Key
RSA Rivest–Shamir–Adleman
s2n Signal to Noise
SDK Software development kit
SSL Secure Sockets Layer
TEE Trusted Execution Environment
TLS Transport Layer Security

14

TPM Trusted Platform Module

15

Introduction
New discoveries in the field of quantum technologies [1], [2], [3], [4] show that quantum
computers are becoming reality. Quantum computers and application-specific quantum
hardware pose new threats to currently used cryptography [5], [6]. Whoever has quantum
technology can get access to state secrets, business-critical information, financial trans-
actions, and read private messages. In order to prevent this from happening, we need
to replace cryptographic algorithms that we use today with more secure, post-quantum
ones.

In November 2017, NIST collected 69 "complete and proper" papers in the post-
quantum standardization process [7]. At the beginning of 2019, second-round candidates
for the NIST competition were published. At the time of writing this thesis, the finalists
of the third round are already known, and we are getting ready for a new public-key
cryptography standard.

In this work, we analyze the aspects of TLS protocol in a post-quantum setting and
propose our solution. The most common protocol responsible for security on the Internet
is TLS. In August 2018, TLS version 1.3 was published. It is the most secure transport
layer protocol so far [8]. Nevertheless, it was not designed with a quantum computer in
mind.

The focus of this thesis is to examine and evaluate the possibilities of
making TLS key exchange secure in the post-quantum world.

This means we aim to design, implement and evaluate a post-quantum handshake pro-
tocol compatible with TLS. We prototype Hardware Security Module for post-quantum
public-key algorithms and use such a solution in the TLS setting. We should also have
in mind that the delays caused by Hardware Security Module in the post-quantum TLS
setting should be still tolerable.

16

Research objectives
We can identify several objectives connected to the aim of our work. These are subgoals
we will follow when elaborating this research work:

• We need to review the details of the TLS protocol, its mechanisms, and the structure
of its messages. We will identify aspects that can be reused and aspects that need
to be replaced.

• We will search for possible replacement mechanisms for key exchange that should
resist quantum computers.

• We will collect suitable TLS implementations for our experiments and choose the
best one for the practical aspect of our research.

• We will design and implement a post-quantum key exchange mechanism in the TLS
context.

• In designing a new TLS-like protocol, we will consider the growing world of IoT de-
vices. This should be projected into key exchange choices, as well as the architecture
of the new protocol.

• We will find available methods for ensuring operational security and implement the
chosen solution.

• We will test our solution with a set of experiments to find whether our solution is
suitable for use in practice.

Directly from our objectives, a few important questions have emerged. First is the
question of operational security. We need to consider not only the cryptoanalysts breaking
ciphers, but also the "line of least resistance" attackers. This includes malware obtaining
secret keys, monitoring cryptographic operations to leak some side-channel information,
etc.

Quantum-secure algorithms themselves require more memory space, more computa-
tional power, or/and more time. Symmetric cryptography needs longer keys and blocks,
public-key cryptography needs to be changed completely, and may have different chal-
lenges, e.g. enc/dec time ratio. Also, changes are required on the protocol level to
achieve our goal. This may result in a delays in communication establishment, a need for
memory space for the keys, and overall delays in communication. So, another important
aspect is the trade-off or the "cost" of post-quantum secure TLS protocol.

17

Overview of the thesis

The first chapter presents the preliminaries. We describe post-quantum security, we
review the details of the TLS protocol, its mechanisms, and the structure of its messages.
We present operational security and similar research. We describe TLS implementations.
We found possible replacement mechanisms for key exchange that should resist quan-
tum computers in the NIST post-quantum standardization process and explained related
concepts.

The post-quantum level of security in TLS requires design changes. We present
those changes in the second chapter, together with possible candidates for key exchange
algorithms. We identify parts of TLS that can be reused and parts that need to be
replaced. We also consider limited devices and the growing world of IoT. We introduce
SEcube and our concept of post-quantum HSM to provide a higher level of operational
security. Also, we add an option to use of protected implementation of Kyber.

We chose the s2n implementation of TLS and modify it to support our experiments. In
the third chapter, we mention some of the implementation challenges that we encountered
to explain the artifact of our design research. We also describe the building blocks and
sources for the implementation of our study.

In the chapter four, we test and evaluate all components and steps of the post-
quantum TLS key agreement process. We show the successful post-quantum decryption
and key agreement on the host and HSM use. We also show successful symmetric cryp-
tography use in TLS Record protocol after post-quantum key exchange.

18

1 Preliminaries
This section presents the preliminaries required to understand our work. First, we present
state of the art of post-quantum security, and how are quantum machines threatening
currently used cryptography. Them, we focus on Transport Layer Security (TLS) cryp-
tographic protocol, a widely used cryptographic protocol for key exchange. Because we
want to explore the possibilities of a post-quantum secure key agreement, we need to
understand the details and mechanisms used in TLS now to find new and more secure
ways to exchange keys. We also take a quick look at the situation in IoT devices to see
that it is also essential to find post-quantum alternatives to cryptographic algorithms and
mechanisms in limited devices. Because we choose the TLS protocol for our research,
we provide an overview of current TLS implementations. Next, we explain the basic
principles of post-quantum public-key algorithms and NIST standardization process for
post-quantum public-key standards. We emphasize the importance of practical security,
and we describe the concept of running the code in a trusted environment. We present
hardware security modules, and finally, research similar to this thesis.

19

1.1 Security in the post-quantum world

Since the first ideas about quantum computing in the 1980s, scientists have been re-
searching new ways to use discoveries in physics for computing [1]. The excitement grew
even further in 1994, when Shor published an algorithm for integer factorization. At the
moment, we live on the edge of a new era. New results in the development of quantum
computers [2], [3], [4] will have severe consequences. With more computing power than
the adversaries have, new threads appear as well. Algorithms currently used to secure
information, especially for key exchange and digital signatures, are vulnerable to new
types of attacks that emerged with the development of quantum computers.

It is not important for this work to understand how a quantum computer works.
We can perceive it as a black box that is able to run specific algorithms. Two notable
publications impacted the world of cryptography so much that cryptographers started to
consider new replacements for currently used solutions:

1. Shor’s algorithm, published in 1994 by Peter Shor [9], is a quantum computer
algorithm for prime factorization and discrete logarithms in polynomial time.

2. Lov Grover published a database search algorithm in 1996 [10]. One interesting con-
sequence is that Grover’s algorithm is able to find the n-bit key with complexity
√

2n iterations [11]. Note, that a conventional computer would need 2n−1 iteration
to find the same key.

20

1.1.1 Impact on asymmetric cryptography

Most used public-key algorithms for key exchange or digital signatures are vulnerable to
quantum machines [5], [6]. Based on the integer factorization problem, the RSA cipher
is the apparent victim of Shor’s algorithm. Other commonly used public ciphers, Diffie-
Hellman or its variant based on the elliptic curves over finite fields (ECDH). As mentioned
in [12], Shor’s algorithm can also be used for computing discrete logarithms. And because
solving Diffie-Hellman problem can be achieved by solving discrete logarithms [13], Diffie-
Hellman is also not suitable for post-quantum usage. Proos and Zalka [14] have shown
that breaking cryptography based on elliptic curves is more straightforward than breaking
RSA.

1.1.2 Impact on symmetric cryptography

Symmetric ciphers are not entirely broken with Grover’s algorithm. But the square root
speed up of brute-force attacks requires changing what is considered "secure". The Ad-
vanced Encryption Standard (AES) [15] is widely used for providing data confidentiality.
With Grover’s algorithm in mind, the security level of AES-128 is lowered to 64-bit
(
√

2128 = 264). That means that AES settings with 128 bits or lower key length will no
longer be secure, and AES needs to be used with 192 or 256 bits for key sizes [16].

Applying Grover’s algorithm on DES, however, brings its 56-bit security to only 185
iterations. 3DES is also not secure enough for the quantum world. Its 112-bit key is
lowered to 56-bit security, and that is not considered secure [17].

1.1.3 Impact on hash functions

Hash functions suffers from the same consequences from a quantum computer as sym-
metric cryptography. Grover’s algorithm can be used to find a collision using square root
speedup. Brassard et al.[18] showed that by creating a table of size 3

√
2n together with

using Grover’s algorithm, he can reduce the security level of hash functions three times.
That means that for hash functions we need at least 224-bit variants.

21

1.2 Transport Layer Security

TLS (formerly SSL) is probably the most important security protocol. TLS in version 1.3
is the newest protocol designed to secure transport layer communication. It is considered
the most secure and recommended to be used in internet communication [19]. It is located
between the application and transport layer of the OSI model. It enables secure endpoint
communication, communicating party authentication, data integrity, and confidentiality.
TLS can be perceived as a tunnel where only endpoints can access data using cryptog-
raphy. Also, an adversary cannot modify data without detection after establishment. If
this happens, TLS will find it and refuse the message. The server is always authenticated,
and the client is authenticated only optionally. As stated in [20], TLS uses two methods
for authentication: symmetric pre-shared key (PSK) or asymmetric cryptography (RSA
[21], ECDSA [22] or Edwards-curve Digital Signature Algorithm (EdDSA) [23]).

TLS protocol has several subroutines, the most important of which are Handshake
and Record protocols. Each message is split into records, so every TLS packet starts with
a record header (even the handshake one). TLS record packet structure can be seen in
Figure 1.

Figure 1: TLS Record Packet

A handshake protocol handles authentication of both communicating parties, nego-
tiation of cryptographic parameters, and establishes a shared key.

Several communication messages are defined in a handshake, each with its specific
name and structure. We explain both 1.2 and 1.3 handshakes in detail, as we need to
understand both to understand our solution for a post-quantum handshake. We focus
only on relevant fields for key establishment. Also, we explain TLS record protocol and
authenticated encryption concept.

22

1.2.1 Authenticated Encryption with Associated Data

Many of the cryptographic protocols used in recent years (including TLS) use authenti-
cated encryption. Authenticated Encryption with Associated Data (AEAD) [24] is cryp-
tographic scheme where a symmetric cipher is used together with a cryptographic hash
function to provide authenticity and confidentiality of transmitted data. There are two
different AEAD for TLS 1.3 connections; AES-GCM and ChaCha20-Poly1305.

As described in [25] AEADs has two basic operations, "seal" and "open". The "seal"
operation require the following:

• The plaintext (message).

• A secret key.

• An initialization vector (IV). It must be unique between invocations of the "seal"
operation with the same key; otherwise, the secrecy of the cipher is completely
compromised.

• Optionally, we can add other non-private data. The data will be authenticated but
not encrypted. (AD in AEAD).

The TLS 1.3 removed all insecure options and ciphers and uses only ChaCha20 or
AES in GCM mode to produce a ciphertext of equal length. Based on the key and IV, it
hashes the ciphertext, additional data, and lengths. For hashing, Poly1305 or GHASH is
used. Hash is encrypted to create the final MAC, and added to ciphertext. The "open"
operation is the same but reversed.

23

1.2.2 Sub-protocols

1.2.2.1 Record TLS record protocol helps secure the application data using the keys
and parameters established in the handshake. As described in [26], TLS Record is respon-
sible not only for securing application data but also for verifying its integrity and origin.
It manages the following:

• Dividing outgoing messages into manageable blocks and reassembling received mes-
sages.

• In obsolete versions, TLS 1.2 and less, TLS record supported compression of these
outgoing blocks and decompression of received blocks. This feature was optional for
TLS 1.2, and in TLS 1.3 is not present.

• In TLS 1.2, there were separate methods for:
-applying MAC to messages before sending, and verifying received messages
-encrypting transmitted blocks and decrypting received blocks
In TLS 1.3, all ciphers are considered as AEAD. AEAD functions turn plaintext
into authenticated ciphertext and back again. Each encrypted record consists of a
plaintext header followed by an encrypted body with optional padding.

When the protocol finishes, the outgoing encrypted message is sent to the Transmission
Control Protocol (TCP) layer for transport.

24

1.2.2.2 TLS 1.2 handshake In the first step, the client sends a list of supported
ciphers (cipher suites) and other details in the message called ClientHello. The packet
starts with record header information - type, version, and length (Figure 1). The Record
message payload consists of the client protocol version, 32 bytes of random client data,
an optional session ID to resume the previous session, a list of cipher suites, and a list
of compression methods. It finishes with an extension’s length and a list of extensions.
ClientHello message details are shown in Figure 2.

Figure 2: TLS ClientHello Packet

The protocol type for a record is 16. Version number 03 01 (TLS 1.0) is used in
the record header of all TLS messages to preserve compatibility with older devices. The
Message type for the ClientHello is 01, TLS protocol version is 03 03, (representing TLS
1.2). TLS 1.0 is represented by 3.1, TLS 1.1 is 3.2, etc.. The Session ID is used to resume
the session with the client from the previous connection. Thirty-two bytes of random
client data are used later in the handshake for a key derivation. A list of cipher suites
is ordered by client preference. In TLS 1.2, there are several options for the public key
system to be used in the communication. One option is to use RSA [21] system. In
TLS RSA, the client chooses a shared secret, then uses RSA to encrypt it with a server
public key and send it via a network. The other option is to use Diffie-Hellman [27] key
agreement. In this scheme, each party publishes a binary sequence, then combines the
received one with their private sequence, and both parties have the same secret (Pre-
Master Secret). Extensions Length is the length of all other information that the client
wants to send (Server Name, Supported Groups, Signature Algorithms, etc.).

The server processes the message, selects the correct version of the TLS protocol, com-

25

pression and encryption methods, and sends a ServerHello response as shown in Figure 3.
It again consists of record header information (figure 1), handshake header - message type
and length of the ServerHello, server protocol version, random server data, an optional
session ID to resume a session, and a chosen session cipher suite a compression method
and extensions length and a list of extensions.

Figure 3: TLS ServerHello Packet

Message type for a ServerHello is 02, TLS protocol version is 03 03, (representing TLS
1.2). This number can also be found in Server Version. The session ID is again used
to resume the session with the client from the previous connection. Thirty-two bytes of
Server Random Data are used later in the handshake for key derivation. The server selects
the cipher suite and sends it to the client. After sharing authentication information, the
server announces the end of the Hello process with a Server Hello Done.

In the next phase, the client sends a ClientKeyExchange message that is either empty
or can contain a Pre-Master Secret or a public key, depending on the selected cipher. The
client and the server create a Master Secret from randomly chosen numbers and the
Pre-Master Secret. All other keys are computed from Master Secret.

The final phase contains information that further communication will be encrypted.
The client sends the ChangeCipherSpec and Finished message, which is encrypted and
includes a MAC of a Finished message and a hash of all handshake messages. The server
tries to decrypt this message and verify the client’s MAC and hash. If the verification is
not successful, the connection will be terminated. If the verification and decryption are
successful, the server sends the ChangeCipherSpec and Finished messages. The client will
decrypt and verify the message.

26

Figure 4: TLS Handshake Diagram

27

1.2.2.3 TLS 1.3 handshake Even if an attacker cannot gain access to encrypted
communication, he can record TLS handshake, as seen in Figure 4, and later gain access
to private keys, exploiting currently not known vulnerability. If the protocol is using the
same (long-term) private key for all sessions, an attacker is able to access confidential
data. Perfect Forward Secrecy is the ability of the cryptosystem to prevent that. TLS
1.2 and previous protocols use RSA [21] without Perfect Forward Secrecy. In TLS 1.3,
RSA is removed, and ephemeral Diffie-Hellman [27] is the only key exchange mechanism
present. That means that long term private key is not used for key exchange, but only
for authentication. Diffie-Hellman secrets are used only once, for one key exchange, and
then regenerated for the next session.

Because not all DH parameters are secure, TLS 1.3 restricted the parameters only
to secure ones. These changes resulted in a faster and simpler protocol, which is easier
to understand. TLS 1.3 abandoned the old concept of cipher suites. The table of cipher
suites became too large because, throughout the years, each new entry in the table (e.g.
new cipher) had to be combined with all the others (e.g. hash functions). Now TLS 1.3
uses three separate negotiations:

• AEAD + Hash (TLS 1.3 uses HMAC-based key derivation[28])

• Key Exchange

• Signature Algorithm

Figure 5 explains how new negotiations work in contrast to old cipher suites tables. Old
negotiation shows a set of combinations of cryptographic primitives in form of cipher suites
with underscore _ between each group (ciphers, key exchanges, and signature algorithms).
New negotiation has three sets for each group, and because they are negotiated separately,
we need much smaller sets.

28

Figure 5: Cryptographic negotiations

All this leads us to an exciting result. As explained in section 1.2.2.2, two round
trips are needed to complete the TLS 1.2 handshake. TLS 1.3 does not require two round
trips, but only one. This cuts the encryption latency in half, resulting in a performance
boost. This can be seen in Figure 6.

Figure 6: TLS 1.3 handshake time reduction [29]

Now we explain the reason for the latency cuts in more detail. Because of a limited
set of choices for negotiation, the client sent a DH key in the first message. The server
can learn the shared secret and send encrypted data one round-trip earlier. It is called
1-RTT mode. If the server does not support one of the keys from the client, the server
will send the HelloRetryRequest to let the client know which groups it supports. This
situation should be rare because the list of choices is short.

ClientHello The new ClientHello has the same structure as shown in Figure 2, with

29

minor differences. TLS protocol version is still 03 03 (representing TLS 1.2) because still
used middle-boxes have been programmed not to allow protocol versions that they do
not recognize. This field is hard-coded, and the actual negotiation is in the Supported
Versions extension. The session ID is no longer needed because TLS 1.3 uses a different
mechanism for session resumes. The cipher suites field is used for symmetric cryptography
only and has only two ciphers, AES (128, 256) [15] and ChaCha20 [30] in AEAD form.
Compression Methods are no longer allowed in TLS 1.3, so ClientHello sends only null
value here. For agreement, public key algorithm negotiation Supported Groups extension
is used. The client sends an ordered list of supported elliptic curve (EC) cryptography.
Key Share extension is used to send the client’s public key. Supported Versions extension
indicates protocol version 03 04 (TLS 1.3).

ServerHello The server responds with its ServerHello, with the same structure as
shown in Figure 3. TLS protocol version is again 03 03 (TLS 1.2), Supported Versions
extension then shows 03 04, assigned for TLS 1.3. Session ID and Compression Method
are not used. The server chooses a specific cipher and a hash and includes it in the cipher
suite field. The server calculates the keypair for key exchange and attaches its public
key in the Key Share extension. Because the Diffie – Hellman key exchange is used, the
server already has the necessary secrets (client and server public keys) and calculates all
secrets that are needed. After the delivery of ServerHello, the client has everything that
is required for computation and also starts the calculation. On both sites, five keys and
two initialization vectors are calculated.

• handshake secret - used later for calculating application keys (Pre-Master Secret).

• client and server handshake traffic secret - used in the end phase of a handshake
(message Finished) for verification.

• client and server handshake key - symmetric key used for rest of the handshake.

• client and server handshake IV - Initialisation Vector (IV) for the rest of the hand-
shake.

The key exchange mechanism is now finished. Even though this is not the main
focus of our research, we can briefly mention other mechanisms of TLS 1.3 handshake.
Everything is now encrypted using the selected cipher.

The server sends one or more certificates containing the identity, public key, and
third-party signature. The server will also send proof that its certificate was linked with

30

the public key sent for the handshake. Both the server and the client exchange handshake
termination messages (Finished). Both parties then compute the keys used for further
communication based on the handshake secret.

• client and server application key - symmetric keys for application data.

• client and server application IV - Initialisation Vector for application data.

TLS 1.3 "remembers". When a new connection is established with a server that the
client has not seen before, the handshake will be done as mentioned above. The so-called
0-RTT mode lets the client send encrypted data in the first message to the server, with
no additional latency compared to unencrypted HTTP.

Of course, this comes with a trade-off. If an adversary captures 0-RTT data from
the client to the server, he can replay it, and the server may accept it. If the client wants
to avoid it, he should use a request that doesn’t change the server state. For example, a
browser can protect HTTPS servers against replay attacks by only sending GET requests
in 0-RTT. If state-changing requests are sent in a 0-RTT packet, TLS 1.3 includes the
elapsed time value in the session ticket. If the time is not valid, the server rejects it. We
will not discuss this further in our work.

Following the trend of simplicity, TLS 1.3 helps administrators and developers not to
misconfigure the protocol, and obsolete and insecure features of TLS 1.2 were removed.
More specifically, SHA-1, RC4, DES, 3DES, AES-CBC, MD5, Arbitrary Diffie-Hellman
groups, and others are vulnerable to specific attacks.

31

1.2.3 Comparison of SSL and TLS

TLS is relatively new, and some people may only be familiar with its predecessor, the ssl
protocol. For those who are familiar with SSL, but not with TLS protocol, we mention
the main differences between these two protocols as mentioned in [31].

Alert Protocol was changed, 11 more message types with error descriptions have
been added, and one message, NoCertificate, has been removed. If the client does not
have a certificate to use, it can return an empty certificate message. There are 23 alert
messages in TLS 1.3.

The new protocol implements a standardized Hash-based message authentication
code (HMAC) [32] that was already used in many other implementations. HMAC can
operate with any hash function, not just MD5 or SHA 1, as is explicitly stated by the SSL
protocol. SSL specifically supports RSA, DH, and Fortezza/DMS cipher suites. Fortezza
is an information security system for PC Card-based security token, that was developed
by U.S. Government and was used for the Defense Message System. TLS has stopped
supporting Fortezza/DMS.

Before, SSL keys were generated from a combination of hash output, selected cipher
suite, and parameter information (RSA, DH, or Fortezza/DMS output). TLS uses the
HMAC standard and its Pseudorandom Function (PRF) output to generate TLS keys. It
starts with the Pre-Master Secret to create the Master Secret. From Master Secret, all
other secret keys are generated.

In SSL, the CertificateVerify message requires a complex procedure. With TLS, the
verified information is wholly contained in the handshake messages previously exchanged
during the session. SSL creates a Finished message in the same way as it generates key
material. Also, in TLS, the PRF output of the HMAC algorithm is used with the Master
Secret and either a client finished or a server finished designation to create the Finished
message.

32

1.3 Algorithms used in IoT security

There are many protocols used to secure IoT communication. But as we go deeper and
look at specific cryptographic algorithms they use, we can see that only a limited number
of ciphers are used in these protocols.

Authors of [33] mentioned the most important protocols used in IoT. For each layer,
we show the protocol and used relevant cryptographic algorithms:

• Physical layer - As we see in [34], most of the protocols of the physical layer
(DASH7, LoRa) use AES128 [15] for providing confidentiality of the data.

• Data Link layer - the security is provided by IEEE 802.15.4 [35], which specifies
several cryptographic options, but all are based on AES [15].

• Network Layer - IPsec protocol is a requirement for IPv6 - allowsDiffie-Hellman,
ECDH [36], RSA [21], AES [15]. Another protocol of the network layer, 6LoW-
PAN protocol, only relies on the security of the transport layer [37].

• Transport Layer - in the transport layer, we can mainly use two types of protocols,
TCP or UDP.

– For TCP, security is provided by TLS, which in version 1.3 allows AES [15]
and ephemeral Diffie-Hellman [27].

– UDP is secured by DTLS or QUIC. These protocols allow using ephemeral
Diffie-Hellman [27] for key exchange, and AES [15] for data confidentiality.

• Application Layer - CoAP protocol proposes to use DTLS to provide security,
and AMQP protocol uses TLS. Therefore the same algorithms can be used as in the
transport layer.

These algorithms are present in all protocols mentioned above: AES [15], RSA [21]
or Diffie-Hellman [27] (or ECDH [36]). We can see that the situation in IoT is similar to
the situation in the internet protocol suite. We need to use a larger keyspace for AES
[15], and for public-key cryptography, we need to consider new algorithms.

33

1.4 Post-quantum movement

As we discussed in section 1.1, quantum technologies are threatening public-key cryptogra-
phy, which calls for a new standard. Several public-key algorithms rely on other problems
(some even NP-complete) that could meet the requirements for the new standard.

1.4.1 Post-quantum algorithms principles

Post-quantum algorithms are based on different problems than traditional public key sys-
tems. They are based on an assumption that in practice it is impossible to solve problems
they are based on, without the key (even using a quantum computer). They don’t rely on
the integer factorization problem nor the Diffie-Hellman problem, but instead, they rely
on the following principles:

1.4.1.1 Lattice-based Lattice is a discrete subgroup of a finite-dimensional Euclidean
vector space. Lattice-based cryptography uses lattices for hiding information. The most
commonly used problems are the shortest vector problem, closest vector problem, learning
with errors, and variations of these problems.

1.4.1.2 Code-based It uses the hardness of the decoding problem. First, the message
is encoded as a code-word of a special linear code, then errors are arbitrarily added to
this message. The error-correcting codes are used to efficiently decode the message. The
error-correcting code (a private key of the system) is masked, and a seemingly random
code (public key) is used for encryption.

1.4.1.3 Multi-variate Multi-variate cryptography relies on the problem of solving a
system of multivariate quadratic polynomial equations and the isomorphism of polyno-
mials. It is used mostly for digital signatures.

1.4.1.4 Hash-based The usage of hash-based cryptography is currently limited to
digital signatures. A one-time signature scheme is used to sign the message, and the
Merkle tree structure is used to combine many one-time signature keys into a single data
structure. There is a drawback, the number of signatures that can be signed using the
corresponding set of private keys is limited.

34

1.4.2 NIST

In response to the successes in quantum computing, NIST at PQCrypto 2016 [38] started
the standardization process of the post-quantum public-key algorithm and announced the
call for proposals. This new standard should contain the best candidates for key exchange
mechanisms as well as signatures. The first round collected overall 64 candidates [7], which
are summarized in Table 1.

Signatures Encryption Total

Lattice-based 5 21 26
Code-based 2 17 19
Multivariate 7 2 9
Hash-based 3 3

Other 2 5 7
Total 19 45 64

Table 1: NIST post-quantum first-round candidates distribution

Several candidates had to be removed because successful attacks against them were
found. In January 2019 second-round candidates were announced. The distribution of all
26 candidates can be found in Table 2.

Signatures Encryption Total

Lattice-based 3 9 12
Code-based 7 7
Multivariate 4 4
Hash-based 1 1

Other 1 1 2
Total 9 17 26

Table 2: NIST post-quantum second-round candidates distribution

In 2020, seven finalists were announced, together with 8 alternate candidates. The
first group of finalists (Table 3) will be considered for a new standard. However, candidates

35

from the second group (Table 4), may still be part of the new standard. Also, there were
some minor changes required for the finalists, due to the attacks found in [39] and [40].

Signatures Encryption Total

Lattice-based 2 3 5
Code-based 1 1
Multivariate 1 1

Total 3 4 7

Table 3: NIST post-quantum third-round candidates distribution

NIST also discussed intellectual property concerns, as some of the finalist and al-
ternate candidates are developed by private companies and the legal claims should be
cleared [41]. These aspects will also be taken into consideration, however, NIST has
signed a waiver of rights from submitting groups.

Signatures Encryption Total

Lattice-based 2 2
Code-based 2 2
Multivariate 1 1
Hash-based 1 1

Other 1 1 2
Total 3 5 8

Table 4: NIST post-quantum alternate third-round candidates distribution

There were several requirements for NIST candidates [41]. Along with the paper
submission, each candidate should include reference implementation and optimized im-
plementation. Optimized implementation targeted Intel x64 processor. The implementa-
tions also needed to be royalty-free. Thanks to these requirements, we were also able to
integrate the candidates into our work.

We explain two of the most crucial requirement concepts for our work. As our work
focuses on post-quantum secure key exchange, we will consider only encryption schemes.
Signatures would also need attention, but that is beyond the scope of this work.

36

1.4.3 Key Encapsulation Mechanism

Key Encapsulation Mechanism (KEM) is a valuable tool to secure symmetric keys for
transmission with a public key algorithm. Instead of using traditional cryptographic
operations, key generation, encryption, and decryption, we have three slightly different
operations: keypair, encapsulation, and decapsulation. We can define them in the follow-
ing way:

• (pk, sk) <- Keypair() - This function does not take any argument as an input,
other than implicit ones (more specifically, security parameter or sizes and random
bits). It uses an underlying public-key-algorithm key generation to generate a public
key pk and a corresponding secret key sk.

• (c, K) <- Encaps(pk) - Besides implicit security parameters and random bits,
input pk represents the public key generated previously in keypair operation. Encaps
generates a shared secret K. Public key pk and underlying public-key-encryption
algorithm produce ciphertext c from shared secret K and output both c and K.

• (K)<-Decaps(c, sk) - Based on the input secret key sk, the algorithm decrypts
the ciphertext input c to get the shared secret output K.

An trivial demonstration of creating a key encapsulation mechanism from standard
public-key encryption is provided in Figure 7. We use notation outputs < −function(inputs)
to indicate inputs and outputs to function.

Figure 7: KEM conversion using Public Key Encryption

The usage of the key encapsulation mechanism is demonstrated in Figure 8. We use
:= to indicate key derivation. As we can see, both communicating sides (Alice and Bob)
share the same key after one round trip. The first message contains a public key and thus

37

does not contain any confidential information. The second message contains ciphertext,
an encrypted key using a public key cipher.

Figure 8: Key exchange using KEM

The requirements in[41] state that the submitting groups of the encryption schemes
can choose between providing the implementation in public-key encryption form or KEM
form. NIST also may apply standard conversion techniques to convert between them. As
a result, all finalists of the third round have the implementation in KEM form.

38

1.4.4 Security Strength Categories

NIST call for proposals [41] stated several requirements. One such requirement was that
the parameters of the individual cryptosystems should be chosen to allow a comparison
of the candidates. NIST created five security categories that should be an etalon for the
parameters of each candidate. Any attack that breaks the relevant security definition
must require computational resources comparable to or greater than those required for
the representative of the category:

• First category was defined by a key search on a block cipher with a 128-bit key (e.g.
AES128 [15]).

• Second category was defined by a collision search on a 256-bit hash function (e.g.
SHA256/ SHA3-256 [42]).

• Third category was again defined with a key search on a block cipher, but with a
192-bit key (e.g. AES192 [15]).

• Fourth category was defined by a collision search on a 384-bit hash function (e.g.
SHA384/ SHA3-384 [42])

• Fifth category was once again defined with a key search on a block cipher, with a
256-bit key (e.g. AES 256 [15])

These categories can be used to create performance comparisons between submitted
candidates so that the comparison would be made with parameters of comparable security
levels. This also helps to understand the security/performance trade-off in each candidate.
As the chain is only as strong as the weakest link, this may also help with the decisions
of how strong symmetric cryptography components of the system should be. If we are
aiming for post-quantum security in AES [15], we use a 256-bit key, so we need to use
category five. This is also applicable for our design.

39

1.5 TLS Implementations

TLS is a cryptographic protocol. It is a standard that defines the principles and processes
of secure communication between two parties, with precisely defined messages. These def-
initions have various implementations that put the processes defined in the standard into
practice. For its undeniable security benefits, open-source implementations are prevalent.
In this section, we compare some of the most notable implementations used on the servers
and in the clients’ browsers. Later on, we used some of them for our experiments.

1.5.1 OpenSSL

The OpenSSL project [43] started in 1998. It is a general-purpose cryptographic library
written in C language. The OpenSSL toolkit is licensed under an Apache-style license, al-
lowing developers to use it for commercial and non-commercial purposes subject to simple
license conditions. OpenSSL is widely used, including SSL and TLS implementations up
to TLS 1.3. This library is part of many software projects because it serves as a reliable
collection of implementations of cryptographic algorithms also for purposes other than se-
curing the transport layer. Because of the reliability of the open-source design, OpenSSL
has become the basis for many other TLS implementations. OpenSSL is developed for
Unix-like systems and Windows.

1.5.2 LibreSSL and BoringSSL

Both of the libraries are forks of OpenSSL. LibreSSL [44] by OpenBSD was forked as a
response to the Heartbleed security vulnerability. Google forked BoringSSL to meet their
needs. BoringSSL [45] is used in Chrome and Android. It is also a basis of Google’s Tink
cryptographic API.

1.5.3 NSS

Network Security Services (NSS) [46] is a set of libraries in the C language. NSS also
includes other security features, providing complete TLS implementation with required
cryptographic tools. It is developed by Mozilla, and following the company’s policy, it is
open source. NSS is not OpenSSL based. It uses libraries developed by Netscape when
they invented the SSL protocol. NSS is used in Mozilla Firefox.

1.5.4 s2n

The s2n [47] is another open-source implementation that is a much clearer version of the
OpenSSL. TLS part is less than 10% long in terms of lines of the code than original

40

TLS in OpenSSL, thus it is much easier to review and comprehend the mechanisms in the
library. The developer can choose between OpenSSL, BoringSSL, or LibreSSL libraries for
cryptographic primitives. It is developed by Amazon Web Services in the C99 language.
s2n is used in Amazon S3 services.

1.5.5 Mbed TLS and wolfSSL

Both are open-source libraries developed for limited devices. They are small, readable,
portable TLS implementation for embedded devices under 64 KB of RAM. Mbed TLS
[48] is developed by the community under ARM, and wolfSSL[49] is developed by the
wolfSSL company.

41

1.6 Operational Security

When designing a security system, we need to consider more than analytical proofs pro-
vided in submission papers of KEMs, or security provided by the strictly defined structure
of messages in protocols. Even if the design and components are theoretically analyzed,
it may not be sufficient, as we have seen in the past. Heartbleed OpenSSL vulnerability
[50] or OpenSSL’s timing attacks on the underpinning ciphers [51] are a great example
that even projects as big as OpenSSL can be vulnerable to unexpected behavior or bugs.

Operational security can be perceived at various levels. The security threats can be
then structured as defined in [52].

• High level - The protocol implementation is deviating from the design due to
logical bugs.

• Medium level - The protocol implementation seems to follow its design, but still,
the attacks reach their target (attacking execution runtime instead of the protocol’s
implementation).

• Low level - Threats are originating from programming bugs (exploiting arithmetic
overflows, invalid pointer references, etc.).

• Hardware level - If the manufacturer of the hardware is not reliable or if side-
channel attacks were found.

We can avoid high-level threats by strictly following the design (verification). Also,
we need to implement secure coding practices to avoid low-level threats. We will discuss
medium-level and hardware-level threats countermeasures in the following sections.

42

1.7 Side-channel attacks

In order to plaintext without using a key, cryptanalysis often examines the hardware or
software properties of a particular implementation of a cryptographic algorithm. Side-
channel attacks are hardware-level attacks. They are practical attacks that take ad-
vantage physical characteristics of the device during its operation. Those physical char-
acteristics include power consumption, electromagnetic radiation, execution time, light
emissions, and acoustic or heat emanations. Attackers can exploit hardware-level vul-
nerabilities if different inputs to the cryptographic system produce different outputs in
measuring those physical characteristics.

Mainly, we can recognize two types of attacks [53]:

• Active attacks - they require the adversary to act directly on the device. He is able
to change the messages, the behavior of the algorithm or device to modify or get
more information.

• Passive attacks - they come from an adversary who is only "listening" to the com-
munication. In passive attacks, the adversary is not able to send or alter messages,
nor directly alter the device.

When using cryptographic devices, we can adopt another point of view for attacks
from [54]:

• Invasive attacks - they require an attacker to have direct access to the device. The
attacker alters the device physically. He may open the device and expose internal
parts.

• Non-invasive attacks - on the other side, non-invasive do not require any device
preparations before the attack. With this type of attack, the device is not damaged.

43

1.8 Trusted environment

To provide the mitigation against medium-level threads, a trusted environment can
be used. By trusted environment, we mean the generalization of Trusted Execution
Environment in the sense of the definition from [55]:

Definition 1.1 (TEE) Trusted Execution Environment (TEE) is a tamper-resistant pro-
cessing environment that runs on a separation kernel. It guarantees the authenticity of
the executed code, the integrity of the runtime states (e.g. CPU registers, memory, and
sensitive I/O), and the confidentiality of its code, data and runtime states stored on per-
sistent memory. In addition, it shall be able to provide a remote attestation that proves
its trustworthiness for third parties. The content of TEE is not static; it can be securely
updated. The TEE resists all software attacks and the physical attacks performed on the
main memory of the system. Attacks performed by exploiting backdoor security flaws are
not possible.

This definition requires a separation kernel on the system. In [56], National Security
Agency (NSA) defines a separation kernel as follows:

Definition 1.2 (separation kernel) A separation kernel is a hardware and/or firmware
and/or software mechanisms whose primary function is to establish, isolate and separate
multiple partitions and control information flow between the subjects and exported re-
sources allocated to those partitions.

In that light, we can view TEE as an abstraction of hardware security modules.

1.8.1 Hardware security modules

The idea of a Hardware security module (HSM) comes from the concept of a Trusted
Platform Module (TPM) [57]. TPM is a microcontroller able to store keys, passwords, or
certificates securely. It supports several cryptographic algorithms, including RSA, SHA-1,
HMAC, and also ECC, (TPM 2.0). It is possible to generate and store the keys but not to
compute any other cryptographic operations. That is where the HSM comes in. HSM is a
special device that generates and stores the keys and performs encryption and decryption,
signing, verification, and other cryptographic functions. Several manufacturers produce
different hardware devices. The modules can be developed in Java, C, and other languages.
Because it is not as strictly defined as TPM, HSMs are certified with standards such as
Common Criteria or FIPS140.

44

When we use HSM, we usually trust it completely. In cryptography, we use the
term Root of Trust (RoT) for a source that can always be trusted within the whole
cryptographic system’s scope.

Typical uses of HSM include payment cards, cryptocurrency wallets, and TLS connec-
tions to accelerate cryptographic operations [58]. The benefits of using HSM in TLS not
only include speedups but mainly the separation of the critical code segments execution
into the trusted environment (RoT).

Figure 9: Isolation of critical functions into HSM

In Figure 9, we illustrated the situation where malware infected the host computer.
If HSM is used for all cryptographic functions and key storage, the malware cannot see
the keys or interfere with critical operations.

45

1.9 Similar efforts and related projects

The topic of designing a post-quantum-secure key exchange is very complex. The focus
of this research is large, even with the help of the structure provided by the TLS protocol
or other mechanisms described above. However, there is a lot of research in this field, and
we mention several important research works and articles focusing on problems that are
close to our own research. All this research is very recent and in continuous development,
which sometimes made our work easier and sometimes more difficult. We present state
of the art research in post-quantum algorithms library, post-quantum TLS prototyping,
and post-quantum algorithms suitable for limited devices. In our work, we make use of
some of the presented discoveries and implementations - first to provide an overview of
the state-of-the-art and later to rely on them when creating our own implementation.

1.9.1 PQClean

PQClean is a collection of clean implementation of post-quantum schemes participating in
the NIST post-quantum competition. The repository includes standalone implementation
of all finalists of the third round and alternate candidates. The previous version also
included candidates from the second round. Each scheme has its own original license,
specified in separate files. The rest of the code, as well as tests, are open-source. Clean
implementations must be buildable under Linux, macOS, and Windows must follow KEM
API, are implemented in standard C99, and meet several other requirements.

1.9.2 Open Quantum Safe

Open Quantum Safe (OQS) Project [59] started in 2019. It is an open-source project
that focuses on post-quantum cryptography implementations and their applications. It
is strongly connected to the NIST PQC standardization project, so they work with new
standard candidates.

liboqs is an open-source library, the first child of the OQS project. They collected
post-quantum candidates in the form of a C library, following these principles:

• Open source. The library itself was released under the MIT License. Even so,
it incorporates some external components which use a different license. It is fully
open-source.

• Multi-platform. The library supports x86 and ARM architectures, most of the
compilers, and all main operating systems (Linux, macOS, and Windows)

46

• Common API. The library incorporated the NIST requirement to provide a com-
mon API for all submissions.

• Testing and benchmarking. The library includes the tests and performance
comparisons.

• Application integrations. the library cooperates with its applications, including
TLS, SSH, X.509, etc.

• Language wrappers. The library provides wrappers for other programming lan-
guages.

The library contains all third-round candidates from the NIST standardization effort,
finalists, and alternate algorithms. Some implementations are reused from the PQClean
project.

OQS-OpenSSL is another exciting product of the OQS project. It implements post-
quantum and hybrid key exchange and post-quantum public-key authentication in TLS
1.3. More precisely, it is the integration of the liboqs into OpenSSL.

Because the current architecture of OpenSSL does not allow to change key exchange
mechanism easily, the architecture is changing in OpenSSL 3.0. OQS also brings a provider
for a new concept of OpenSSL to enable post-quantum key exchange. This is still a work
in progress.

OpenSSL has the concept of engines to allow new ciphers. Similarly to our previous
research, [60], where we created a post-quantum OpenSSL engine in 2017, implementing
McEliece code-based cipher, OQS project created OQS-Engine that integrates KEMs from
libqos.

1.9.3 OpenSSLNTRU

Similar research to OQS-OpenSSL is the OpenSSLNTRU [61]. The authors proposed
changes to the openssl library to allow post-quantum key exchange and created an OpenSSL
engine that integrated NTRU (engNTRU). They managed to get a faster handshake than
any other software included in OpenSSL.

1.9.4 Post-quantum algorithms prototyping in TLS

Similarly to this work and the work of OQS project, Douglas Stebila (from OQS project)
et al. [62] introduced post-quantum (hybrid) key exchange in TLS. Along with the ex-
periments in OpenSSL (TLS 1.3 and TLS 1.2), they used s2n implementation from AWS.

47

They integrated two NIST candidates, BIKE-L1 and SIKEp503, from the first round into
s2n in TLS version 1.2.

They experimented not only with TLS but also with SSH protocol. OpenSSL and
OpenSSH use liboqs library from OQS project to implement post-quantum KEMs.

1.9.5 Post-Quantum TLS 1.3 on Embedded Systems

Very recently, another similar research [63] was published. The authors focused on post-
quantum TLS 1.3 for embedded systems. They integrated and benchmarked Kyber,
Saber, Dilithium, and Falcon into the wolfSSL TLS 1.3 with a focus on ARM Cortex-
M4 NUCLEO-F439ZI. They found that in some cases, the post-quantum handshakes
were faster compared to ECDHE. They also included memory consumption of integrated
candidates.

1.9.6 Post-Quantum TLS Without Handshake Signatures

Recently, Schwabe et al. in [64] did similar research to this work, but with a focus on
authentication. They had designed and implemented a post-quantum TLS alternative to
TLS 1.3 in Rustls, a TLS library written in Rust. They use KEMs instead of signatures
for server authentication. As post-quantum public keys and signatures tend to be large,
they decided to use only pre-distributed KEM keypair. They managed to reduce server
CPU cycles by almost 90% compared to TLS 1.3. In their model, the server generated a
KEM keypair once, serving for authentication. The keypair for a handshake is generated
by the client.

1.9.7 pqm4

This is a very useful project for all who want to integrate post-quantum cryptography
onto the ARM Cortex-M4 family of microcontrollers. The pqm4 is a library that pro-
vides the implementation of post-quantum NIST candidates for Cortex-M4 and specific
optimizations, if available. Along with Cortex-M4 specific implementation, there is also
PQClean one, reference implementation submitted to NIST, and optimized implementa-
tion in plain C for x86. In the publication [65], performance comparisons of KEMs and
signature schemes tested on the STM32 Cortex-M4 chip are also provided. This GitHub
repository contains python tests and benchmarks. Similarly to PQClean, each candidate
has its license, and the rest of the code is open source.

48

2 Designing post-quantum-handshake key
exchange

We propose a new solution to enhance the security of TLS communication, to match
the state-of-the-art research. Taking into consideration the concepts we explained in the
previous chapter; we can divide the requirements of a new design into several categories:

• Post-Quantum - TLS-like communication protocol should use only quantum-computer-
resistant cryptography. That includes the key sizes for symmetric cryptography and
the choice of public-key algorithms.

• Limited devices friendly - New protocol should be designed with limited devices
in mind. The choice of algorithms and implementation of the algorithms should
consider the limitations of these devices. Also, the protocol’s design should have an
option for devices with limited resources.

• Operational security - Along with the theoretical security of algorithms and pro-
tocols, we have to consider countermeasures for practical attacks. That includes
side-channel attack resistance in the choice of implementations and separation of
critical computation to the trusted environment.

• Effectiveness - The mechanisms used in our research require more resources, intro-
ducing the delay compared to the security mechanism used today. Irregardless of
that, the choice of algorithms and their implementations should be aiming for a
reasonable delay.

This work introduces the concept of TLS-like protocol, which is quantum-resistant
and uses the physical separation of critical data and computations using HSM. Naturally,
we introduce the delay due to communication with HSM, usage of post-quantum cryptog-
raphy algorithms, and limitations resulting from the limits of the resources of HSM. It is
the price we pay for enhancing security, resulting in limited use of such design. There are
still some applications that may require such trade-offs, such as large finance operations
or sensitive data operations. Our design also considers scenarios with limited clients.

In the following sections, we present the phases, concepts, and building blocks of our
design.

49

2.1 Post-quantum algorithms replacing RSA/DH

When building a robust quantum-resistant mechanism for key exchange, an essential
aspect is the choice of a public key algorithm. The selection of the algorithms is greatly
facilitated by the NIST standardization process, which we described in section 1.4.2. We
are interested in the finalists, i.e. the candidates that made it to the third round of
the process. In [66], NIST reported the chosen candidates for the third round of the
standardization process. The selected finalists are Classic McEliece [67], CRYSTALS-
KYBER [68], NTRU [69], and SABER [70]. We decided to use those NIST-selected
finalists in our implementations and experiments in our work.

• Classic McEliece falls into the code-based candidates category. Its strong point is
that the McEliece cryptosystem has been available since 1979. Since then, it has
not been broken; moreover, several modern improvements (for efficiency and CCA
security) have been implemented. The downside of this candidate is the size of the
public keys. On the other hand, the ciphertext is the smallest of all candidates.
That may suit some specific applications, so NIST has chosen it as a finalist.

• CRYSTALS-KYBER relies on Module LearningWith Errors problem (lattice-based).
It uses Number theoretic transform (NTT) (Fourier transform in a finite field) for
polynomial multiplication (more on NTT in section 3.6). The evaluated perfor-
mance results are a good compromise for all aspects (sizes, speed). According to
NIST, this puts CRYSTALS-KYBER in the top one position, but there is still work
to do.

• NTRU is another lattice-based candidate. It is a widely analyzed scheme and has
been standardized in several cases, e.g. IEEE 1363.1-2008 or ANSI X9.98-2010
(R2017). NIST wants NTRU to be a part of the standard to provide more diversity
instead of a single point of failure (it is not based on the same problem as other
lattice-based candidates). Because of that and its long history, it proceeded to the
third round as a finalist.

• SABER is another Module Learning With Errors candidate; more precisely, its
Module Learning With Rounding variation. SABER has good performance results,
which helped it become one of the finalists in the third round.

50

2.2 Decoding problem

Code-based cryptography relies on the hardness of decoding a general linear code. An
error-correcting code (able to correct t errors) is selected as a secret (private key) for which
an efficient decoding algorithm is known. The generator matrix G of error-correcting code
is hidden by two randomly selected invertible matrices S and P to produce a general linear
code. When the error is introduced to the code-word in general linear code, it is hard to
decode it unless G is known.

2.3 NTRU

NTRU has its own lattice-based problem. The simple NTRU problem relies on the hard-
ness of factoring multiplication of polynomials in a truncated ring R = Z[x]/XN−1. Poly-
nomials have integer coefficients and the greatest possible degree n − 1. Also, integer q
(power of 2) is chosen as a parameter.

Two polynomials f and g are picked from R, with coefficients in −1, 0, 1 most of them
are zero. Public information h is again polynomial from R, such that

h · f = 3g mod q

Private information is f and f3, where f · f3 = 1 mod 3
The message m is hidden with random polynomial r from R in following way:

c = r · h+m mod q

With unknown f , it is hard to compute

a = f · c = f · (r · h+m) = r · 3g + f ·m mod q

We can then obtain the message as m = a · f3 mod 3, with private f and f3.
This can be rewritten to a version of the lattice Shortest vector problem. More on

this can be found in [71].

2.4 LWE, LWR, module-LWE, and module-LWR prob-
lem

In this chapter, we present the concepts of several lattice-based candidates problems. The
definitions are adapted from [72].

We can formulate the Learning With Errors (LWE) problem as a problem to dis-
tinguish between uniformly random samples from U(Zl×1

q × Zq) and the same number of

51

samples (a, b) of the form

(a, b = aT s+ e) ∈ Zl×1
q × Zq,

where s ∈ Zl×1
q is a fixed secret vector, a ←− U(Zl×1

q) are freshly uniformly random
vectors and e←− βu(Zq) are fresh and small error terms sampled from an appropriate error
distribution.

The Learning With Rounding (LWR) problem is similar to LWE, but the errors come
from rounding. It can be defined as distinguishing samples of the form:

(a, b = bp
q

(aT s)e) ∈ Zl×1
q × Zq,

from the same number of samples from U(Zl×1
q × Zq) for a fixed secret vector s ∈

βu(Zl×1
q), and a fresh uniform random vectors a.
In module LWE and LWR, the elements are now polynomials in Rq = Zq/(xn + 1),

not integers.

52

2.5 Basic post-quantum TLS Handshake concept

When designing a quantum-resistant TLS-like protocol, we start from the most recent
TLS protocol versions. The first idea was to begin with TLS 1.3, as it is the newest
and most secure version of the transport layer security. However, Diffie-Hellman is not
secure against quantum computers, and we can no longer use it for key exchange in the
Handshake process, communicating sides cannot "meet in the middle". We also need
to modify the messages, or more specifically, the extensions. The simple idea is to use
post-quantum KEM instead of Diffie-Hellman. The client sends an ephemeral public key,
a server creates a keying material (PMS), encrypts it with the client’s public key, and
sends the ciphertext back to the client. Both sites can now use kdf to produce all keys
for TLS (handshake, record, server, client). We refer to this situation as pqTLS protocol.
The representative model in Figure 10 is simplified. It neglects the rest of the messages
not important for key exchange, and authentication, as that is outside the scope of our
research.

53

Figure 10: Basic pqTLS concept

As shown in Figure 10, such pqTLS may take only two roundtrips, the same as in
TLS 1.3. In difference to TLS 1.2 with RSA or previous versions, the client sends the
public key in the first message. The "difficult" part of the process, the key generation, is
now on the client side. This may have several consequences:

• For lightweight devices, it may be impossible to do such computation. We need to
add an option for sending a "not possible" message and change the roles of the client
and the server in the protocol. This results in a similar protocol to TLS 1.2 with
RSA key exchange.

• If the server doesn’t support a specific cipher (for which the client generated a public
key), the server needs to send a "supported public keys" message. The other option
is that the client sends a list of "supported public keys" and its own public key in a
ClientHello message. If the server doesn’t support the client’s public key, the server

54

knows which public key can be used and sends its own public key. The roles would
be switched similar to the above.

• Because the "hard" part is not made on the server, the protocol is more resistant to
Denial-of-service (DoS).

In the following subsections, we look into the specific messages in pqTLS -Handshake
relating to the key exchange. For simplicity, some of the details of TLS are skipped here,
but they would need to be considered in a real-world scenario (e.g. certificate, verify, and
finished messages). For certificates, we can use post-quantum signature NIST candidates.
For post-quantum KEM, we consider the NIST candidates mentioned in the sections
above. More formal specification of pqTLS can be found in algorithm 1.

2.5.1 Client-side pre-computation

The client starts with calculating a keypair (private and public key) with default KEM.
The client can generate more key pairs, one for each KEM that the client supports.
However, this is not advised, as the message length may be too long.

2.5.2 ClientHello

The client sends the information structured in the ClientHello message, as shown in Figure
2. The changes to allow post-quantum key exchange are mainly in extensions. Key Share
extension is used for sending a list of client public keys (of one or more different KEM keys
generated in pre-computation). The server can use one in the key exchange. Supported
Groups extension is no longer needed. Instead, the Supported KEMs extension is used for
listing all KEMs that the client supports. Supported Versions extension indicates protocol
version 03 05 (pqTLS). The rest of the ClientHello can stay as it is in TLS 1.3. The packet
structure of ClientHello extensions required for post-quantum key exchange can be seen
in Figure 11.

55

Algorithm 1 pqTLS
Client:
TLSc ⇐ TLS version (pqTLS)
for all supported_kems do

(pk, sk)⇐ KEM.KeyPair()
KEMs+= (KEM, pk)

end while
ClientHello⇐ TLSc, KEMs

Client sends ClientHello to Server

Server:
TLSs ⇐ TLS version (pq3TLS)
while KEMs[i] is not supported do
KEM=KEMs[i].KEM
pk=KEMs[i].pk
i++

end while
(c, PMS)⇐ KEM.Encaps(pk)
ServerHello⇐ TLSs, c,KEM

Server sends ServerHello to Client

Client:
(PMS)⇐ KEMs.Decaps(c, sk)

56

Figure 11: pqTLS ClientHello Extensions Packet

2.5.3 Server-side pre-computation

The server will use the public key from ClientHello, and the corresponding KEM encaps
operation to create a cryptogram and a symmetric secret. The server now can compute
other keys using symmetric secret as PMS. The Master Secret is produced using the
pbkdf2 key derivation function, with PMS as password, and client random concatenated
with server random as a salt. OWASP recommended using 310000 iterations for PBKDF2-
HMAC-SHA256 [73]. Server and Client key are generated similarly with Master Secret as
a password and again client random concatenated with server random as a salt. pbkdf2
is also used to produce implicit server Initialisation Vector (IV) with server random as a
password, and client random as a salt, and vice-versa for client IV. Server key and server
IV are used for encryption on the server side and decryption on the client side. Client key
and client IV are used for encryption on the client side and decryption on the server side.

57

2.5.4 ServerHello

The server sends the information structured in a ServerHello (figure 3). It is similar to
TLS 1.3, except for a few extensions. Supported Versions extension has protocol version
03 05 (pqTLS). Key Share extension is now used to transport encrypted symmetric se-
crets. After receiving ServerHello, the client can also compute all the keys and IVs using
symmetric secret as PMS. The packet structure of ServerHello extensions required for
post-quantum key exchange can be seen in Figure 12.

Figure 12: pqTLS ServerHello Extensions Packet

58

2.6 Post-quantum TLS for limited devices

As discussed earlier, some post-quantum KEMs may not be suitable for limited devices
(e.g. Classic McEliece due to the size of public keys). Even if they were, the computational
complexity of some operations may be so large, that computation may not be feasible or
would be significantly slower on a limited device than on the server. This is why we
present another option. If a limited client needs to use a KEM with a costly keypair
operation, it can send the information about it in the first message. In practice, we can
understand this scenario as the protocol with new messages, presented in Figure 13. The
client asks for a connection with the first message. The server generates the key pair
and sends it to the client. The client does only one KEM operation, encaps. The client
saves generated Pre-Master Secret and sends the ciphertext to the server. The server now
decapsulates PMS, and both sides share the same secret.

Figure 13: pqlimTLS concept

59

We explain each message in more detail below. We can see that we need one extra
message, but it may be faster than waiting for a limited device to perform complex
computations. We refer to this situation as pqlimTLS protocol. More formal specification
of the protocol can be found in Algorithm 2.

Algorithm 2 pqlimTLS
Client:
TLSc ⇐ TLS version (pqlimTLS)
KEMs⇐ supported_kems
ClientHello⇐ TLSc, KEMs

Client sends ClientHello to Server

Server:
TLSs ⇐ TLS version (pq3TLS)
while KEMs[i] is not supported do
KEM=KEMs[i++]

end while
(pk, sk)⇐ KEM.KeyPair()
ServerHello⇐ TLSs, KEM

Server sends ServerHello to Client

Client:
(c, PMS)⇐ KEM.Encaps(pk)
ClientKeyExchange ⇐ c

Client sends ClientKeyExchange to Server

Server:
(PMS)⇐ KEMs.Decaps(c, sk)

2.6.1 ClientHello

Here we refer to Figure 2 for the ClientHello message structure. We need to make a
new ClientHello similar to the TLS 1.2 one. Key Share or Supported Groups extension
is no longer used. Supported KEMs extension indicates which post-quantum KEMs will
be used for key exchange. A list of all supported KEMs is sent. Supported Versions

60

extension indicates protocol version 03 06 (pqlimTLS). The packet structure of ClientHello
extensions required for post-quantum key exchange can be seen in Figure 14.

Figure 14: pqlimTLS ClientHello Extensions Packet

2.6.2 Server-side Pre-computation

After receiving ClientHello, the server chooses one of the client’s supported KEMs and
generates private and public keys using the KEM keypair operation.

2.6.3 ServerHello

In Figure 3, we can see the mandatory attributes of the ServerHello. Mostly, it is identical
to TLS 1.3, but we need to change the extensions. Supported Versions extension indicates
protocol version 03 06 (pqlimTLS). Key Share extension is used to transport the server
public key for key exchange. The packet structure of ServerHello extensions required for
post-quantum key exchange can be seen in Figure 15.

Figure 15: pqlimTLS ServerHello Extensions Packet

61

2.6.4 Client-side Pre-computation

After receiving ServerHello, with the use of the public key, a client generates a cryp-
togram and symmetric secret using encaps operation corresponding to KEM specified in
ServerHello.

2.6.5 Client Key Exchange

Now we need one extra message in contrast to TLS 1.3. We can use TLS 1.2 Client Key
Exchange message to transport encrypted symmetric secret (cryptogram). This message
consists of a record and a handshake header as in other handshake messages, key length
(in our case, length of the cryptogram), and key data (cryptogram). After receiving Client
Key Exchange, Server uses decaps operation with a previously generated private key to
decapsulate the cryptogram into the symmetric secret. The packet structure of our Client
Key Exchange message can be seen in Figure 16.

Figure 16: Client Key Exchange Packet

2.6.6 Differences between pqTLS and pqlimTLS

The main difference between pqTLS and pqlimTLS is that the client and server switched
roles in the key exchange. In pqTLS, the client can start with the KeyPair operation
before the first message, and ClientHello contains a public key. In pqlimTLS, the client
just asks for connection, and the server starts with KeyPair operation. Similarly, Encaps
and Decaps operations are switched between the client and server. As we can see from
Figures 10 and 13, one extra message is required for pqlimTLS. We believe that even with
one extra message, the benefit of doing complex operations on the server side, instead of
a limited device is going to be more significant than the delay resulting from one extra
handshake message.

62

2.7 Post-quantum authentication

TLS 1.3 uses signatures to provide authentication in a standard way. The server sends the
certificate and signature in a ServerHello message. The client then verifies it and decides
if it should be trusted. If the server sent a Certificate Request along with the ServerHello,
then the client also sends the certificate, together with the Finished message. This model
is widely analyzed [20] [74]. We can do the same in a post-quantum scenario, but we can
use a post-quantum signature scheme instead of ECDSA [22] / EdDSA [23] or RSA [21]
authentication (from the NIST standardization process).

However, this is not the only way of providing authentication. The authentication
can be achieved by successful decryption of the challenge. This type of authentication was
presented in a protocol in work [75]. It uses DH key exchange for authentication. This
is widely used nowadays, for example, in Signal [76], or Noise [77]. This idea and other
improvements were concluded in the work [64], where post-quantum KEM was used for
key exchange and authentication. The idea is described in the following paragraph.

The static long-term server’s public key would be sent in the certificate with the
ServerHello message. After receiving, a client would encapsulate challenge value using
post-quantum encapsulate KEM operation with the server’s public key. The challenge
value is incorporated in key derivation to generate keys for client and server finished
messages. The ciphertext is then sent to the server with the Client Finished message, also
containing the HMAC of the client finished key. The server decapsulates it and produces
the same set of finished keys. If HMAC verification fails, the server aborts the protocol
run. The server sends HMAC of server finished key along with server finished message.
The client also verifies it and aborts the process if verification fails.

The results [64] show that this can save CPU time. However, it also adds one more
message to the TLS handshake. This idea can also be used for our system to add au-
thentication. The interesting thing when incorporating this scheme into our concept for
limited devices is this; one extra message needed for authentication can be integrated
into our Client Key Exchange message. Also, the combination of this kind of authentica-
tion and our proposal for limited devices does not require difficult operations performed
on the client side. The client uses KEM encapsulate message twice, once with a server
public key for authentication and once with a public key for key exchange. The client
still doesn’t have to generate the keys or decapsulate. If a not computationally difficult
KEM encapsulate operation is used, the handshake on a limited client might result in
speed-ups.

63

3 TEE-based post-quantum TLS
We decided to use a Trusted Execution Environment (TEE) for critical computations and
storage of the keys in our work. The benefits of using such an environment include:

• Full isolation - no runtime code provisioning, the malware has no access to the data
or the program run.

• No key transfers - The secret key can be generated and stored in TEE and never
leave the environment.

• TEE can be tested and evaluated separately, and then it can be used on various
systems without losing trust.

We explained the concept of TEE in more detail in section 1.8.

When designing a system that includes TEE, there are few possibilities for what to use.
The first is to use TEE extensions to the CPU. There are several industry-level CPU-

TEEs: Intel’s SGX [78] and AMD’s SVM [79] ARM’s TrustZone [80]. However, since there
is no absolute isolation, the attacks can be found [81] [82] [83] [84]. Also, special hardware
with OS modification requirements or a TEE-enabling hypervisor is needed.

Another option is to use a Hardware security module (HSM). If the design of the
systems supports HSM, the use of such a module can be "plug and play". In our work,
we chose to use SEcube hardware [85] as our HSM. SEcube seems like a good match in
terms of portable, inexpensive but powerful HSM.

3.1 SEcube

SEcube has an MCU, CC EAL5+ -accredited SmartCard, and an ultra-low-power FPGA
on the same chip. FPGA and SmartCard are called through specific MCU instructions.
The MCU is STM32F4 - ARM 32-bit Cortex-M4 CPU. Flash memory has a size of 2
MiB, and SRAM has 256 KiB. That should be enough for most of our needs. There is no
SRAM cache, so associated side-channel attacks are not possible.

3.1.1 SEcube SDK

SEcube provides an open-source Software development kit (SDK) on their website [86].
We decided to reuse some parts of this code and design to build our Crypto OS. Our

64

Crypto OS only manages hardware and software resources of the MCU, providing API
for cryptographical functions.

The state of the art of open-source code is designed as described in Figure 17. It
consists of two projects, one for the host side and one for the MCU.

Hardware side - the code on the device side is divided into several main modules
represented by .c and .h files:

• SEcube Core - handles the main device loop and basic commands such as echo or
init. More specific commands such as login, key_edit, etc. are handled in Dispatcher
Core. Communication Core handles USB packet-like communication.

• Communication Core - handles data of requests and responses. If a command is
executed, its input or output data are written in the request and response blocks
and then sent with SD Card Driver and USB driver communication to HAL/LL
libraries.

• Dispatcher Code - on top of the login, key management, and challenge/response
functions, it handles dataflow from/to Smart Card, FPGA, and Security Core.

• Security Core - this is where all cryptographic functions are handled. In SDK
version 1.4.1 the only implemented crypto algorithms are AES256 [15], CRC16 [87],
PBKDF2 [88] and SHA256 [42]. Again, the underlying features are provided by
HAL/LL libraries.

Figure 17: The architecture of the SEcube SDK [89]

Host Side - the code at the host side is divided into three libraries:

65

• L0 - this is the lowest library, handling TX and RX functions and opening and
closing of the device (communication API), initialization of the device (provisioning
API), and discovering SEcube devices (Commodities API)

• L1 - this is the most interesting library for us, as we are mainly changing and
expanding this library on the host side. It handles login/logout key management
and cryptographic algorithms.

• L2 - This library aims to bring an even higher level of abstraction, a key manage-
ment system, data-at-rest protection, and data-in-motion protection. It is still in
development. We are not using this library in our work.

• Newer documentations also mention the L3 library on the application level. As an
example, they provided a Secure Database application [89]. It is not yet published
at the time of writing this work.

The following chapters describe the changes and addition to this architecture to enable
post-quantum security.

3.1.2 Side-channel attack resistance

In the work [90], the authors performed a side-channel analysis of SEcube. Namely, they
studied the robustness of the device against Differential Power Analysis (DPA). DPA is
a non-invasive passive attack that requires physical access to the device. The commercial
USB token USEcube does not allow direct access to internal circuitry. That limits the
possibility of attacks, making non-invasive attacks impossible. Nevertheless, the work
describes the DPA attack on SEcube in comparison with the ST Microelectronics Nucleo
board. They constructed a device to monitor USB power consumption to perform a non-
invasive attack. DPA was performed on AES128 [15] ECB implemented in C. The attack
focused on the whole AES, and AES S-box separately. The results were similar for both
platforms. The attackers were able to reconstruct only around 4-5 bits of the secret key.
Although this can speed up brute-force attacks on the key, it should not lead to severe
damage.

66

3.2 Symmetric cryptography in a trusted environment

The first step in our HSM integration design is to provide a post-quantum level of se-
curity for symmetric cryptography (used e.g. in TLS record). In SEcube, SDK is AES
implemented in the following modes; ECB, CBC, CTR, OFB, and CFB. As none of these
modes is supported in TLS 1.3, we need to add GCM.

3.2.1 GCM

Galois/Counter Mode (GCM) is a newer child of counter mode that uses Galois field
multiplication for authentication. We can describe the function of the mode using for-
malization from [91]. The field GF (2128) is defined by the following polynomial:

x128 + x7 + x2 + x+ 1

The tag provides the authentication, added to the end of the ciphertext. The tag is
constructed using the GHASH function:

GHASH(H,A,C) = Xm+n+1

where H = Ek(0128), which means a vector of 128 zero bits encrypted by an underlying
block cipher, in our case AES256. A represents the plaintext data for authentication, and
C is a ciphertext. m is the number of 128-bit blocks from A, n is the number of 128-bit
blocks in C. Xi is then defined as follows:

Xi =
i∑

j=1
Sj ·H i−j+1 =

 0 for i = 0
(Xi−1 ⊕ Si) ·H for i = 1, ...,m+ n+ 1

Si is defined as:

Si =

Ai for i = 1, ...,m− 1
A∗m|0128−v for i = m

Ci−m for i = m+ 1, ...,m+ n− 1
C∗n|0128−u for i = m+ n

len(A)|len(C) for i = m+ n+ 1

WhereM |N is concatenation of binary strings M and N. For a detailed scheme of the
GCM operation, we refer to Figure 18. We can add GCM mode to SEcube SDK codebase
and call it using the same mechanism as other AES modes. However, this brings us to
the need for four inputs instead of three as in all other modes. We discuss this in section
4, which discusses implementation.

67

3.2.2 HSM symmetric cipher in TLS

For the scheme of usage of HSM in the TLS record, we refer to Figure 18. Red parts are
encryption-related, and green are authentication-related data. Application data would be
fragmented as in regular TLS 1.3. Data from each fragment are sent into HSM, divided
into blocks of 128 bits. Each block is then xor-ed with an encrypted counter sequence. This
produces ciphertext blocks. Each ciphertext block is then used to create an authentication
block when it is XORed with the previous iteration of GHASH and inputted into the actual
iteration of GHASH. The TAG also "consists" of additional data and the length of the
plaintext, as can be seen in the scheme. The ciphertext is concatenated with TAG and
sent back to the TLS record to be handled as usual.

Figure 18: Integration of HSM GCM to TLS record

We can see that the block cipher is used to encrypt each counter iteration. Our
design also assumes that keys are stored in the HSM and all AES key-related operations
are performed in HSM. More of this is discussed in the following section 3.3.

68

3.3 Secret keys stored in the trusted environment

One of the benefits of using specialized hardware for security is separating unsecured and
secured environments. If we want the keys to be protected from a potential attacker, they
should be in a secure environment. In our system, we use the memory in the hardware
device to store private keys. In the scope of HSM-aided TLS like protocol, we can identify
three scenarios:

• The symmetric key for the record protocol cipher is written once into the HSM
memory and never leaves. This mechanism is already supported in the SEcube
SDK.

• The private key for the key exchange mechanism is stored in the memory of the
secure hardware and never leaves. With the use of KEM API and keypair operation
in the HSM, we can limit the output from keypair operation to provide only cipher-
text. The secret key is stored in the device memory and not transported to the
host. The only way to manipulate the secret key is to use it for decaps operation or
destroy it. The secret key is never exposed; it is indexed with the key ID assigned to
the key pair in the keypair KEM operation. This ID is the only information about
the secret key on the host.

• The symmetric key is never stored in the host computer. KEM encaps or decaps
operation outputs only key ID, so the keying material doesn’t leave a trusted envi-
ronment (HSM). KDF is performed in the HSM to produce all TLS keys and they
are stored in the device memory. This way, no secret material or operation (except
for the decrypted application data) is visible to the host.

69

3.4 Post-quantum public-key algorithms in TE

The introduction of HSM in TLS makes sense only if the key exchange mechanism (all
KEM operations and key storage) is in the Hardware Security Module. We call such a
module Post Quantum Cube (pq3). The module has a strictly defined API, following
KEM scheme. We define a wrapper layer for KEM API:

• keypair : Output has one important modification. Instead of a public and a secret
key, the HSM keypair operation returns the public key and only the ID of the
secret key. We define secret key ID as input, to let the application have control
over key IDs. Other inputs are KEM ID, key validation period, and HSM session
information. Internally, the KEM keypair operation is called, then public and secret
keys are stored in device memory under key ID with a specified validation period,
and the public key is returned to the host.

• encaps: Input set consists of HSM session information, KEM ID, public key, vali-
dation period for the keys, master key ID, client key ID, server key ID, and client
and server random nonces. Encaps operation outputs only ciphertext (encrypted
PMS). Internally, the KEM encaps operation is called to encapsulate the PMS using
a public key. Master Secret, Client, and Server keys are derived using the algorithm
specified in section 2.5.3, and then they are all stored in the device memory with a
specified key validation period. Encapsulated PMS is returned to the host.

• decaps: Inputs consist of HSM session information, KEM ID, secret key ID, cipher-
text, validation period for the keys, master key ID, client key ID, server key ID, and
client and server random nonces. HSM Decaps operation has no outputs. Inter-
nally, KEM decaps operation is called to decapsulate the PMS using stored secret
key accessed with secret key ID. Master Secret, Client, and Server keys are derived
using the algorithm specified in section 2.5.3, and then they are all stored in the
device memory with specified key validation period.

70

3.5 Post-quantum cube TLS - pq3TLS

Finally, we describe the draft of Post Quantum TLS with the use of HSM. We consider
HSM with implemented post-quantum cryptography described in previous sections (pq3).
We call this protocol Post-Quantum Cube TLS (pq3TLS). The pq3 is used on the client
side of the protocol; in this model, we trust the server side. We consider HSM as a device
with limited computing power and memory. Thus, we start designing the protocol from
our Post-Quantum TLS for limited devices described in section 2.6).

Figure 19: Post-Quantum Cube TLS

71

Again we neglect the authentication. As shown in Figure 19, the client does not store
any secret key or perform any cryptographic operation. Before the ClientHello, the client
plugs in the PQcube, logs in, and stores its session information.

We specified pq3TLS protocol in more formal way in Algorithm 3.
Handshake messages are specified as
ClientHello C −→ S: KEMsC , TLSC

ServerHello S −→ C: KEM, pkS, TLSS.
Host to HSM C −→ HC : pkS.
HSM to Host HC −→ C: EP KS

(PMSCS).
ClientKeyExchange C −→ S: EP KS

(PMSCS).

Where C is the Client, S is a server, and HC is HSM plugged in to the client computer.
For ClientHello, we refer to Figure 2. Protocol version should be the same, only client-

side implementation of KEMs should be changed to PQcube ones. The client sends a list of
supported KEMs and TLS protocol version supported by the client. The server-side stays
the same as in pqTLS. For the ServerHello message, we refer to Figure 3. The server sends
TLS version and generated public key PKS. The client-side pre-computation calls PQcube
to generate the ciphertext EP KS

(PMSCS) and create master and client/server session
keys. Key storage is in the device memory, as described in previous sections. Client Key
Exchange message is the same as in Figure 16. The client sends ciphertext EP KS

(PMSCS)
to server. The server decapsulates it and computes master and client/server session keys.
Both sides has the same set of keys. Record protocol communication can be formalized
in the following way:

C −→ HC : DATA.
HC −→ C: EKCS

(DATA).
C −→ S: EKCS

(DATA).

S −→ C: EKSC
(RESP).

C −→ HC : EKSC
(RESP).

HC −→ C: RESP .

Clients use HSM to encrypt application data that will be sent to the server. HSM encrypt
it and send ciphertext back to the client. The client sends it to the Server. The server
response is also sent to HSM to be decrypted.

72

Algorithm 3 pq3TLS
Client:
TLSc ⇐ TLS version (pq3TLS)
KEMs⇐ supported_kems
ClientHello⇐ TLSc, KEMs

Client sends ClientHello to Server

Server:
TLSs ⇐ TLS version (pq3TLS)
while KEMs[i] is not supported do
KEM=KEMs[i++]

end while
(pk, sk)⇐ KEM.KeyPair()
ServerHello⇐ TLSs, KEM

Server sends ServerHello to Client

Client sends pk to HSM

HSM:
(c, PMS)⇐ KEM.Encaps(pk)
HSM sends c to Client

Client:
ClientKeyExchange ⇐ c

Client sends ClientKeyExchange to Server

Server:
(PMS)⇐ KEMs.Decaps(c, sk)

73

3.6 Side-channel attack resistance

The nature of our design provides some level of attack resilience. In addition to the side-
channel attack resistance we describe in section 3.1.2, there are also other possibilities
to prevent side-channel attacks for specific algorithms. These countermeasures provide a
higher level of security at the cost of some extra time needed to perform the algorithms. To
allow users to choose this higher level of security, we decided to integrate some additional
countermeasures for algorithms that use number-theoretic transformation.

Some of the algorithms in the NIST standardization process use polynomial multi-
plication in the ring Rq. There are several options for implementing polynomial multi-
plication, such as schoolbook multiplication, Karatsuba algorithms, or number-theoretic
transform (NTT) based multiplication. Lattice-based schemes such as Kyber (KEM),
New Hope (KEM), or Dilithium (signature) use NTT-based one.

We briefly explain the idea of NTT, following [92]. The NTT is a bijective mapping
from one polynomial to another in the same operating ring. Considering an (n-1) degree
polynomial p in Rq, the polynomial p in the normal domain is mapped to its alternate
representation p̂ in the NTT domain through the NTT as follows:

p̂ =
n−1∑
i=0

pi · ωi·j (1)

where j ∈ [0, n − 1] and ω in the nth root of unity in the operating ring Zq. We can
also denote ψ as ψ2 = ω. The powers of ω and ψ are called twiddle constant, and they
are used in NTT computation. The inverse mapping from p̂ to p is denoted INTT. The
multiplication of polynomials x and y is then effectively done using NTT:

z = INTT (NTT (x) •NTT (y)) (2)

The NTT of a higher degree polynomial is then recursively broken down into smaller
NTTs until we are left with atomic operations called butterfly operations, most common
with size 2. The NTT/INTT of size n is typically computed in log(n) stages with each
stage consisting of n/2 butterfly operations. There are two types of butterfly operations.
Cooley-Tukey (CT) operation is defined as

c = a+ b · w (3)

d = a− b · w (4)

and Gentleman-Sande (GS) defines as

c = a+ b (5)

74

d = (a− b) · w (6)

with a and b as input coefficients, outputting c and d, and w as a twiddle constant (power
of ω or ψ). More details on how NTT multiplication can be implemented can be found
in [93].

We use the concept from [94] to introduce shuffling and masking countermeasures for
NTT. Masking is done with random constant by introducing one additional multiplication:

c = (a+ b · wx) · wy (7)

d = (a− b · wx) · wy (8)

where wx = ψx and wy = ψy. Generally, n denotes the input length to the NTT and
N the number of stages within the NTT. There are three possible options for masking
countermeasures:

• Coarse Masking - uses a single mask for every stage, with same mask for inputs and
same for output as:

c′ = (a′ + b′ · wx) · wy = c · w(i+x) (9)

d′ = a · w(i+x) − b · w(i+x+y) (10)

where a′ = a · wi and b′ = b · wi

• Fine masking - employs more masks in every stage. Adding another mask for input
is done as:

a′′ = a′ · w(2ni+k) = a · wk (11)

and butterfly operation is then:

c′ = (a′ · w(2n−i) + b′ · w(2n−j) · wx) · wy = c · wy (12)

d′ = a′ · w(2n−i−l) − b′ · wx · w(2n−j+l) = d · wl (13)

• Generic Masking - the number of masks is specified by choosing random number u,
1 < u < n. Different butterfly operations (from previous maskings) are selected for
specific stages.

Ravi in [94] also brings three options for shuffling countermeasures:

• Coarse (Full) Shuffling - All butterflies within any stage of the NTT can be computed
independently. Coarse Shuffling randomly shuffles the order of execution of all (n/2)
butterfly operations within any stage of the NTT.

75

• Coarse Group Shuffling - In that stage of the NTT, where every butterfly forms a
unique group, we can do a complete n/2 length shuffle, which is considered enough
in the scope of the third round NIST candidates’ algorithms.

• Fine Bitwise Shuffling - Basic principle here is to shuffle the order of input loads and
output stores for each butterfly. An order is generated randomly, using a randomly
generated bit for masking, and then straightened using 16 iterative bitwise AND
operations, in the case of 16-bit-long operands in Kyber.

76

4 Implementation details
This section describes the implementation details specific to the chosen implementation
of TLS (s2n) and the selected instance of HSM (SEcube). We describe the findings and
knowledge gained with the implementation of our design.

4.1 New public-key ciphers integration into s2n

Because TLS 1.3 and previous TLS versions explicitly specify what public key algorithm
is to be used, only a few public-key ciphers are implemented in most TLS implementa-
tions. An open-source s2n implementation of TLS provides RSA [21], DH [27], or ECDH
[36] implementations. On top of that, Crockett et al. implemented two post-quantum
algorithms, Sike and Bike, in a hybrid scheme [62]. As we know, neither Sike nor Bike
made it to the third round as finalists of the NIST standardization process.

The implementation of KEM schemes has a strictly defined form. It should contain
kem.c file with following code (Figure 20):

int crypto_kem_keypair(unsigned char* pk, unsigned char* sk)

{ // key generation implementation }

int crypto_kem_enc(unsigned char *ct, unsigned char *ss, const unsigned char *pk)

{ // key encapsulation implementation }

int crypto_kem_dec(unsigned char *ss, const unsigned char *ct, const unsigned char *sk)

{ // key decapsulation implementation }

Figure 20: kem.c file structure

This NIST requirement, to have uniform interface helps with the compatibility of
the KEM schemes. The switching from one scheme to another is straightforward, so it is
possible to use several in one system. This aspect, combined with the collection of clean
implementation of algorithms in PQClean helped us add all third-round candidates into
s2n without significant difficulties. We used some of the structures already provided in
s2n and added our own when necessary.

4.1.1 Classic McEliece

Classic McEliece comes in 10 different versions [95]. Because we are interested in strength
equivalent to AES256 [15], we consider only category five versions, mceliece6960119,
mceliece6688128, mceliece8192128, and their semi-systematic form versions. We inte-

77

grated mceliece6960119 implementation from PQClean. However, we decided not to use
Classic McEliece implementation in our experiments for the following reasons:

The problem occurs if we want to have backward compatibility with previous and
current TLS versions. The maximum size of a TLS record is 16 389 bytes. It consists of
1 byte for content type, 2 bytes for the protocol version, 2 bytes for the length field, and
finally up to 214 for the encrypted+compressed payload data. This would also include the
public key for post-quantum KEM. Classic McEliece has the size of public keys from 1
044 992 bytes to 1 357 824 bytes. Here we have several options:

• Increase the maximum size of the TLS record.

• Split the McEliece public key into several record messages.

• Use only smaller (weaker) versions of Classic McEliece.

Changing the TLS record size or splitting the public key to several messages would
affect the compatibility with other TLS versions or significantly slow down the communi-
cation (instead of one TLS record message, we would need around 80 messages). We also
decided to avoid using weaker versions of Classic McEliece to have a consistent security
level.

For this reason, we consider Classic McEliece KEM not suitable for TLS handshake
in our system.

4.1.2 CRYSTALS-KYBER

CRYSTALS-KYBER [68] was specified and implemented in three versions, Kyber512,
Kyber768, and Kyber1024, corresponding to categories 1, 3, and 5. We integrated the
PQClean implementation of Kyber1024, as it is clean and easy to integrate.

4.1.3 NTRU

NTRU comes with 4 parameter sets: ntruhps20485091, ntruhrss7013, ntruhps20486773
and ntruhps4096821. The security analysis [69] defined two evaluations: relative to non-
local models of computation and relative to local models. In local models, signals propa-
gate at finite speeds (e.g. speed of light). Non-local allows communication at an arbitrary
distance. Version ntruhps4096821 achieved category five relative to local models. We
integrated it using PQClean implementation.

78

4.1.4 SABER

SABER [70] was specified with three-parameter sets, corresponding to categories 1 (lightSaber),
3 (saber), and 5 (fireSaber). We integrated fireSaber implementation from PQClean.

79

4.2 Implementation of pqTLS protocol

For building a post-quantum TLS-like protocol, we decided to use the s2n codebase in
version 0.9.0 from 2019, which included modification from Crockett et. al. [62]. In the
previous section, we described the integration of NIST post-quantum KEMs. This section
explains the implementation of the post-quantum protocol for key exchange.

As the server and client have to wait for incoming messages during the handshake,
the communication is not full-duplex. s2n uses a single stuffer for incoming and outgoing
data. The so-called stuffer is a stream-like structure with a buffer (called blob) and read
and write cursors.

The heart of TLS implementation is the handshake state machine located in tl-
s/handshake_io.c. It is represented with a table of function pointers. These functions
are handlers for each message, for server and client site. Each message contains a flag
to indicate who is the writer and the receiver of the message. In the writer’s handler
function, the data are written to the handshake io stuffer, and in the receivers handler,
the data are extracted from the stuffer. This stuffer is then used in the TLS Record
part. Accordingly to the messages that we defined in section 2.5, we created a new state
machine for pqTLS. The state machine can be seen in Figure 21.

static struct s2n_handshake_action pqtls_state_machine[] = {

/* message_type_t = {Record type, Message type, Writer, {Server handler, client handler} } */

[CLIENT_HELLO] = {TLS_HANDSHAKE, TLS_CLIENT_HELLO, ’C’, {s2n_establish_session,

s2n_client_hello_send}},

[SERVER_HELLO] = {TLS_HANDSHAKE, TLS_SERVER_HELLO, ’S’, {s2n_server_hello_send,

s2n_server_hello_recv}},

[SERVER_FINISHED] = {TLS_HANDSHAKE, TLS_FINISHED, ’S’, {s2n_pqtls_server_finished_send,

s2n_pqtls_server_finished_recv}},

[CLIENT_FINISHED] = {TLS_HANDSHAKE, TLS_FINISHED, ’C’, {s2n_pqtls_client_finished_recv,

s2n_pqtls_client_finished_send}},

[APPLICATION_DATA] = {TLS_APPLICATION_DATA, 0, ’B’, {NULL, NULL}},

};

Figure 21: Minimal pqTLS state machine

The next step was to modify the rest of the files to recognize this new handshake in
the mentioned file and the rest of the codebase. We created s2n_pqtls.c and s2n_pqtls.h
with functions required for using this new protocol.

We needed to modify or create new handlers for each handshake message. For that,
we prepare usage of KEM, similarly to the solution in [62], we added a new key exchange

80

instance and new cipher suite. We also made new cipher preferences that contain NIST
third-round post-quantum candidates and a previously created cipher suite to allow key
exchange operations for post-quantum algorithms. We added further codes for post-
quantum algorithms:

• TLS_PQ_KEM_EXTENSION_ID_FIRESABER_R3 with id 32

• TLS_PQ_KEM_EXTENSION_ID_NTRU_R3 with id 33

• TLS_PQ_KEM_EXTENSION_ID_KYBER_R3 with id 34

• TLS_PQ_KEM_EXTENSION_ID_MCELIECE_R3 with id 35

4.2.1 Client Hello

As we explained in section 2.5.2, there were several challenges when creating the Client
Hello message. We needed to change the s2n code not to require the ECC mechanism
and not to use the Supported Groups extension. Supported Versions field was set to 03 05
to indicate pqTLS protocol. We used the standard Key Share extension wrapper for the
public key, but we called the previously integrated keypair KEM operation to generate
the public key. We used the KEM mechanism from post-quantum modification of s2n
[62] to select the exchange algorithm. We used blu5 implementation of PBKDF2-HMAC-
SHA256 to calculate PMS and other secrets and IVs for the rest of the record. We also
adopted the PQ_KEM_PARAMETERS extension from [62] that suits well to serve as
our Supported KEMs extension. TLS_EXTENSION_PQ_KEM_PARAMETERS has
value 0xFE01 in s2n. After receiving Client Hello, the server sets corresponding cipher
preferences and KEM from client preference (the list is ordered by preference). The server
also saves the client public key into the s2n_kem_keypair structure.

4.2.2 Server Hello

Here we refer to section 2.5.4, where we explained the architecture of our new Server Hello.
We implemented the pqTLS mechanism into the s2n, where we specify Supported Versions
as 03 05 to indicate the pqTLS protocol. Using the s2n_client_key_send function in
s2n, we called our KEM encaps operation to generate the PMS (symmetric secret) and
fill the Key Share extension with it. The s2n_client_key_send function also calls a
function to calculate keys from the generated PMS. After receiving Server Hello and
parsing its extensions, s2n_client_key_recv is used on the client-side to call our KEM

81

decaps operation (using the previously generated private key) to decapsulate the PMS
and calculate the rest of the keys.

82

4.3 Implementation of pqlimTLS protocol

In the implementation, we follow the design described in section 2.6. Similarly to pqTLS
(section 4.2), we started with the handshake state machine. It can be seen in Figure 21.
It contains one extra message, Client Key Exchange, as we designed in section 2.6.

static struct s2n_handshake_action pqlimtls_state_machine[] = {

/* message_type_t = {Record type, Message type, Writer, {Server handler, client handler} } */

[CLIENT_HELLO] = {TLS_HANDSHAKE, TLS_CLIENT_HELLO, ’C’, {s2n_establish_session,

s2n_client_hello_send}},

[SERVER_HELLO] = {TLS_HANDSHAKE, TLS_SERVER_HELLO, ’S’, {s2n_server_hello_send,

s2n_server_hello_recv}},

[CLIENT_KEY] = {TLS_HANDSHAKE, TLS_CLIENT_KEY, ’C’, {s2n_pqlimtls_key_recv,

s2n_pqlimtls_key_send}},

[SERVER_FINISHED] = {TLS_HANDSHAKE, TLS_FINISHED, ’S’, {s2n_pqlimtls_server_finished_send,

s2n_pqlimtls_server_finished_recv}},

[CLIENT_FINISHED] = {TLS_HANDSHAKE, TLS_FINISHED, ’C’, {s2n_pqlimtls_client_finished_recv,

s2n_pqlimtls_client_finished_send}},

[APPLICATION_DATA] = {TLS_APPLICATION_DATA, 0, ’B’, {NULL, NULL}},

};

Figure 22: Minimal pqlimTLS state machine

Analogically to pqTLS, we created and modified all the required files so s2n recognizes
pqlimTLS protocol. We used the same KEMs implementations, with the same cipher
preferences and KEMs.

4.3.1 Client Hello

When implementing the concept presented in 2.6.1 into s2n, the Client Hello is im-
plemented similarly to the one in TLS 1.3. Supported Versions was set to 03 06 to
indicate pqlimTLS protocol. Supported KEMs extension is again implemented with
PQ_KEM_PARAMETERS s2n extension. It contains the list of client-supported KEMs.
After receiving the Client Hello, like in the previous case, the server parses its extensions
and sets corresponding cipher preferences and KEM from client preference.

4.3.2 Server Hello

Where generating the Server Hello, s2n_extensions_server_pq_key_share_send function
is used. It uses the previously chosen implementation of KEM to generate a key pair.
PQ_KEM_PARAMETERS extension includes public key length and data. When the

83

client receives the Server Hello, it parses the extensions and stores the public key in
s2n_connection.secure.s2n_kem_keys structure.

4.3.3 Client Key Exchange

The client now encapsulates the PMS using the same s2n_client_key_send as in section
4.2.1, and calculates the rest of the secrets from the generated symmetric key. Client
Key Exchange message contains an encapsulated symmetric key. The server similarly
decapsulates the key and calculates the rest of the secrets using s2n_client_key_recv
function. Now both parties share the same set of IVs and record secrets.

84

4.4 Modification of s2n code to enable external device

There are several things that need to be implemented to enable external HSM in s2n. We
decided to use SEcube and its SDK in version 1.4.1 as a basis for our code. Version 1.4.1
is written in C on the host side, and s2n is also implemented in C. We used library L0
with minimal modifications (i.e., TIMEOUT value) as it is in SDK code. The changes in
L1 follow our architecture (section 3.2 - section 3.5) and are described in the following
corresponding sections.

In s2n, like in previous cases, we added new key exchange, cipher suite, and cipher
preferences for post-quantum algorithms in an external device. The reason for avoiding
McEliece was already explained.

• TLS_PQ_KEM_EXTENSION_ID_FIRESABER_PQ3 with id 64

• TLS_PQ_KEM_EXTENSION_ID_NTRU_PQ3 with id 65

• TLS_PQ_KEM_EXTENSION_ID_KYBER_PQ3 with id 66

In cipher preferences, we also set s2n_pq3tls_record_alg to handle Record opera-
tions.

A user needs to log in to perform a crypto operation on SEcube. We use the mecha-
nism from SEcube SDK. After opening the device, a login session on the device is created.
This session is on the host side, represented by the se3_session structure. It contains login
information and is needed to perform crypto operations and logout. Because this session
has to be stored in s2n, we created a structure named pq3_ctx. It contains all device
and session information. We also added present flag to indicate if the HSM has been
plugged in. We added this to s2n_connection structure to be present for the whole TLS
communication process.

4.5 New symmetric cipher integration into s2n

File s2n_cipher.h contains the declaration of all supported ciphers. We added a new
AEAD structure and a new cipher type (HSM-pq3 cipher). This new type has a dual
implementation of AES GCM. One is on the host side (for server and for the client when
PQcube is not plugged in), and the other is wrapper function calling HSM implementation
of AES GCM. Session info is stored in s2n_connection (s2n_connection) to perform only
one login and one logout for each TLS connection. We preserved a very similar architecture
to the one that was already implemented in s2n for AEAD ciphers, but we added SEcube

85

session info and changed the TLS session key to the structure containing key ID and
direction (encryption or decryption).

We tested our implementation using our created unit test (s2n_pq3_aead_aes_test).
The test simulates client-server communication using Record protocol with our implemen-
tation in PQcube.

4.6 AES-GCM implementation in PQcube

We followed the recommendation of block cipher modes of operation from NIST, speci-
fying the implementation of Galois/Counter Mode and GMAC [96] and the open-source
implementation of GCM mode in the wpa_supplicant [97] tool. We created Cortex M4
implementation of GCM on top of Blu 5’s implementation of AES.

One more modification of the SEcube SDK is needed. Besides IV, key (key ID if
stored in HSM), and data to be encrypted, we need an extra input for additional data
to provide encapsulation. We changed the crypto call accordingly, adding data0 field
that is not used in all modes and cryptographic algorithms except AES GCM, which uses
additional data for authentication only. The tag is then added after the last block of the
ciphertext.

The change in implementation has to be done on both sides. On the host side,
L1_crypto_update function has to be changed to send data0 from the host side to the
device, and on the device side, crypto_update’s request parameters are changed.

86

4.7 Post-quantum algorithms suitable for devices with
limited resources

We have already described the implementation of TLS handshake using post-quantum
KEMs. These KEMs are now moved to HSM, according to the architecture presented in
section 2.1 and section 3.4.

4.7.1 PQClean implementation of algorithms

We started the integration of post-quantum algorithms with PQClean implementation
[98]. PQClean is a collection of clean implementations of the post-quantum schemes from
the NIST post-quantum project. The project aims to provide a standalone implementa-
tion of each version of each scheme suitable for the evaluation of implementation security
and formal verification. The goal is to have the code that is clean and easy to understand.
Along with the clean implementation, PQClean provides some target-specific implemen-
tation (avx2), but the code is not optimized for ARM Corex M4 in seCube. However, it
is possible to run PQClean implementations in a 32-bit microcontroller unit.

4.7.2 Source of randomness

All PQClean KEM schemes need randomness to generate key pairs. PQClean provides the
functions to generate the sequences of random bytes that depend on a specific operating
system. SeCube includes a true random number generator that relies on 240 physical
noise seeds [85]. This allows true random noise generation. We integrated this TRNG
using HAL library in all post-quantum algorithms in our solution.

Another way of generating the randomness that we integrated is via libopencm3
[99] library. The library is an open-source firmware for ARM Cortex-M microcontrollers,
including M4. Since it uses the same TRNG, there was no difference in performance
between these two methods.

4.7.3 Hash function implementation

All third-round NIST candidates use fips202 standard of SHA-3. The implementation in
PQClean is not optimized for Cortex-M4. Instead, in all schemes in our solution, we use
optimized assembly implementations of SHA-3 from mupq back-end of pqm4 [65].

4.7.4 Classic McEliece

The sizes of public keys differ from 1 044 992 bytes to 1 357 824. This brings the limitation:
the STM32F4 chip has 256 KB of RAM, which is too small for the classic McEliece public

87

key. We can run the code itself, but we cannot work with the public key. The authors
of the paper [95] also provided FPGA-based Niederreiter Cryptosystem implementation
[100] that may be implemented on seCube FPGA, but hardware implementation is outside
the scope of our research.

4.7.5 CRYSTALS-KYBER

We integrated PQClean implementation of Kyber1024 into the SEcube. To achieve better
results in embedded devices, Botros, Kannwischer, and Schwabe in [101] implemented a
memory-efficient and high-speed version of Kyber for Cortex-M4. We also integrated this
category 5 Kyber1024 lightweight version into the seCube.

4.7.6 NTRU

We integrated version ntruhps4096821 using PQClean implementation. To optimize the
performance of NTRU on Cortex-M4, we added the optimized implementation with faster
polynomial multiplication by Kannwischer–Rijneveld–Schwabe[102] from pqm4[65].

4.7.7 SABER

Along with reference implementation, SABER comes with the implementation for Cortex-
M4. Instead of optimizing speed or memory consumption, this implementation gives a
trade-off between speed and memory with a low-performance penalty. We integrated this
modification. Also, we integrated fireSaber implementation from PQClean.

4.8 Side-channel resistance

To implement side-channel resistant countermeasures discussed in section 3.6 into the SE-
cube chip, we decided to use the modified implementation from the project Configurable
SCA Countermeasures for the NTT Against Single Trace Attacks [103]. The project con-
tains several implementations of side-channel countermeasures for the Number Theoretic
Transform (NTT) based on shuffling and masking. NTT is used for polynomial multi-
plication in the lattice-based Kyber KEM scheme. This implementation is targeted the
ARM Cortex-M4 microcontroller, so it is possible to use it in SEcube.

88

4.9 PQcube system

The final step in our implementation was to enable PQcube in s2n as described in section
3.5. We created a simple plug-and-play solution, with automatic detection of the HSM
module and automatic use of it on the client-side if it is present. There were a large
number of small changes to s2n, and for the scope of the document, it would not be
possible to list them all, so we mention only the most important ones.

4.9.1 Implementation of HSM KEM

The implementation follows the design specified in section 3.4. We created a structure
called se3_kem_descriptor. It contains all operation handlers, sizes, and KEM info.
Then, we created an array of se3_kem_descriptors in se3_security_core containing all
implemented KEMs, described in section 4.7. Then, we created keypair, encaps and
desaps functions corresponding to design in section 3.4, and connected them with dis-
patcher_call to handle HSM KEM commands. We parsed information from the SEcube
packet, implemented functionality and constructed response. For key manipulation, we
used already existing key management from SEcube SDK.

4.9.2 Key Derivation

After encapsulation or decapsulation operation, we use PBKDF2 to create keys. Even
though NIST suggested using at least 1000 iterations [104], the performance of such a large
amount of iterations for PBKDF2HmacSha256 is causing unacceptable delay on Cortex
M4. KEM encaps operation outputs 32 bytes (256 bits) of entropy. As these 32 bytes of
PMS are never exposed, we used only 100 iterations to create 48bits Master Secret and 100
to generate Client and Server Key. We used the implementation of PBKDF2HmacSha256
from SEcube SDK.

4.9.3 s2n PQcube handshake

The integration of PQcube into the pqlimTLS handshake required several major changes.
pq3 cipher preferences have a dual KEM implementation set, one for the host side (for
the server and the client without HSM) and the other for the device side (the client
with HSM). We changed pqlimTLS implementation accordingly to call PQcube on the
client-side if present. Also the public key, Master Secret and client and server keys are
not stored on client-side, only their IDs (in conn->secure.s2n_pq3_kem_keys.public_key,
conn->secure.pq_client_key and conn->secure.pq_server_key).

89

4.9.4 s2n PQcube record

We integrated the AES GCM PQ3 implementation as described in previous sections. To
allow this new type of cipher, a record protocol (s2n_record_write and s2n_record_read)
needed to be changed. Here we also ask whether the device is present. If not, we use our
implementation of GCM mode on the host side. Else, we called the wrapper function of
HSM GCM implementation.

90

5 Experiments
We designed a series of experiments to test and evaluate each specific component of our
system and evaluate the whole system. Here we provide the results and benchmarks
to show that the implementation of these constructs is possible, and we also show the
practicality of our concepts. We designed the experiments to be simple and to stay as
close as possible to the real-world usage of the system.

5.1 Measurement Methods

In our experiments, we used different ways of measuring desired features. The method-
ology of the measurements were adapted to the nature of the experiments. Some experi-
ments require overall time measurements, some only the time when the CPU is not idle.
There are several ways to measure the time of the program runtime and the efficiency of
the algorithms. To be consistent with NIST post-quantum candidates publications, we
decided to count CPU cycles combined with other time measurements, depending on the
experiment.

5.1.1 Time measurements

We recognize two ways of measuring the time of the program run:

• Process time, sometimes called CPU time, is the amount of time for which the
CPU was used for the specific task. It can be used to measure the efficiency of
algorithms. It is not dependent on real-world variables such as CPU temperature
and multitasking delays. The CPU time can be measured in clock ticks (CPU cycles)
or seconds. It can be further divided into:

– User time - is the time of the CPU used in user space;

– System time - is the time of the CPU used in kernel space;

– Idle time - is the time when the CPU was not busy.

Another indicator of the program’s efficiency may be CPU time as a percentage of
the CPU’s capacity. High CPU usage means the program is highly demanding of
processing power.

• Elapsed time or wall-clock time is the overall time from the start of the program to
the end. Although this type of time measurement contains delays from phenomena

91

unrelated to the program run, it is more suitable to show real-life use of the tested
component. One other benefit of this type of measurement is that it can evaluate
systems that run on several devices, where we are interested in overall time, including
I/O operations, time spent in computation in other devices, etc.

We have several options how to measure under Linux operating system:

• GNU time - this command runs the specified program and returns general statistics
about the program run. A -v option can be used to access Elapsed time, User and
System time, and CPU capacity in percentage.

• The gettimeofday() function can be used to compute the time difference, and
thus Elapsed time of the researched sub-procedure.

• The clock() function returns the CPU time elapsed since the start of the program.
This can be used to determine the CPU time of researched sub-procedure.

CPU cycles can be measured with several methods, depending on the platform
(STM32, Intel, AMD, etc.) or other specific properties.

5.1.2 CPU cycles

CPU cycles is a simple tool to receive cycle count [105]. It provides a script that creates
cpucycles.h and cpucycles.o specifically for the platform used. It provides the implemen-
tation for 32 and 64-bit architecture and for many CPUs.

5.1.3 SysTick System Timer

ARM Cortex-M4 comes with a 24-bit system timer, SysTick, with four registers:

• SysTick Control and Status Register (SY ST_CSR) serves for timer configuration
(enabling, disabling, exception on overflow, etc.). Register address is 0xE000E010.

• Reload Value Register (SY ST_RV R) sets the value that is reloaded when the timer
reaches zero. Register address is 0xE000E014.

• Current Value Register (SY ST_CV R) holds the actual value of the timer. Register
address is 0xE000E018.

• Current Value Register (SY ST_CALIB) - Some Arm devices also implement the
Current Value Register for additional calibration. Register address is 0xE000E01C.

92

Timer counts from SY ST_RV R value to zero. When it reaches zero, the timer
can throw an exception and reload the countdown from SY ST_RV R value again. The
advantage of using SysTick is that the counter does not decrement if the processor is
halted for debugging.

5.1.4 Data Watchpoint and Trace

Another method of counting CPU cycles is through Data Watchpoint and Trace (DWT)
unit. It contains several different counters for clock cycles, sleep cycles, cycles per instruc-
tion (CPI), etc. DWT has various registers for measuring CPU cycles. We are using two
of them:

• Control Register (DWT_CTRL) with address 0xE0001000

• Cycle Count Register (DWT_CY CCNT) with address 0xE0001004

The first step is to enable trace bit in Debug Exception and Monitor Control Register
(DEMCR) on the address 0xE000EDFC and CPU cycle counter in DWT_CTRL. The
DWT_CY CCNT is a 32-bit register that counts from zero up.

93

5.2 Measurements and results

Our goal was to test all aspects of our system. Our experiments evaluate post quantum
KEMs in TLS setting running on common laptop as well as in HSM. Also we evaluated
all proposed protocols. Table 5 summarise those experiments.

Experiment Protocol Tested algorithms Reference

Post-quantum algorithms in TLS - Saber, Kyber, NTRU secp256r1, secp384r1, x25519

Post-quantum TLS protocol pqTLS Saber, Kyber, NTRU -
Post-quantum TLS for lightweight client pqlimTLS Saber, Kyber, NTRU pqTLS
Benchmarking post-quantum security on SEcube - Saber, Kyber, NTRU [65]
Benchmarking masked implementation of Kyber - 3+3 protected options Unprotected
SEcube post-quantum KEMs integration in s2n - Saber, Kyber, NTRU PC
PQcube Client-Server Handshake pq3TLS Saber, Kyber, NTRU PC
PQcube for symmetric crypto TLS 1.3 AES-GCM Alexa Top 100

Table 5: Summary of experiments

In following subsections we present each experiment, its setup and results. For better
comprehension we also added diagrams.

94

5.2.1 Post-quantum algorithms in TLS

This experiment focused on the usability of post-quantum KEMs in TLS protocol. As we
mentioned in section 1.9, similar experiments were conducted for several implementations.
In this experiment, we tested the integration of the NIST round-3 candidates into s2n
implementation of TLS as described in section 4.1.

5.2.1.1 Experiment setup We implemented this experiment as a unit test in our
modified s2n. We measured the time and CPU cycles of keypair generation, encapsulation,
and decapsulation of a Pre-Master Secret. Every operation was performed ten times in
a row on a Dual-Core Intel Core i5-3317U CPU/6GB RAM machine. Here we present
average values. For measuring CPU cycles, MIT’s cpucycles tool [105] is used. The time
is the time consumed by the algorithm (User time + System time) without Idle time.

5.2.1.2 Results The results can be seen in Table 6 and in diagram in Figure 23.
We included time in milliseconds, and CPU cycles count for each KEM operation for all
three candidates. For reference, we also included three supported key exchanges in TLS
1.3. The keypair is the sum of key generation on the client-side and server-side, encaps
is Pre-Master Secret computation for server, and decaps Pre-Master Secret computation
for a client. The results show that selected candidates are comparable to the public
cryptography used in TLS in recent versions of TLS, and that the post-quantum TLS key
agreement is feasible.

KEM keypair keypair encaps encaps decaps decaps
ms cycles ms cycles ms cycles

FireSaber 2.32 3985254 3.05 5758520 3.61 6473779
Kyber1024 1.11 1906907 1.45 2469797 1.90 3247865
ntruhps4096821 128.78 221008637 1.75 2987527 3.98 6791942

secp256r1 0.29 495620 0.85 1457620 1.51 2578596
secp384r1 6.28 10650280 16.44 28115380 24.78 42268140
x25519 0.25 422364 0.47 1022152 0.65 1318440

Table 6: Post-Quantum KEMs Benchmarks

95

Figure 23: Post-Quantum KEMs

96

5.2.2 Post-quantum TLS protocol

The results from the previous experiment show us that it is possible and practical to
use post-quantum key exchange in TLS like protocol. We designed (section 2.5) and
implemented (section 4.2) such protocol using post-quantum KEMs. This experiment
shows the real-world use of post-quantum key exchange in TLS handshake.

5.2.2.1 Experiment setup We decided that it would be best to test post-quantum
TLS protocol close to a real-world scenario, so we created a client and server program
communicating via a socket connection. Programs were implemented as unit tests, testing
the whole handshake. Because the client is initiating the connection, we measured the
performance of the client program, including connection to the server, negotiation of the
handshake (with post-quantum key agreement), and the connection closing. We run the
handshake negotiation five times for every post-quantum KEM for this experiment. We
used the GNU time command for the performance measurements because we are interested
in the time for the whole connection, not only the client CPU time. We used the same
Dual-Core Intel Core i5-3317U CPU/6GB RAM machine.

5.2.2.2 Results Table 7 shows us the benchmarks of post-quantum TLS handshake.
The values are averages of five measurements. Times are in seconds, User and System
time shows us the complexity of the client-side, and Elapsed time is the overall time
for handshake negotiation (client and server-side). CPU percentage shows how difficult
the client-side was for the processor. As the previous experiment already suggested, the
NTRU time is much greater than the rest. It is caused by the time complexity of keypair
operation. Saber and Kyber perform better in this scenario because their key generation
is faster. For better understanding we also provide diagram in Figure 24

Handshake KEM User time (s) System time (s) CPU % Eleapsed time

FireSaber 0.16 0.03 62.00 0.30
Kyber1024 0.02 0.00 70.10 0.05
ntruhps4096821 1.47 0.03 94.40 1.58

Table 7: Post-Quantum TLS Benchmarks

97

Figure 24: Post-Quantum TLS

98

5.2.3 Post-quantum TLS for lightweight client

In the previous experiment, we have shown that post-quantum cryptography can be used
for TLS handshake key agreement. The results hinted that for NTRU, it may be difficult
or not feasible to be run on a limited device. We presented the solution in sections 2.6 and
4.3, where we switched the roles of client and server in terms of KEM operations. This
experiment focuses on finding whether this may benefit the TLS handshake in limited
devices.

5.2.3.1 Experiment setup For this experiment, we used RaspberryPi zero (ARM 1
GHz CPU / 0.5GB RAM) for the client and Dual-Core Intel Core i5-3317U CPU/6GB
RAM laptop for the server. We used a similar scenario to the previous experiment,
but client and server programs now communicate using WiFi. We measured handshake
negotiation from the client-side, again with the help of the GNU time -v command.
Because previous experiments indicated that NTRU is the candidate that may not be
able to be run on limited devices, we measured the handshake using NTRU. We used the
GNU time command for measuring performance.

5.2.3.2 Results The results of the experiment can be seen in Table 8 and in diagram
in Figure 25. Client time is the time spent by the client in a handshake. The Client
CPU is the busyness of the client CPU in percents. The first two rows show averages
of five measurements. The third row shows the percentage (pqlimTLS/pqTLS), and the
last row shows the performance bonus gained by our modification. We can see that even
though the RaspberryPi zero is more powerful than average IoT device, the overall time
of handshake improved by almost four percent. This time benefit would be even more
significant on a less powerful device. Furthermore, the client involvement in handshake
was reduced by more than 90 percent in both CPU workload and amount of time spent in
computation by the client. This result shows that our modification can save a lot of time
for IoT clients using cryptography and even make some algorithms possible or practical
that would not even be considered before the modification.

99

Client time (s) Client CPU % Overall eleapsed time

pqTLS 1.50 94.40 1.58
pqlimTLS 0.13 8.20 1.52
% 9.09 8.69 96.08
performance bonus 90.90% 91.31% 3.92%

Table 8: Benchmarks of post-quantum TLS for limited devices

Figure 25: Post-Quantum TLS for limited devices

100

5.2.4 Benchmarking post-quantum security on SEcube

Our next experiment describes the possibility of using post-quantum algorithms in HSMs
or micro-controllers in general. We describe the performance of post-quantum algorithms
in terms of CPU cycles. We also offer the comparison of reference implementation and
platform-optimized implementation.

5.2.4.1 Experiment setup As our Cortex-M4 target, we use SECube. We used the
implementation described in section 4.1. The default frequency on Cortex-M4 is 168 MHz.
To avoid wait-states when the processor fetches instructions, we use a 24 MHz clock for
the speed tests.

First, we wanted to use the SysTick timer that is present on ARM-based microcon-
trollers. For most cases, it is an efficient and easy solution. Still, we found that it is not
suitable for our need, as with some measurements (of ntruhps4096821), even the maximal
capacity of the SysTick RELOAD register (24 bits) is too small. We decided to work with
DWT, where we can use 32 bit, which is enough for all tests.

Implementation Key generation Encapsulation Decapsulation

Our experiments (PQClean based) 4 390 006 5 323 618 5 004 678
Our experiments (Optimized for M4) 3 871 506 4 638 430 4 075 736
From paper [65] (PQClean based) 1 891 737 2 254 703 2 407 858
From paper [65] (Optimized for M4) 1 575 052 1 779 848 1 709 348

Table 9: Table of Kyber1024 speed in CPU ticks on Cortex-M4

Implementation Key generation Encapsulation Decapsulation

Our experiments (PQClean based) 226 037 026 2 951 205 7 483 009
Our experiments (Optimized for M4) 221 874 517 1 179 052 1 578 356
From paper [65] (PQClean based) 289 736 570 7 046 106 19 262 764
From paper [65] (Optimized for M4) 211 758 452 1 205 662 1 066 879

Table 10: Table of ntruhps4096821 speed in CPU ticks on Cortex-M4

5.2.4.2 Results In Tables 9,10, and 11, we present the comparison of various imple-
mentations and measurements. Each test was performed ten times in a row for keypair

101

Implementation Key generation Encapsulation Decapsulation

Our experiments (PQClean based) 6 528 985 8 098 992 8 504 554
Our experiments (Optimized for M4) 3 649 327 4 511 426 4 180 554
From paper [70] (Optimized for M4) 1 360 577 1 674 409 1 703 896
From paper [65] (Reference) 3 815 672 4 745 405 5 402 295
From paper [65] (Optimized for M4) 1 448 776 1 786 930 1 853 339

Table 11: Table of FireSaber speed in CPU ticks on Cortex-M4

generation, encapsulation, and decapsulation of the symmetric key. We compare the re-
sults of our measurements with those from available literature. We can see that although
we did the experiments with very similar implementations, it was not possible to achieve
the same results. We discussed this with the authors of the paper [65], and compared the
process, but we did not find a significant difference. The difference in speed is probably
the result of different platforms used (STM32F4DISCOVERY in [65] and SeCube). How-
ever, the results show that even with the challenges that post-quantum algorithms bring,
it is feasible to use Cortex M4 based HSM in real-life scenarios.

102

5.2.5 Benchmarking masked implementation of Kyber

Besides the side-channel resistance presented in section 3.1.2, we described the integra-
tion of side-channel resistant implementation of Kyber in section 4.8. We use masked
and shuffled NTT implementation. This experiment shows the performance of different
versions of integrated countermeasures.

5.2.5.1 Experiment setup We were interested in total time for the whole procedure,
including random generation, NTT operations, and kyber-related operations. Keypair
generation, encapsulation, and decapsulation tests were performed ten times in a row for
each masking/shuffling setting on the SeCube ARM Cortex-M4 chip.

5.2.5.2 Results In Table 12, we can see the difference between the implementation
with no protection and the masking and shuffling countermeasures described in section 3.6.
We can see that for masking options, the overhead is negligible, and thus we advise using
generic multiplicative masking. If possible, even the use of fine multiplicative masking is
advised. For shuffling options, overhead can go up to 74.63%. However, we think that if a
higher level of security against side-channel attacks is required, even this overhead would
be tolerable and that the USB interface would still make a backbone of this system.

Protection Keypair Overh. Encaps. Overh. Decaps. Overh.
CPU cycles % CPU cycles % CPU cycles %

No protection 5 069 586 5 768 645 5 358 027
Coarse shuffling 8 267 776 63.09 9 372 600 62.47 9 356 986 74.63
Group coarse shuffling 7 853 633 54.92 8 890 793 54.12 8 838 696 64.96
Fine shuffling 5 981 787 17.99 6 799 084 17.86 6 506 489 21.43
Coarse multiplicative masking 5 206 074 2.69 5 924 128 2.70 5 532 311 3.25
Fine multiplicative masking 6 264 827 23.58 7 107 005 23.20 6 839 041 27.64
Generic multiplicative masking 5 443 916 7.38 6 190 240 7.31 5 826 209 8.74

Table 12: Performance of masked kyber in CPU cycles.

103

5.2.6 SEcube post-quantum KEMs integration in s2n

From previous experiments, we found that most of the candidates are suitable for imple-
mentation on Cortex M4, with promising results. In this experiment, we focused on the
integration of SEcube post-quantum HSM (PQcube) into s2n as described in section 3.4
and section 4.7.

5.2.6.1 Experiment setup The experiment was performed on a Dual-Core Intel Core
i5-3317U CPU/6GB RAM computer. We measured calls of s2n wrapper implementations
of corresponding KEMs implementations in SEcube. We performed each measurement
ten times in a row using clock().

5.2.6.2 Results Results can be seen in Table 13 and on diagram in Figure 26. Shown
results are averages in milliseconds and CPU cycles for each KEM operation. For ref-
erence, we also added measurements from section 5.2.1, showing benchmarks of post-
quantum implementations without HSM. We can see that although the HSM speed and
USB communication introduce slowdown, it is not big enough to be considered a major
obstacle to our project. It shows us that we can introduce another security countermeasure
for the 10-100 millisecond trade-up.

KEM keypair keypair encaps encaps decaps decaps
ms CPU cycles ms CPU cycles ms CPU cycles

pq3-FireSaber 11.29 175 591 257 3.80 58 048 684 3.97 55 810 915
pq3-Kyber1024 12.24 195 639 355 3.17 56 847 923 2.86 51 105 791
pq3-NTRUhps4096821 219.80 3 531 194 675 1.47 22 990 808 1.61 25 375 951

FireSaber 2.32 3 985 254 3.05 5 758 520 3.61 6 473 779
Kyber1024 1.11 1 906 907 1.45 2 469 797 1.90 3 247 865
NTRUhps4096821 128.78 221 008 637 1.75 2 987 527 3.98 6 791 942

Table 13: Post-Quantum CUBE KEMs Benchmarks

104

Figure 26: Post-Quantum CUBE KEMs

105

5.2.7 PQcube Client-Server Handshake

Finally, this experiment shows the usability of the PQcube system in a real-life scenario.
This experiment sums up our efforts to create an HSM-driven post-quantum TLS hand-
shake key exchange as designed in section 3.5 and implemented in section 4.9.

5.2.7.1 Experiment setup We created two separate test programs, one for the
server-side and the other for the client-side. The server is the same as in section 5.2.2.
Client uses our PQcube HSM. The experiment was performed on a Dual-Core Intel Core
i5-3317U CPU/6GB RAM computer, entire server computations were performed there,
and all client cryptography was performed on PQcube. Because the basic model for
pq3TLS is pqlimTLS, the client-side is doing encapsulation and master key, client key,
and server key derivation, all in PQcube. The result is that both sides share the same
set of keys on the client-side stored in PQcube HSM. For reference, we also measured
the client that is not using PQcube. All measurements were done with GNU time -v
command.

5.2.7.2 Results Table 14 contains the average values made from five measurements
in a row. User and System time in seconds, CPU busyness in percentage, elapsed time
in seconds, and overhead introduced by HSM usage in seconds and percentage. We can
see that usage of HSM is introducing delays, and although these delays may seem to be
significant in relative percentage (817.86%), we need to consider that handshake is an only
a small proportion of the connection, and this delay in absolute (0.4s) may not disturb
user experience as much. We provide a diagram in Figure 27 for better understanding.

Handshake KEM User time System time CPU Elapsed time Overhead Overhead
s s % s s %

pq3-ntruhps4096821 0.010 0.016 1.8 1.69 0.34 25.56
pq3-FireSaber 0.006 0.024 7.2 0.54 0.44 442.00
pq3-Kyber1024 0.006 0.034 8.2 0.51 0.46 817.86

ntruhps4096821 0.024 0.002 2.0 1.34
FireSaber 0.032 0.000 36.8 0.10
Kyber1024 0.014 0.002 39.8 0.06

Table 14: Post-Quantum TLS Benchmarks

106

Figure 27: Post-Quantum TLS

107

5.2.8 PQcube for symmetric crypto

The last thing that we tested was the practicality of using HSM in TLS record. This
experiment intended to find the cost of using HSM for a symmetric cipher. We decided to
use a different setup with the NSS implementation of TLS. This experiment was also pub-
lished as a part of secure cryptographic protocol execution based on runtime verification
research [106].

5.2.8.1 Experiment setup Using OWASP® Zed Attack Proxy (ZAP) [107] and
Mozilla Firefox, Alexa top 100 sites (as of 05/06/2019), were accessed, with all traf-
fics collected in plaintext. Also, for each site, time taken to completely load the website
was measured. Next, we isolated the Firefox browser’s AES encryption by calling directly
the AES implementation of its underpinning NSS library. We encrypted the collected
traffic (all requests and responses needed to fully load the page, with all scripts etc.) in
Galois Counter Mode (GCM), an authenticated encryption scheme supported by TLS 1.3
[108]. The encryption for each website was performed ten times in a row on a Dual-Core
Intel Core i5-3317U CPU/6GB RAM machine. Next we did the AES GCM encryption
again, but instead of using NSS, we called an AES-GCM implementation on SECube.

Sites Load Time Data size NSS SECube Overheads Overheads
ms bytes ms ms ms %

www.google.com 1158 1 367 595 6.942 913.599 906.657 78.76
www.youtube.com 1303 810 458 4.135 575.439 571.304 43.98
www.facebook.com 1045 1 511 775 7.717 944.329 936.612 90.29
www.baidu.com 6775 1 265 391 6.778 818.825 812.047 12.00
www.wikipedia.org 698 99 336 0.654 64.916 64.262 9.22
Top_100 average 5205 3 171 550 12.355 1735.728 1723.373 33.19

Table 15: SECube HSM overheads

5.2.8.2 Results Table 15 shows the overheads recorded for the encryption operation
registered by SECube compared to Firefox’s NSS library executing fully on the end-user
machine. Results are shown both separately for the top five websites and the combined
measurements for all hundred websites. In each case, the total page load time and the
portion taken up by NSS encryption are shown. These values provide the context to
analyze the increase in processing times once encryption is offloaded to SECube. While
inevitably posing as a bottleneck due to the USB I/O involved, SECube’s hardware spec-

108

ifications manage to keep overheads within a practically acceptable range. An average
of 1723 ms may disturb the overall web browsing experience only a little. To keep the
overhead as small as possible, we could use hardware acceleration for the encryption with
SECube FPGA hardware implementation of AES, but that is not within the focus of this
work. Overall, this experiment setup shows that using HSM for record protocol can be
deployed at acceptable costs in terms of processing overheads and HSM costs.

109

5.3 Evaluation of results

The experiments described in the previous section evaluated proposed solution at several
levels.

In the first experiment described in section 5.2.1, we have shown the difference in
the performance of currently used public-key cryptography (ECC) and post-quantum
candidates. We have demonstrated that post-quantum cryptography can match the per-
formance of currently used key exchange algorithms.

We took the next step and evaluated the proposed algorithms in TLS handshake key
exchange, which can be found in section 5.2.2. This required TLS design changes that we
implemented in the s2n TLS library. We have shown that post-quantum cryptography in
TLS handshake is feasible.

Next, we tested our hypothesis that it may be beneficial for lightweight devices to
swap roles of server and client in handshake key exchange in section 5.2.3. The experi-
mental results showed that this assumption was correct.

In section 5.2.4, we evaluated the integration of post-quantum algorithms in SEcube
(Cortex-M4).

Because we also wanted to add side-channel analysis countermeasures, in 5.2.5 we
evaluated the masked and randomized implementation of Kyber.

We were able to run post-quantum KEMs on the SEcube chip, which means we
created the first hardware security module that provides a post-quantum level of security
(PQcube). Experiments in section 5.2.6 have shown that we can use such HSM in the
TLS library as a plug-and-play device, and section 5.2.7 has demonstrated successful
integration of PQcube into handshake key exchange.

With this, we can conclude that our work was successful. To show the capabilities
of complete isolation of the Root of Trust concept and make our research even more
practical, we performed the experiment describing the capabilities of PQcube for sym-
metric cryptography, which we describe in 5.2.8. This experiment was also published and
reviewed in [106].

We also want to point out the real-world usage of our design. For this, we use
two separate programs, one for the client-side and the second for the server-side. The
client-side has the possibility to plug in PQcube. Both sides run our post-quantum TLS.
With PQcube plugged in, all critical operations are performed in HSM, as well as all
keys are stored in HSM. After the handshake, application data of different sizes were
transported from client to server and back. For this, we used a Dual-Core Intel Core

110

i5-3317U CPU/6GB RAM computer with Ubuntu 18.04.5 LTS.

Figure 28: Performance of post-quantum handshake using Saber with and without HSM

Figure 29: Performance of post-quantum handshake using Kyber with and without HSM

Figures 28 and 29 show that the use of HSM in post-quantum TLS communication
introduces delays. The handshake part (with no authentification) needs roughly twice as
much time for PQcube, and this delay also grows with the PQcube usage in TLS Record.
This experiment aims to show the real-world use of our design, so other factors may
interfere.

111

Figure 30: Performance of post-quantum handshake using NTRU with and without HSM

From Figure 30, we can see that for NTRU, the relative delay resulting from the use
of PQcube usage is small. Actually, the delay mainly resulting from USB communication
is more or less the same as in previous cases (Figures 28 and 29). The difference is
in the keypair operation of NTRU, that is significantly slower, slowing the whole TLS
communication. This is an example that shows the need for careful choice of post-quantum
standard as well as the need to understand post-quantum cryptography to chose the best
one for specific purpose;

In applications where keypair operation is not needed, e.g. authentication presented
in section 2.7, NTRU would be as fast as other candidates. For key exchange in TLS,
however, is not practical, and we advice to use other post quantum algorithms. All in
all, our conclusion is that the best possible candidate for key exchange in post/quantum
TLS handshake is Kyber. This statement is based on several reasons. As we presented
in section 5.2.2, the performance of Kyber is comparable to currently used elliptic-curve
cryptography. Kyber is suitable for IoT devices as can be seen in section 5.2.4. Moreover
we can use randomisation and masking techniques, to provide higher level of security
against side channel analysis (section 5.2.5).

112

6 Conclusion
In this work, we our goal was to examine and evaluate the possibilities of making TLS key
exchange secure in the post-quantum world. We managed to meet the research objectives,
which were set in the beginning of this research.

We have confirmed our hypotheses, and created the proof of concept of post-quantum
TLS. We used SEcube and implemented Hardware Security Module for post-quantum
public key algorithms and used it in our post quantum TLS. We found that the use of
such setting is possible, and we consider delays caused still in acceptable range.

Our research in this field has opened even more questions. There are several possible
directions of the future research following this work:

• Authentication of both server and client can be added to our design. As we men-
tioned in section 2.7, this can be done using post-quantum signatures or post-
quantum KEM. The comparison of these two approaches under the same conditions
would be interesting.

• More research in the protection of post-quantum algorithms from side-channel at-
tacks is required. This is crucial for the integration of post-quantum algorithms into
IoT devices.

• Some platforms (as SEcube) provide FPGA. It would be interesting to see hardware
implementation of post-quantum algorithms PQcube system.

• Specification of several standards would need to be changed to allow post-quantum
public-key cryptography. This includes recognizing post-quantum algorithms in
Internet Assigned Numbers Authority (IANA), adapting protocols to allow key en-
capsulation mechanism API, etc.

The main contribution of the work can be perceived from several points of view: The
first point of view is a contribution for Transport Layer Security (TLS) protocol research.
Our work brought a post-quantum mechanisms for exchanging keys into the environment
of one of the most used communication protocols today. From this point of view, the
work pushes the boundaries of the TLS protocol to meet the requirements of security in
the post-quantum world.

Another point of view is the view from the development of Hardware Security Mod-
ules. We designed and implemented an HSM module for post-quantum key exchange for

113

TLS Handshake purposes. The module offers not only asymmetric cryptographic algo-
rithms for key exchange, but also key management and their use in symmetric cipher in
a secure environment.

Last but not least, we can look at the contribution of the work from the perspective
of IoT devices. We evaluated the possibilities of public key post-quantum algorithms for
limited devices, we found out which algorithms can be used in such an environment and
which cannot. We also proposed a way to modify the TLS protocol so that when using
post-quantum asymmetric algorithms, the lightweight client does as little computation as
possible.

We conclude that we were able to finish our research with positive results. We showed
that the use of post-quantum cryptography in the TLS setting is possible and practical
in real-world use. We were able to speed up the handshake for limited devices with
the possibility of client and server swapping roles in the key exchange. We designed,
implemented, and tested the first post-quantum hardware security module with auspi-
cious results. There are still many steps that need to be taken to bring post-quantum
cryptography into practical use, and this work is one of the steps to get closer to the goal.

114

Resumé
Motivácia

Motiváciou pre náš výskum je výrazný posun vo výskume kvantových počítačov za
posledné roky [1], [2], [3], [4]. Kvantový počítač predstavuje riziko pre bezpečnosť ko-
munikácie, z dôvodu, že zabezpečovacie mechanizmy sa spoliehajú na to, že nepoznáme
efektívny sposob riešenia matematických problémov, použitých pri šifrovaní. Konkrétne
riziko predstavujú dva algoritmy, navrhnuté pre kvantové počítače:

1. Shorov alrogitmus, ktorý v roku 1994 publikoval Peter Shor [9], je algoritmus pre
kvantové počítače na faktorizáciu celých čisiel v polynomiálnom čase.

2. Lov Grover publikoval algoritmus na prehľadávanie databáz v roku 1996 [10]. Jeho
zaujimavou vlastnosťou je, že Groverov algoritmus vie nájsť n-bitový kľúč so
zložitosťou

√
2n.

Pri komunikácií využívame dva typy šifier. Symetrické šifry sa používajú na zabezpečenie
dôvernosti správy. Na to, aby sa dve komunikujúce strany dohodli na kľúči, sa využíva
kryptografia s verejným kľúčom (asymetrická kryptografia).

Groverov algoritmus nedokáže symetrické šifry prelomiť úplne. Avšak kvadratické
zrýchlenie útokov hrubou silou si vyžadujú, aby sme prehodnotili, čo považujeme za
"bezpečné". Na zabezpečenie dôvernosti dát sa využíva Advanced Encryption Standard
(AES) (pokročilý štandard šifrovania). Keď teda zohľadníme Groverov algoritmus, úroveň
bezpečnosti AES-128 je znížená na 64-bitov. To znamená, že nastavenie AES s dĺžkou
kľúča 128 bitov alebo menej už nebude bezpečné, a šifra AES bude musieť mať dĺžku
kľúča 192 alebo 256 bitov [16].

Najčastejšie využívané algoritmy verejných kľúčov na výmenu kľúčov alebo digitálne
podpisy boli prelomené [5], [6]. Na základe problému faktorizácie celých čísel sa šifra RSA
jasne stáva obeťou Shorovho algoritmu. Iné využívané šifry sú založené Diffie-Helman
probléme, alebo jeho variantoch ECDH (založený na eliptických krivkách nad konečnými
poliami). Podľa [12] môže byť Shorov algoritmus použitý aj na výpočet diskrétnych
logaritmov a tým pádom aj na zlomenie Diffie-Helman problému. Proos a Zalka [14]
dokázali, že prelomiť kryptografiu založenú na eliptických krivkách je jednoduchšie, ako
prelomiť RSA.

Problematika práce
Cieľom nášho výskumu v oblasti bezpečnej post-kvantovej kryptografie je návrh pro-

tokolu, ktorý by vedel nahradiť súčasne využívaný protokol TLS, ale bol by odolný voči

115

útokom s použitím kvantového počítača. Taktiež treba vziať do úvahy rastúci podiel
IoT zariadení. V práci skúmame, ktoré algoritmy sú pre takéto zariadenia vhodné, a
ako ako upraviť samotný TLS Handshake protokol tak, aby to bolo pre tieto zariadenia
výhodné. Podstatnou súčastou bezpečnosti systémov je aj operačná bezpečnosť. Preto
sa treba zamerať aj na rôzne mechanizmy na zabezpečenie operačnej bezpečnosti, či už s
využitím bezpečného exekučného prostredia (TEE), alebo metód na ochranu pred útokmi
s využitím postranných kanálov. Ak využívame bezpečné exekučné prostredie pre kritické
úkony v post-kvantovom TLS protokole, je treba zohľadniť aj správu kľúčov a dôsledky,
ktoré z toho plynú.

Hypotézy a ciele
V dizertačnej práci skúmame a vyhodnocujeme možnosti zabezpečenia výmeny kľúčov

v protokole TLS v post-kvantovom svete. Na základe tohto cieľa môžeme vymedziť nasle-
dujúce hypotézy:

• Návrh a implementácia post-kvantového Handshake protokolu kompatibilného s
TLS je možná.

• Modul HSM môže byť využitý pre post-kvantové algoritmy verejných kľúčov. Toto
riešenie možno aplikovať v prostredí TLS.

• Oneskorenie spôsobené modulom HSM v post-kvantovom prostredí TLS neznemožnuje
komunikáciu, ani ju nerobí nepraktickou.

V súvislosti s cieľmi práce môžeme identifikovať niekoľko úloh. Tieto čiastkové ciele
nám poslúžia ako základná osnova výskumu.

• Preskúmame detaily protokolu TLS, jeho mechanizmy a štruktúru jeho správ. Iden-
tifikujeme súčasti TLS, ktoré môžeme použiť, a tie, ktoré budeme musieť nahradiť.

• Budeme hľadať nové mechanizmy výmeny kľúčov, ktoré by boli odolné proti kvan-
tovým počítačom.

• Zozbierame vhodné implementácie TLS pre naše experimenty a pre praktickú časť
výskumu si vyberieme najvhodnejší z nich.

• Navrhneme a implementujeme post-kvantový mechanizmus výmeny kľúčov v kon-
texte protokolu TLS.

116

• Pri návrhu nového protokolu podobného TLS vezmeme do úvahy rastúcu popular-
itu zariadení IoT. Odrazí sa to na voľbe mechanizmu výmeny kľúčov, ako aj na
architektúre nového protokolu.

• Nájdeme dostupné metódy, ktorými zabezpečíme operačnú bezpečnosť, a danú
metódu implementujeme.

• Naše riešenie otestujeme sadou experimentov, aby sme zistili, či je naše riešenie
vhodné na použitie v praxi.

Obsah práce
Naša práca sa delí na niekoľko kapitol. Prvá kapitola predstavuje najnovší protokol

TLS. Skúmame v nej detaily protokolu TLS, jeho mechanizmy a štruktúru jeho správ.
Okrem toho prezentujeme post-kvantovú kryptografiu, operačnú bezpečnosť a súvisiaci
výskum. Opisujeme aj implementácie protokolu TLS. Alternatívne mechanizmy výmeny
kľúčov, ktoré sú odolné voči kvantovým počítačom, sme prevzali zo štandardizačného
procesu NIST, a vysvetlili sme súvisiace koncepty.

Post-kvantová bezpečnosť v TLS si vyžaduje nový architektonický návrh. Naše
návrhy sú predstavené v druhej kapitole, spolu s možnými kandidátmi na algoritmy vý-
meny kľúčov. Identifikujeme tu časti protokolu TLS, ktoré môžu byť využité, ako aj časti,
ktoré treba nahradiť. Berieme pri tom do úvahy aj limitované zariadenia a rastúcu popu-
laritu zariadení IoT. Predstavujeme SEcube a náš koncept post-kvantového HSM, ktorý
poskytuje vyššiu úroveň operačnej bezpečnosti. Okrem toho ponúkame možnost využiť
implementáciu chránenú proti útokom s využitím postranných kanálov (pre Kyber).

Zvolenú implementáciu TLS s2n sme upravili tak, aby zodpovedala našim potrebám a
experimentom. V tretej kapitole spomíname niektoré z problémov, na ktoré sme narazili
pri implementácii, aby sme bližšie priblížili artefakt nášho výskumu v zmysle metódy
design research. Opisujeme aj jednotlivé stavebné diely a zdroje na implementáciu našich
návrhov.

Kapitola štyri sa zaoberá testovaním a evaluáciou všetkých komponentov a krokov v
post-kvantovej dohode o výmene kľúča v protokole TLS. Experimenty ukazujú úspešné
post-kvantové dešifrovanie a úspešnú dohodu výmene kľúča a využitie HSM na strane
klienta. Okrem toho poukazujú na úspešné využitie symetrickej kryptografie v protokole
TLS Record po post-kvantovej výmene kľúčov.

Výsledky a prínos práce
Hypotézy, ktoré sme si stanovili na začiatku práce, sa potvrdili, a my sme vytvo-

rili dôkaz koncepcie (proof of concept) post-kvantového TLS. Využili sme pri tom plat-

117

formu SEcube a implementovali sme modul Hardware Security Module (HSM) pre post-
kvantové algoritmy výmeny kľúčov a aplikovali sme ich v post-kvantovom TLS. Zistili
sme, že využitie takýchto nastavení je možné, a oneskorenie, ktoré vzniklo, považu-
jeme za akceptovateľné. Môžeme teda skonštatovať, že výskum sa nám podarilo úspešne
dokončiť. Dokázali sme, že využitie post-kvantovej kryptografie v prostredí TLS je možné
a použitelné v praxi. Podarilo sa nám zrýchliť proces post-kvantového Handshake pre lim-
itované zariadenia tak, že si klient a server vymenili role pri výmene kľúčov. Navrhli sme,
implementovali a otestovali sme prvý post-kvantový modul HSM s mimoriadne sľubnými
výsledkami. Na uvedenie post-kvantovej kryptografie do praxe je potrebnej ešte mnoho
práce, a táto dizertačná práca je jedným z potrebných krokov, ktoré nás priblížia k cieľu.

Hlavný prínos práce je možné vnímať z niekoľkých uhlov pohľadu: Prvý uhol pohľadu
je prínos pre výskum bezpečnosti protokolu na transportnej vrstve (TLS). Práca priniesla
post-kvantový mechanizmus na výmenu kľúčov do prostredia jedného z najvyužívanejších
komunikačných protokolov súčasnosti. Z tohoto pohľadu práca posúva hranice možností
TLS protokolu tak, aby zodpovedali požiadavkám na bezpečnosť v post-kvantovom svete.

Ďalším uhlom pohľadu je pohľad zo strany vývoja bezpečnostných HSM modulov.
Navrhli a implementovali sme HSM modul pre post-kvantovú výmenu kľúčov na účely
TLS Handshake. Modul ponúka nie len asymetrické kryptografické algoritmy na výmenu
kľúčov, ale aj správu kľúčov a ich používanie v symetrickej šifre v bezpečnom prostredí.

V neposlednom rade sa môžeme na prínos práce pozerať z pohladu IoT zariadení.
Overili sme možnosti post-kvantových algoritmov verejného kľúča pre limitované zariade-
nia, zistili sme, ktoré algoritmy je možné v takomto prostredí využiť, a ktoré nie. Tiež
sme navrhli spôsob, akým modifikovať TLS protokol tak, aby pri použití post-kvantových
asymetrických algoritmov čo najmenej zaťažoval ľahkého klienta.

Náš výskum v tejto oblasti otvoril mnohé ďalšie otázky a možné smerovanie ďalšieho
výskumu, nadväzujúceho na túto prácu, vieme zhrnúť do niekoľkých bodov:

• Do nášho návrhu môže byť pridaná autentikácia servera i klienta. Ako sme spomenuli
v časti 2.7, tento cieľ možno dosiahnuť pomocou post-kvantových podpisov alebo
post-kvantových KEM. Porovnanie týchto dvoch prístupov v rovnakých podmienkach
môže priniesť zaujímavé výsledky.

• Je potrebný ďalší výskum v oblasti ochrany post-kvantových algoritmov pred útokmi
z postranných kanálov. Je to nevyhnutné pre integráciu post-kvantových algoritmov
do zariadení IoT.

• Niektoré platformy (ako SEcube) ponúkajú FGPA. Hardvérová implementácia post-

118

kvantových algoritmov do systému PQcube by bola určite podnetná.

• Aby bola možná post-kvantová výmena kľúčov, je potrebné zmeniť špecifikácie niek-
torých štandardov. Patrí sem napríklad rozpoznanie post-kvantových algoritmov v
Internet Assigned Numbers Authority (IANA), adaptácia protokolov na umožnenie
API mechanizmu zapuzdrenia kľúča (KEM), atď.

119

Bibliography
1. 40 years of quantum computing. Nature Reviews Physics. 2022, vol. 4, no. 1, pp. 1–

1. Available from doi: 10.1038/s42254-021-00410-6.

2. BALL, Philip. First quantum computer to pack 100 qubits enters crowded race.
Nature. 2021, vol. 599, no. 7886, pp. 542–542. Available from doi: 10.1038/d41586-

021-03476-5.

3. MORZHIN, O. V. and PECHEN’, A. N. Maximization of the Uhlmann–Jozsa Fi-
delity for an Open Two-Level Quantum System with Coherent and Incoherent Con-
trols. Physics of Particles and Nuclei. 2020, vol. 51, no. 4, pp. 464–469. Available
from doi: 10.1134/s1063779620040516.

4. ARUTE, Frank et al. Quantum supremacy using a programmable superconducting
processor. Nature. 2019, vol. 574, no. 7779, pp. 505–510. issn 1476-4687. Available
from doi: 10.1038/s41586-019-1666-5.

5. BUCHANAN, William and WOODWARD, Alan. Will quantum computers be the
end of public key encryption? Journal of Cyber Security Technology. 2017, vol. 1,
no. 1, pp. 1–22. Available from doi: 10.1080/23742917.2016.1226650.

6. MAVROEIDIS, Vasileios, VISHI, Kamer, ZYCH, Mateusz D and JØSANG, Audun.
The impact of quantum computing on present cryptography. arXiv preprint arXiv:
1804.00200. 2018.

7. ALAGIC, Gorjan et al. Status Report on the First Round of the NIST Post-Quantum
Cryptography Standardization Process. NIST Interagency/Internal Report (NIS-
TIR), National Institute of Standards and Technology, Gaithersburg, MD, 2019.
Available from doi: https://doi.org/10.6028/NIST.IR.8240.

8. CORPORATION, IBM. TLS protocol overview [online]. 2021 [visited on 2021-09-
13]. Available from: https://www.ibm.com/docs/en/sdk-java-technology/7.

1?topic=provider-tls-protocol-overview.

9. SHOR, P. W. Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer. SIAM Journal on Computing. 1995, no. 5,
p. 1484.

10. GROVER, L.K. A fast quantum mechanical algorithm for database search, Pro-
ceedings. 28th Annual ACM Symposium on the Theory of Computing. 1996, p. 212.

120

https://doi.org/10.1038/s42254-021-00410-6
https://doi.org/10.1038/d41586-021-03476-5
https://doi.org/10.1038/d41586-021-03476-5
https://doi.org/10.1134/s1063779620040516
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1080/23742917.2016.1226650
https://doi.org/https://doi.org/10.6028/NIST.IR.8240
https://www.ibm.com/docs/en/sdk-java-technology/7.1?topic=provider-tls-protocol-overview
https://www.ibm.com/docs/en/sdk-java-technology/7.1?topic=provider-tls-protocol-overview

11. ARUNACHALAM, Srinivasan and WOLF, Ronald de. Optimizing the Number of
Gates in Quantum Search. arXiv, 2015. Available from doi: 10.48550/ARXIV.

1512.07550.

12. EKERÅ, Martin and HÅSTAD, Johan. Quantum Algorithms for Computing Short
Discrete Logarithms and Factoring RSA Integers. In: LANGE, Tanja and TAK-
AGI, Tsuyoshi (eds.). Post-Quantum Cryptography. Cham: Springer International
Publishing, 2017, pp. 347–363. isbn 978-3-319-59879-6.

13. MAURER, Ueli M. and WOLF, Stefan. The Relationship Between Breaking the
Diffie–Hellman Protocol and Computing Discrete Logarithms. SIAM Journal on
Computing. 1999, vol. 28, no. 5, pp. 1689–1721. Available from doi: 10.1137/

S0097539796302749.

14. PROOS, John and ZALKA, Christof. Shor’s Discrete Logarithm Quantum Algo-
rithmfor Elliptic Curves. 2003, vol. vol. 3, pp. 317–344.

15. HERON, Simon. Advanced encryption standard (AES). Network Security. 2009,
vol. 2009, no. 12, pp. 8–12.

16. GRASSL, Markus, LANGENBERG, Brandon, ROETTELER, Martin and STEIN-
WANDT, Rainer. Applying Grover’s algorithm to AES: quantum resource esti-
mates. In: Post-Quantum Cryptography. 2016, pp. 29–43.

17. HIDARY, Jack D. A Brief History of Quantum Computing. In: Quantum Comput-
ing: An Applied Approach. Cham: Springer International Publishing, 2019, pp. 11–
16. isbn 978-3-030-23922-0. Available from doi: 10.1007/978-3-030-23922-0_2.

18. BRASSARD, Gilles, HØYER, Peter and TAPP, Alain. Quantum cryptanalysis of
hash and claw-free functions. In: LUCCHESI, Cláudio L. and MOURA, Arnaldo
V. (eds.). LATIN’98: Theoretical Informatics. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 163–169. isbn 978-3-540-69715-2.

19. NIST.Guidelines for the Selection, Configuration, and Use of Transport Layer Secu-
rity (TLS) Implementations: NIST SP 800-52 Rev. 2 [online]. 2019 [visited on 2021-
09-13]. Available from: https://csrc.nist.gov/news/2019/nist-publishes-

sp-800-52-revision-2.

20. DOWLING, Benjamin, FISCHLIN, Marc, GÜNTHER, Felix and STEBILA, Dou-
glas. A cryptographic analysis of the TLS 1.3 handshake protocol. Journal of Cryp-
tology. 2021, vol. 34, no. 4, pp. 1–69.

121

https://doi.org/10.48550/ARXIV.1512.07550
https://doi.org/10.48550/ARXIV.1512.07550
https://doi.org/10.1137/S0097539796302749
https://doi.org/10.1137/S0097539796302749
https://doi.org/10.1007/978-3-030-23922-0_2
https://csrc.nist.gov/news/2019/nist-publishes-sp-800-52-revision-2
https://csrc.nist.gov/news/2019/nist-publishes-sp-800-52-revision-2

21. MORIARTY, Kathleen, KALISKI, Burt, JONSSON, Jakob and RUSCH, Andreas.
PKCS #1: RSA Cryptography Specifications Version 2.2 [RFC 8017]. RFC Editor,
2016. Request for Comments, no. 8017. Available from doi: 10.17487/RFC8017.

22. PORNIN, Thomas. Deterministic Usage of the Digital Signature Algorithm (DSA)
and Elliptic Curve Digital Signature Algorithm (ECDSA) [RFC 6979]. RFC Editor,
2013. Request for Comments. Available from doi: 10.17487/RFC6979.

23. JOSEFSSON, Simon and LIUSVAARA, Ilari. Edwards-Curve Digital Signature Al-
gorithm (EdDSA) [RFC 8032]. RFC Editor, 2017. Request for Comments, no. 8032.
Available from doi: 10.17487/RFC8032.

24. MCGREW, David. An Interface and Algorithms for Authenticated Encryption [RFC
5116]. RFC Editor, 2008. Request for Comments, no. 5116. Available from doi:
10.17487/RFC5116.

25. BARNES, Richard and BHARGAVAN, Karthikeyan. Hybrid Public Key Encryp-
tion. Internet Engineering Task Force, [n.d.]. Available also from: https://datatracker.

ietf.org/doc/html/draft-irtf-cfrg-hpke-01. Work in Progress.

26. CENTER, Windows Dev. TLS Record Protocol. Microsoft - Online Source, 2017,
[n.d.].

27. RESCORLA, Eric. Diffie-Hellman Key Agreement Method [RFC 2631]. RFC Edi-
tor, 1999. Request for Comments, no. 2631. Available from doi: 10.17487/RFC2631.

28. KRAWCZYK, Dr. Hugo and ERONEN, Pasi. HMAC-based Extract-and-Expand
Key Derivation Function (HKDF) [RFC 5869]. RFC Editor, 2010. Request for
Comments, no. 5869. Available from doi: 10.17487/RFC5869.

29. JACKSON, Brian. An Overview of TLS 1.3 - Faster and More Secure. Kinsta.com,
Internet Source, december 2016, [n.d.].

30. NIR, Yoav and LANGLEY, Adam. ChaCha20 and Poly1305 for IETF Protocols
[RFC 7539]. RFC Editor, 2015. Request for Comments, no. 7539. Available from
doi: 10.17487/RFC7539.

31. THOMAS, Stephen. SSL and TLS Essentials: Securing the Web. New York: John
Wiley & Sons, Inc, 2000, [n.d.].

32. KRAWCZYK, Dr. Hugo, BELLARE, Mihir and CANETTI, Ran. HMAC: Keyed-
Hashing for Message Authentication [RFC 2104]. RFC Editor, 1997. Request for
Comments, no. 2104. Available from doi: 10.17487/RFC2104.

122

https://doi.org/10.17487/RFC8017
https://doi.org/10.17487/RFC6979
https://doi.org/10.17487/RFC8032
https://doi.org/10.17487/RFC5116
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-01
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hpke-01
https://doi.org/10.17487/RFC2631
https://doi.org/10.17487/RFC5869
https://doi.org/10.17487/RFC7539
https://doi.org/10.17487/RFC2104

33. JAYAPAL, Cynthia, SULTANA, Parveen, SAROJA, M. N. and SENTHIL, J. Se-
curity Protocols for IoT. In: 2019, pp. 1–28. isbn 978-3-030-01565-7. Available from
doi: 10.1007/978-3-030-01566-4_1.

34. CHACKO, Smilty and JOB, Mr. Deepu. Security mechanisms and Vulnerabilities in
LPWAN. IOP Conference Series: Materials Science and Engineering. 2018, vol. 396,
p. 012027. Available from doi: 10.1088/1757-899x/396/1/012027.

35. SASTRY, Naveen andWAGNER, David. Security Considerations for IEEE 802.15.4
Networks. 2004, vol. 2004. Available also from: https://people.eecs.berkeley.

edu/~daw/papers/15.4-wise04.pdf.

36. LIUSVAARA, Ilari. CFRG Elliptic Curve Diffie-Hellman (ECDH) and Signatures
in JSON Object Signing and Encryption (JOSE) [RFC 8037]. RFC Editor, 2017.
Request for Comments, no. 8037. Available from doi: 10.17487/RFC8037.

37. NARAYANAN, R., JAYASHREE, S., PHILIPS, N. D., SARANYA, A. M., PRATHIBA,
S. B. and RAJA, G. TLS Cipher Suite: Secure Communication of 6LoWPAN De-
vices. In: 2019 11th International Conference on Advanced Computing (ICoAC).
2019, pp. 197–203. Available from doi: 10.1109/ICoAC48765.2019.246840.

38. NIST. The Future Is Now: Spreading the Word About Post-Quantum Cryptograph
[online]. 2016 [visited on 2021-09-30]. Available from: https://www.nist.gov/

blogs/taking-measure/future-now-spreading-word-about-post-quantum-

cryptography.

39. GRUBBS Paul; Maram Varun ;Paterson, Kenneth. Anonymous, Robust Post-Quantum
Public Key Encryption [online]. 2021 [visited on 2021-09-30]. Available from: https:

//eprint.iacr.org/2021/708.

40. KARABULUT Emre; Aysu, Aydin. Falcon Down: Breaking Falcon Post-Quantum
Signature Scheme through Side-Channel Attacks [online]. 2021 [visited on 2021-09-
30]. Available from: https://eprint.iacr.org/2021/772.

41. NIST. Submission Requirements and Evaluation Criteria for the Post-Quantum
Cryptography Standardization Process [online]. 2016 [visited on 2021-09-30]. Avail-
able from: https://csrc.nist.gov/CSRC/media/Projects/Post- Quantum-

Cryptography/documents/call-for-proposals-final-dec-2016.pdf.

42. PUB, FIPS. Secure hash standard (shs). Fips pub. 2012, vol. 180, no. 4.

43. THE OPENSSL PROJECT. OpenSSL: The Open Source toolkit for SSL/TLS.
2003. www.openssl.org.

123

https://doi.org/10.1007/978-3-030-01566-4_1
https://doi.org/10.1088/1757-899x/396/1/012027
https://people.eecs.berkeley.edu/~daw/papers/15.4-wise04.pdf
https://people.eecs.berkeley.edu/~daw/papers/15.4-wise04.pdf
https://doi.org/10.17487/RFC8037
https://doi.org/10.1109/ICoAC48765.2019.246840
https://www.nist.gov/blogs/taking-measure/future-now-spreading-word-about-post-quantum-cryptography
https://www.nist.gov/blogs/taking-measure/future-now-spreading-word-about-post-quantum-cryptography
https://www.nist.gov/blogs/taking-measure/future-now-spreading-word-about-post-quantum-cryptography
https://eprint.iacr.org/2021/708
https://eprint.iacr.org/2021/708
https://eprint.iacr.org/2021/772
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
www.openssl.org

44. OPENBSD PROJECT. LibreSSL. 2021. www.libressl.org.

45. GOOGLE. BoringSSL. 2021. boringssl.googlesource.com/boringssl.

46. MOZILLA. Network Security Services. 2021. developer.mozilla.org/en- US/

docs/Mozilla/Projects/NSS.

47. AMAZON WEB SERVICES. s2n. 2021. https://github.com/aws/s2n-tls.

48. TRUSTED FIRMWARE. Mbed TLS. 2021. https://tls.mbed.org/.

49. WOLFSSL. wolfSSL embedded TLS library. 2021. https://www.wolfssl.com/.

50. POULIN, Chris. What to do to protect against heartbleed openssl vulnerability [on-
line]. 2014 [visited on 2020-09-30]. Available from: https://www.yubico.com/.

51. BERNSTEIN, Daniel J. Cache-timing attacks on AES. 2005.

52. VELLA, Mark, COLOMBO, Christian, ABELA, Robert and ŠPAČEK, Peter. RV-
TEE: secure cryptographic protocol execution based on runtime verification. Jour-
nal of Computer Virology and Hacking Techniques. 2021, vol. 17, no. 3, pp. 229–248.
issn 2263-8733. Available from doi: 10.1007/s11416-021-00391-1.

53. BHATTACHARYA, Anish. CYBER SECURITY ATTACK TYPES – ACTIVE
AND PASSIVE ATTACKS. 2021. Available also from: www.encryptionconsulting.

com/active-and-passive-attacks/.

54. BHUNIA, Swarup and TEHRANIPOOR, Mark. Chapter 10 - Physical Attacks
and Countermeasures. In: BHUNIA, Swarup and TEHRANIPOOR, Mark (eds.).
Hardware Security. Morgan Kaufmann, 2019, pp. 245–290. isbn 978-0-12-812477-2.
Available from doi: https://doi.org/10.1016/B978-0-12-812477-2.00015-0.

55. SABT, Mohamed, ACHEMLAL, Mohammed and BOUABDALLAH, Abdelmadjid.
Trusted Execution Environment: What It is, and What It is Not. In: 2015 IEEE
Trustcom/BigDataSE/ISPA. 2015, vol. 1, pp. 57–64. Available from doi: 10.1109/

Trustcom.2015.357.

56. LEVIN, Timothy, NGUYEN, Thuy, IRVINE, Cynthia and MCEVILLEY, Michael.
Separation Kernel Protection Profile Revisited: Choices and Rationale. Fourth An-
nual Layered Assurance Workshop (LAW 2010). 2010, vol. Electronic Archive.

57. TCG. Tpm 1.2 main specification [online]. 2011 [visited on 2021-09-30]. Available
from: https://trustedcomputinggroup.org/resource/tpm-main-specification/.

124

www.libressl.org
boringssl.googlesource.com/boringssl
 developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
 developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS
 https://github.com/aws/s2n-tls
https://tls.mbed.org/
https://www.wolfssl.com/
https://www.yubico.com/
https://doi.org/10.1007/s11416-021-00391-1
www.encryptionconsulting.com/active-and-passive-attacks/
www.encryptionconsulting.com/active-and-passive-attacks/
https://doi.org/https://doi.org/10.1016/B978-0-12-812477-2.00015-0
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://trustedcomputinggroup.org/resource/tpm-main-specification/

58. AAS, Josh. Preparing to Issue 200 Million Certificates in 24 Hours [online]. 2021
[visited on 2021-10-30]. Available from: https://letsencrypt.org/2021/02/10/

200m-certs-24hrs.html.

59. DOUGLAS STEBILA, Michele Mosca. Open Quantum Safe project [online]. 2017
[visited on 2021-10-30]. Available from: https://openquantumsafe.org.

60. ŠPAČEK, Peter. DDP - Zverejnená diplomová práca Implementation of McEliece
cryptosystem into TLS. 2017. MA thesis. Slovak University of Technology.

61. BERNSTEIN, Daniel J., BRUMLEY, Billy Bob, CHEN, Ming-Shing and TUVERI,
Nicola. OpenSSLNTRU: Faster post-quantum TLS key exchange. IACR Cryptol.
ePrint Arch. 2021, vol. 2021, p. 826.

62. CROCKETT, Eric, PAQUIN, Christian and STEBILA, Douglas. Prototyping post-
quantum and hybrid key exchange and authentication in TLS and SSH. IACR
Cryptol. ePrint Arch. 2019, vol. 2019, p. 858.

63. GEORGE, Tasopoulos, LI, Jinhui, FOURNARIS, Apostolos P, ZHAO, Raymond
K, SAKZAD, Amin and STEINFELD, Ron. Performance Evaluation of Post-Quantum
TLS 1.3 on Embedded Systems. Cryptology ePrint Archive. 2021.

64. SCHWABE, Peter, STEBILA, Douglas and WIGGERS, Thom. Post-quantum TLS
without handshake signatures [Cryptology ePrint Archive, Report 2020/534]. 2020.
https://ia.cr/2020/534.

65. KANNWISCHER, Matthias J., RIJNEVELD, Joost, SCHWABE, Peter and STOF-
FELEN, Ko. pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4
[Cryptology ePrint Archive, Report 2019/844]. 2019. https://ia.cr/2019/844.

66. ALAGIC, Gorjan et al. Status report on the second round of the NIST post-
quantum cryptography standardization process. US Department of Commerce, NIST.
2020.

67. CHOU, Tung et al. Classic McEliece: conservative code-based cryptography 10
October 2020. 2020.

68. AVANZI, Roberto et al. CRYSTALS-Kyber algorithm specifications and supporting
documentation. [N.d.].

69. CHEN, Cong, DANBA, Oussama, HOFFSTEIN, Jeffrey, HÜLSING, Andreas, RI-
JNEVELD, Joost, SCHANCK, John M, SCHWABE, Peter, WHYTE, William and
ZHANG, Zhenfei. NTRU, Algorithm Specifications And Supporting Documenta-
tion. 2019.

125

https://letsencrypt.org/2021/02/10/200m-certs-24hrs.html
https://letsencrypt.org/2021/02/10/200m-certs-24hrs.html
https://openquantumsafe.org
https://ia.cr/2020/534
https://ia.cr/2019/844

70. VERCAUTEREN, Ir Frederik. SABER: Mod-LWR based KEM (Round 3 Submis-
sion). [N.d.].

71. LANGE, Tanja. Selected Areas in Cryptology [https://hyperelliptic.org/tanja /teach-
ing/pqcrypto21/]. [N.d.]. Accessed: 2021-10-30.

72. KARMAKAR, Angshuman, MERA, Jose Maria Bermudo, ROY, Sujoy Sinha and
VERBAUWHEDE, Ingrid. Saber on ARM CCA-secure module lattice-based key
encapsulation on ARM. Cryptology ePrint Archive. 2018.

73. Password Storage Cheat Sheet [OWASP Cheat Sheet Series.]. [N.d.]. Accessed: 2021-
09-30.

74. CREMERS, Cas, HORVAT, Marko, SCOTT, Sam and MERWE, Thyla van der.
Automated Analysis and Verification of TLS 1.3: 0-RTT, Resumption and Delayed
Authentication. In: 2016 IEEE Symposium on Security and Privacy (SP). 2016,
pp. 470–485. Available from doi: 10.1109/SP.2016.35.

75. BELLARE, Mihir, CANETTI, Ran and KRAWCZYK, Hugo. A Modular Approach
to the Design and Analysis of Authentication and Key Exchange Protocols (Ex-
tended Abstract). In: Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing. Dallas, Texas, USA: Association for Computing Machinery,
1998, pp. 419–428. STOC ’98. isbn 0897919629. Available from doi: 10.1145/

276698.276854.

76. PERRIN, Trevor and MARLINSPIKE, Moxie. The double ratchet algorithm.GitHub
wiki. 2016.

77. PERRIN, Trevor. The Noise protocol framework. PowerPoint Presentation. 2018.

78. MCKEEN, Frank, ALEXANDROVICH, Ilya, ANATI, Ittai, CASPI, Dror, JOHN-
SON, Simon, LESLIE-HURD, Rebekah and ROZAS, Carlos. Intel® software guard
extensions (intel® sgx) support for dynamic memory management inside an en-
clave. In: Proceedings of the Hardware and Architectural Support for Security and
Privacy 2016. 2016, pp. 1–9.

79. JEE, Kangkook, PORTOKALIDIS, Georgios, KEMERLIS, Vasileios P, GHOSH,
Soumyadeep, AUGUST, David I and KEROMYTIS, Angelos D. A General Ap-
proach for Efficiently Accelerating Software-based Dynamic Data Flow Tracking
on Commodity Hardware. In: NDSS. 2012.

80. PINTO, Sandro and SANTOS, Nuno. Demystifying arm trustzone: A comprehen-
sive survey. ACM Computing Surveys (CSUR). 2019, vol. 51, no. 6, pp. 1–36.

126

https://doi.org/10.1109/SP.2016.35
https://doi.org/10.1145/276698.276854
https://doi.org/10.1145/276698.276854

81. WOJTCZUK, Rafal and RUTKOWSKA, Joanna. Attacking intel trusted execution
technology. Black Hat DC. 2009, vol. 2009, pp. 1–6.

82. SEABORN, Mark and DULLIEN, Thomas. Exploiting the DRAM rowhammer bug
to gain kernel privileges. Black Hat. 2015, vol. 15, p. 71.

83. SABT, Mohamed and TRAORÉ, Jacques. Breaking into the keystore: A practical
forgery attack against Android keystore. In: European Symposium on Research in
Computer Security. 2016, pp. 531–548.

84. KOCHER, Paul et al. Spectre attacks: Exploiting speculative execution. In: 2019
IEEE Symposium on Security and Privacy (SP). 2019, pp. 1–19.

85. VARRIALE, Antonio, DI NATALE, Giorgio, PRINETTO, Paolo, STEFFEN, Bern-
hard and MARGARIA, Tiziana. Secube (tm): an open security platform-general
approach and strategies. In: Proceedings of the International Conference on Security
and Management (SAM). 2016, p. 131.

86. Open Source SDK and Projects [http://secube.blu5group.com]. [N.d.]. Accessed:
2021-09-30.

87. GELUSO, Joe. CRC16-CCITT. 2003. Available also from: http://web.archive.

org/web/20071229021252/http://www.joegeluso.com/software/articles/

ccitt.htm.

88. KALISKI, Burt. PKCS# 5: Password-based cryptography specification version 2.0.
2000.

89. SEcube Open Source Platform - Introduction [https://raw.githubusercontent.

com/SEcube-Project/SEcube-SDK/release-1.5.1/wiki/wiki_rel_011.pdf].
[N.d.]. Accessed: 2021-09-30.

90. BOLLO, Matteo, CARELLI, Alberto, DI CARLO, Stefano and PRINETTO, Paolo.
Side-channel analysis of SEcube™ platform. In: 2017, pp. 1–5. Available from doi:
10.1109/EWDTS.2017.8110067.

91. MCGREW, David and VIEGA, John. The Galois/counter mode of operation (GCM).
submission to NIST Modes of Operation Process. 2004, vol. 20, pp. 0278–0070.

92. CARLET, Claude, HASAN, M Anwar and SARASWAT, Vishal. Security, Privacy,
and Applied Cryptography Engineering. Springer, 2016.

127

http://secube.blu5group.com
http://web.archive.org/web/20071229021252/http://www.joegeluso.com/software/articles/ccitt.htm
http://web.archive.org/web/20071229021252/http://www.joegeluso.com/software/articles/ccitt.htm
http://web.archive.org/web/20071229021252/http://www.joegeluso.com/software/articles/ccitt.htm
https://raw.githubusercontent.com/SEcube-Project/SEcube-SDK/release-1.5.1/wiki/wiki_rel_011.pdf
https://raw.githubusercontent.com/SEcube-Project/SEcube-SDK/release-1.5.1/wiki/wiki_rel_011.pdf
https://doi.org/10.1109/EWDTS.2017.8110067

93. PÖPPELMANN, Thomas, ODER, Tobias and GÜNEYSU, Tim. High-Performance
Ideal Lattice-Based Cryptography on 8-Bit ATxmega Microcontrollers. In: LAUTER,
Kristin and RODRÍGUEZ-HENRÍQUEZ, Francisco (eds.). Progress in Cryptology
– LATINCRYPT 2015. Cham: Springer International Publishing, 2015, pp. 346–
365. isbn 978-3-319-22174-8.

94. RAVI, Prasanna, POUSSIER, Romain, BHASIN, Shivam and CHATTOPADHYAY,
Anupam. On Configurable SCA Countermeasures Against Single Trace Attacks for
the NTT. In: BATINA, Lejla, PICEK, Stjepan and MONDAL, Mainack (eds.).
Security, Privacy, and Applied Cryptography Engineering. Cham: Springer Interna-
tional Publishing, 2020, pp. 123–146. isbn 978-3-030-66626-2.

95. BERNSTEIN, Daniel J. et al. Classic McEliece:conservative code-based cryptogra-
phy. 2017.

96. DWORKIN, Morris J. Sp 800-38d. recommendation for block cipher modes of op-
eration: Galois/counter mode (gcm) and gmac. National Institute of Standards &
Technology, 2007.

97. wpa_supplicant [https://wiki.archlinux.org/title/wpasupplicant]. [N.d.]. Accessed:
2021-09-30.

98. KANNWISCHER, MJ, RIJNEVELD, J, SCHWABE, P, STEBILA, D and WIG-
GERS, T. The PQClean Project, August 2020. [N.d.].

99. LibOpenCM3 [https://libopencm3.org/]. [N.d.]. Accessed: 2021-09-30.

100. WANG,Wen, SZEFER, Jakub and NIEDERHAGEN, Ruben. FPGA-Based Nieder-
reiter Cryptosystem Using Binary Goppa Codes. In: LANGE, Tanja and STEIN-
WANDT, Rainer (eds.). Post-Quantum Cryptography. Cham: Springer Interna-
tional Publishing, 2018, pp. 77–98. isbn 978-3-319-79063-3.

101. BOTROS, Leon, KANNWISCHER, Matthias J. and SCHWABE, Peter. Memory-
Efficient High-Speed Implementation of Kyber on Cortex-M4 [Cryptology ePrint
Archive, Report 2019/489]. 2019. https://eprint.iacr.org/2019/489.

102. KANNWISCHER, Matthias J., RIJNEVELD, Joost and SCHWABE, Peter. Ap-
plied Cryptography and Network Security – ACNS 2019. Vol. 11464, Faster multipli-
cation in Z2m [x] on Cortex-M4 to speed up NIST PQC candidates. Ed. by DENG,
Robert H., GAUTHIER, Valérie, OCHOA, Martín and YUNG, Moti. Springer-
Verlag Berlin Heidelberg, 2019. Lecture Notes in Computer Science. Available also
from: https://eprint.iacr.org/2018/1018.

128

https://eprint.iacr.org/2019/489
https://eprint.iacr.org/2018/1018

103. RAVI, Prasanna. Configurable SCA Countermeasures for the NTT Against Single
Trace Attacks [online]. 2020 [visited on 2021-05-13]. Available from: https : / /

github.com/PRASANNA-RAVI/Configurable_SCA_Countermeasures_for_NTT.

104. TURAN, Meltem Sönmez, BARKER, Elaine, BURR, William and CHEN, Lily.
Recommendation for password-based key derivation. NIST special publication. 2010,
vol. 800, p. 132.

105. ALBRECHT, Martin R. cpucycles: counting CPU cycles. 2015. Available also from:
http : / / web . mit . edu / sage / export / libm4ri - 0 . 0 . 20080521 / testsuite /

cpucycles-20060326/cpucycles.html.

106. VELLA, Mark, COLOMBO, Christian, ABELA, Robert and ŠPAČEK, Peter. RV-
TEE: secure cryptographic protocol execution based on runtime verification. Jour-
nal of Computer Virology and Hacking Techniques. 2021, vol. 17. Available from
doi: 10.1007/s11416-021-00391-1.

107. BENNETTS, Simon. Owasp zed attack proxy. AppSec USA. 2013.

108. RESCORLA, Eric et al. RFC 8446: The Transport Layer Security (TLS) protocol
version 1.3. Internet Engineering Task Force (IETF). 2018.

129

https://github.com/PRASANNA-RAVI/Configurable_SCA_Countermeasures_for_NTT
https://github.com/PRASANNA-RAVI/Configurable_SCA_Countermeasures_for_NTT
http://web.mit.edu/sage/export/libm4ri-0.0.20080521/testsuite/cpucycles-20060326/cpucycles.html
http://web.mit.edu/sage/export/libm4ri-0.0.20080521/testsuite/cpucycles-20060326/cpucycles.html
https://doi.org/10.1007/s11416-021-00391-1

Appendix
A GitHub Repository . II
B Run Relevant Unit Tests . V

I

A GitHub Repository

Our systems consist of two code-bases, the first one consists of PQcube HSM, and the
second represents post-quantum modification of s2n:

1. https://github.com/PeterSpacek/pq-cube-firmware

2. https://github.com/PeterSpacek/s2n

II

A.1 PQcube repository structure

/drivers
· Folder contains Common Microcontroller Software Interface and stm32f4xx Hardware
Abstraction Level driver required for embedded development. We did not changed this
folder.

/middlewares/st/stm32_usb_device_library
· Folder contains USB communication library for STM32 devices. We did not change
this folder.

/secube
· Folder with source files and sample aplications

/secube-on-pc
· Folder contains SEcube features tests. We did not change this folder.

/secube-tests
· Folder contains L1 and L0 tests. We did not change this folder.

/secube-wrapper
· Folder contains SEcube python wrapper. We did not change this folder.

/src
· Folder contains source and header files containing the logic. We modified these
files to allow post-quantum cryptography support

/sw4stm32/SEcubeDevBoard
· Folder contains generated files, project files and other build-related files. We did not
change this folder.

ws/secubedevboard
· Project directory for STM32cubeIDE.

/Application/src/Device/pq-crypto
· Folder contains implementations of post-quantum algorithms.

/Debug
· Folder for debug binaries.

/Release
· Folder for release binaries.

III

A.2 PQ s2n repository structure

api
· Folder containing s2n public API. We modified it to support PQ3TLS and PQLIMTLS

bin
· Folder containing example files. We did not modify it.

cmake
· cmake configuration. We did not modify it.

codebuild
· AWS CodeBuild configuration. We did not modify it.

coverage
· Folder used for html and fuzz test files. We did not modify it.

crypto
· Source files for cryptography. We added and modified files to support pq3.

docs
· s2n documentation. We did not modify it.

error
· s2n error codes. We did not modify it.

lib
· Folder containing makefile describing library build. We added our files.

libcrypto-build
· Folder for locally built libcrypto: OpenSSL, LibreSSL or BoringSSL

pq-crypto
· Folder containing post-quantum cryptography implementations.

scram
· SCRAM algorithm. It is a legacy of amazon experiments. We did not modify it.

stuffer
· Memory management for s2n. We did not modify it.

tests
· Folder containing tests. We modified files in this folder, and added new unit tests.

tls
· TLS processes implementation. Most of our modifications and additions are here.

utils
· Essential services for s2n implementation. We did not modify it.

IV

B Run Relevant Unit Tests

How to program pq3 under Windows (SEcube and ST-LINK/V2 required):

1. Clone pq-cube-firmware repository (Appendix A).

2. Start STM32CubeIDE and set its workspace to the "ws" directory

3. Plug in SEcube via USB

4. Connect ST-LINK/V2 debugger and programmer to computer and to SEcube

5. Build PQcube

6. Flash the binary

V

How to run relevant s2n tests in Ubuntu:

1. Clone our s2n GitHub repository (Appendix A).

2. # Go into s2n s2n folder.
cd s2n

3. # Pick an "env" line from the codebuild/codebuild.config file and run it, in this case
choose the openssl-1.1.1 with GCC 9 build
S2N_LIBCRYPTO=openssl-1.1.1 BUILD_S2N=true TESTS=integration
GCC_VERSION=9

4. source codebuild/bin/s2n_setup_env.sh

5. codebuild/bin/s2n_install_test_dependencies.sh

6. sudo -E prlimit –pid "$$" –memlock=unlimited:unlimited;

7. Run unit test, you are interested in:

UNIT_TESTS=s2n_pqlimtls_client_test make
UNIT_TESTS=s2n_pqlimtls_server_test make
UNIT_TESTS=s2n_pqlimtls_handshake_test make
UNIT_TESTS=s2n_self_talk_pqlimtls_test make
UNIT_TESTS=s2n_pq3_state_machine_handshake_test make

Chooses automatically between pq3tls and pqtls depending on se3 presence:
UNIT_TESTS=s2n_pq3tls_client_test make
UNIT_TESTS=s2n_pq3tls_server_test make

Requires pq3:
UNIT_TESTS=s2n_pq3_aead_aes_test make
UNIT_TESTS=s2n_self_talk_pq3tls_test make
UNIT_TESTS=s2n_pq3_benchmark_test make
Or you can run unit tests as cmake project in e.g. Clion where it is easy also to debug
it.

VI

	Introduction
	Preliminaries
	Security in the post-quantum world
	Impact on asymmetric cryptography
	Impact on symmetric cryptography
	Impact on hash functions

	tls
	Authenticated Encryption with Associated Data
	Sub-protocols
	Comparison of ssl and tls

	Algorithms used in IoT security
	Post-quantum movement
	Post-quantum algorithms principles
	NIST
	Key Encapsulation Mechanism
	Security Strength Categories

	TLS Implementations
	OpenSSL
	LibreSSL and BoringSSL
	NSS
	s2n
	Mbed TLS and wolfSSL

	Operational Security
	Side-channel attacks
	Trusted environment
	Hardware security modules

	Similar efforts and related projects
	PQClean
	Open Quantum Safe
	OpenSSLNTRU
	Post-quantum algorithms prototyping in TLS
	Post-Quantum TLS 1.3 on Embedded Systems
	Post-Quantum TLS Without Handshake Signatures
	pqm4

	Designing post-quantum-handshake key exchange
	Post-quantum algorithms replacing RSA/DH
	Decoding problem
	NTRU
	LWE, LWR, module-LWE, and module-LWR problem
	Basic post-quantum TLS Handshake concept
	Client-side pre-computation
	ClientHello
	Server-side pre-computation
	ServerHello

	Post-quantum TLS for limited devices
	ClientHello
	Server-side Pre-computation
	ServerHello
	Client-side Pre-computation
	Client Key Exchange
	Differences between pqTLS and pqlimTLS

	Post-quantum authentication

	TEE-based post-quantum TLS
	SEcube
	SEcube SDK
	Side-channel attack resistance

	Symmetric cryptography in a trusted environment
	GCM
	HSM symmetric cipher in TLS

	Secret keys stored in the trusted environment
	Post-quantum public-key algorithms in TE
	Post-quantum cube TLS - pq3TLS
	Side-channel attack resistance

	Implementation details
	New public-key ciphers integration into s2n
	Classic McEliece
	CRYSTALS-KYBER
	NTRU
	SABER

	Implementation of pqtls protocol
	Client Hello
	Server Hello

	Implementation of pqlimtls protocol
	Client Hello
	Server Hello
	Client Key Exchange

	Modification of s2n code to enable external device
	New symmetric cipher integration into s2n
	AES-GCM implementation in PQcube
	Post-quantum algorithms suitable for devices with limited resources
	PQClean implementation of algorithms
	Source of randomness
	Hash function implementation
	Classic McEliece
	CRYSTALS-KYBER
	NTRU
	SABER

	Side-channel resistance
	PQcube system
	Implementation of HSM KEM
	Key Derivation
	s2n PQcube handshake
	s2n PQcube record

	Experiments
	Measurement Methods
	Time measurements
	CPU cycles
	SysTick System Timer
	Data Watchpoint and Trace

	Measurements and results
	Post-quantum algorithms in TLS
	Post-quantum TLS protocol
	Post-quantum TLS for lightweight client
	Benchmarking post-quantum security on SEcube
	Benchmarking masked implementation of Kyber
	SEcube post-quantum KEMs integration in s2n
	PQcube Client-Server Handshake
	PQcube for symmetric crypto

	Evaluation of results

	Conclusion
	Resumé
	Bibliography
	Appendix
	GitHub Repository
	PQcube repository structure
	PQ s2n repository structure

	Run Relevant Unit Tests

