
Ing. Roderik Ploszek
Dissertation Thesis Abstract

Operating Systems Security

to obtain the Academic Title of philosophiae doctor,
abbreviated as PhD.

in the doctorate degree study programme Applied Informatics
in the field of study Computer Science
form of study full-time

Bratislava, 2023

Slovak University of Technology in Bratislava
Faculty of Electrical Engineering and Information

Technology

Ing. Roderik Ploszek
Dissertation Thesis Abstract

Operating Systems Security

to obtain the Academic Title of philosophiae doctor,
abbreviated as PhD.

in the doctorate degree study programme Applied Informatics
in the field of study Computer Science
form of study full-time

Bratislava, 2023

Dissertation thesis has been prepared at Institute of Computer
Science and Mathematics, Faculty of Electrical Engineering and In-
formation Technology, Slovak University of Technology in Bratislava
(FEI STU)

Submitter: Ing. Roderik Ploszek
FEI STU
Ilkovičova 3, 812 19 Bratislava 1

Supervisor: doc. Ing. Milan Vojvoda, PhD.
FEI STU
Ilkovičova 3, 812 19 Bratislava 1

Consultant: Mgr. Ing. Matúš Jókay, PhD.
FEI STU
Ilkovičova 3, 812 19 Bratislava 1

Readers .

. .

. .

. .

. .

. .

. .

. .

Dissertation thesis abstract was sent out on .

Dissertation thesis defence will be held on at

at FEI STU, Ilkovičova 3, 812 19 Bratislava 1, in room C-502.

prof. Ing. Vladimír Kutiš, PhD.
dean of FEI STU

Contents
Introduction 6

1 Research objectives 7

2 Solution design and methods used 8
2.1 Getting Audit Logs 9
2.2 Generalization 10

2.2.1 Tree coverage generalization 11
2.2.2 Filesystem Hierarchy Standard generaliza-

tion . 11
2.2.3 Generalization based on non-existing files 12
2.2.4 Generalization based on UGO permissions 12
2.2.5 Generalization based on owner directory . 13
2.2.6 Generalization based on multiple runs . . 14

3 Achieved results of the dissertation 14
3.1 Methodology . 14
3.2 Individual mining 17

3.2.1 PostgreSQL 18
3.2.2 OpenSSH SSH Daemon 18
3.2.3 Postfix . 20
3.2.4 Apache 20
3.2.5 Individual mining summary 22

3.3 Cumulative mining 22
3.4 Conclusion . 24

4 List of author’s publications 24

5 Rezumé 28

Bibliography 29

5

Introduction
This dissertation deals with the security of operating systems.
Specifically, it concerns mandatory access control (MAC) in the
Linux operating system, which is implemented using the Linux
security modules (LSM) interface. This interface allows modules
to manage security in the system, in such a way that it monitors
all security-related operations and, depending on the subject
and the object of the operation, decides whether the operation
is allowed according to the current security policy.

The research problem we are dealing with in our work is the
automatic creation of security policy. A user of a Linux operating
system will mostly receive this policy from the developers of the
distribution they are using. This is how it works for popular
distributions such as Fedora, Ubuntu or even mobile operating
systems such as Android. It is not standard for the average user
to create their own security policy.

The situation is same with Medusa, a security module devel-
oped at FEI STU. For proper functioning system, the user must
create his own configuration. In order to do this, the user must
have a perfect overview of which services and applications are
running on his system and which authorizations are required for
their correct operation. Since this is not an easy task, there is
an incentive to design a way to automate this activity as much
as possible, with minimal user intervention.

Therefore, the research goal of this work is to design algo-
rithms that can determine the security policy, or the set of objects
which the application is authorized to access. To do this, it is
necessary to analyze the behavior of applications on the Linux

6

system and find out the properties from which information about
the security policy can be derived. There are several sources of
this information: we are mainly interested in every operation
that the program performs and the files in the filesystem that
are associated with the given program.

The scope of our work is limited only to a dynamic analysis of
programs, where we focus on file operations. The resulting policy
is applicable to the Constable authorization server. The main
contribution of the work is a set of algorithms for security policy
mining for the Medusa security module and the implementation
of these algorithms in a Python application.

1 Research objectives
The main objective of this thesis is to design and implement
an algorithm that creates a functional security policy for the
Medusa security module with minimal administrative interven-
tion. This is a general objective that might be too overwhelming
to achieve. To make it more focused and specific, we introduce
these constraints:

1. Security policy will only take into account filesystem oper-
ations and accesses.

2. Creation of security policy will focus on limiting the set
of available objects to a user or system application. This
concept is similar to sandboxing. By limiting access of the
application, we limit the attack surface of the application.
Our focus is on creating a policy for system services as

7

opposed to creating a policy for individual users that use
the system.

3. Created policy is static. This means that if the adminis-
trator wants to later update the policy, she has to run the
policy mining algorithm again.

The expected output of the thesis can be summarized in the
following research questions:

1. If we construct an algorithm that would create security
policy just from operation logs, how would it compare to
an administrator-authored policy?

2. If we construct an algorithm that would create security
policy from operation logs including some external informa-
tion, how would it compare to an administrator-authored
policy?

2 Solution design and methods used
Our proposed solution takes inspiration from domain-type en-
forcement [1, 2], specifically it creates domains for each executed
application. By observing activities of the application (on the
premise that the application is not malicious), we can construct
a list of objects that the application should have access to.

Brief summary of the proposed solution is:

1. Monitor operation of an application for which the security
policy will be created.

8

2. Preliminary policy will be created for each subject1 (repre-
sented by an execution domain) based on the name of the
object2 and requested operation.

3. Preliminary policy will be analyzed for missing rules that
create underpermissions and additional rules will be added
to the policy. We call this step generalization. After this
step, a full usable policy for an application should be
available.

2.1 Getting Audit Logs

Ideal way of getting logs on the Linux operating system is the
audit system. It is able to log system calls and various security-
related events in the operating system based on the settings
provided by the auditd deamon.

Using contributions from [3], we modified Medusa security
module to audit every hooked operation of a chosen process.
Process to audit can be selected by a fexec handler in the au-
thorization server configuration. Once Medusa-specific auditing
is enabled for a thread, each hook call will create an audit record
containing information about the thread, the operation, the ob-
ject of the operation and any other useful information provided
through the hook interface.

1Entity that executes operations on some object, e.g, a process.
2Entity on which the operation is executed, e.g., a file.

9

2.2 Generalization
From the nature of the audit logs, we can identify the following
problems that cause underpermission3:

1. Based on the execution of the application, not all execution
paths may have been executed and thus some accesses may
not have manifested. These accesses will be denied once
the policy will be enforced.

2. Accesses to temporary files or newly created files will refer
to paths that were not captured in the original audit logs.
Note that compared to the previous point, the access was
requested, but the path is different in the next execution.
The consequence is the same — after the policy is enforced,
these accesses will be denied.

Solution to this problem is generalization — the policy min-
ing module has to relax the generated rules so they will match a
larger set of possible paths. This causes overpermission, which
is undesirable. Policy mining has to solve an optimization prob-
lem — keep overpermission low while causing as few access misses
as possible.

Generalization creates rules that apply to multiple paths
which may not be present in the filesystem. This can be achieved
using regexp and/or recursive rules. As an example, take rule
(”/var/log/pgsql/. ∗ ”, do, P) which allows processes under do-
main do to execute operations that require permissions P on
any file under /var/log/pgsql directory.

3Denied operation that should be allowed.

10

In the following subsections we briefly present the proposed
algorithms. Their full description can be found in the thesis.

2.2.1 Tree coverage generalization
In this generalization, we assume that if all files in a folder
have the same access permission, we can generalize this access
permission for the entire content of the folder.

This generalization takes into account only information from
the audit logs. This means that if a process didn’t access some
path that exists in the filesystem, the generalization algorithm
assumes the path doesn’t exist.

We expect that this generalization will work well for services
that store their files together in folders and they access all or
most of these files. It won’t work well for services that have
many files in different folders and access them only sporadically.

2.2.2 Filesystem Hierarchy Standard generalization
This generalization takes into account standard hierarchy of
folders in Linux systems as defined in File Hierarchy Standard [4]
(FHS) and systemd’s file-hierarchy [5] and Linux’s hier(7) [6]
manual pages.

For example, folder /proc contains information about run-
ning processes. This information is available under numerical sub-
directories for each running process in the form of /proc/<pid>,
where <pid> is the PID of the process. The role of this generaliza-
tion algorithm is to add rules for accessing these folders. Similar
reasoning can be used for system-wide files, such as libraries in
/usr/lib64 or binaries in /usr/bin that should automatically
get read permission for all processes.

11

2.2.3 Generalization based on non-existing files

This generalization is based on two path sets. Path set PA′ is
created from the real filesystem before the service(s) for which
the policy is mined are started. Path set PA is derived from
access set A created from the audit log.

Algorithm for this generalization takes every path from PA′

that is not present in PA, computes its parent directory and
applies read and write permission to it.4

This generalization method is just supplementary with a
specific focus on non-existent files, it cannot provide general
generalization. Therefore it is expected that it might improve
performance of other generalization algorithms, such as the tree
coverage generalization, when used together.

2.2.4 Generalization based on UGO permissions

This generalization relies on external information stored on the
filesystem. Most of the services on the Linux system are assigned
a special user ID. These IDs are used as eUIDs when a service is
running, but also as owner and group owner IDs of files associated
with the service. We can use this information when constructing
the policy. We propose these generalization strategies that can
be used independently:

1. Generalization by directory owner UID Access to
directories that are owned by eUID of the domain can

4Write permission to the parent directory is applied automatically after
loading to audit log, since to create a file in the directory, process has to
have a write permission to that directory.

12

be generalized so that the domain gets privilege to access
(read/write) any file in those directories.
Rationale for this strategy is that it approximates standard
UGO permissions. Namely, if a user owns a directory,
he can access all files in this directory as well with high
certainty.

2. Generalization by file UID This strategy is similar to
the previous one, with the difference that it considers files
inside a directory. For an access to any file in a directory
to be generalized, all accessed files have to be owned by
the effective user of the running domain.

3. Generalization by read access to files If the direc-
tory contains items that are readable by the effective user
of the process, read access to files in this directory can
be generalized. This considers computation of DAC per-
missions according to UGO permissions of each file (see
section 2.1.1 in the thesis). There is an equivalent method
that generalizes write access.

2.2.5 Generalization based on owner directory
Unlike generalization by directory UID, this generalization re-
lies just on external information and not on information from
audit logs. Generalization algorithm searches for folders in the
filesystem that match UIDs or GIDs of the generalized service.
Files inside these folders are then generalized for read and write
access. We presume that this generalization will achieve the best
results, since it relies entirely on external information.

13

2.2.6 Generalization based on multiple runs
This generalization method takes advantage of the fact that
temporary files change names across executions of a service. Thus
we can start a service multiple times, get audit log information
from each run and compare them. Paths that are unique across
all runs can be considered to be ephemeral and can be generalized
accordingly.

Interesting problem is the generalization of the paths. They
usually consist of static and dynamic parts. The problem lies
in identifying these dynamic parts and providing generalization
of them. We present a solution to this problem using cosine
similarity of TF-IDF N-gram vectors [7].

3 Achieved results of the dissertation
This section presents the evaluation of suggested algorithms.
First, we introduce the methodology used to test our algorithms.
Then, we present results from two tests: generating policy for
individual services and generating policy for multiple services
using the tree generalization algorithm (cumulative mining). For
the individual services, we have evaluated four applications that
are standard components of a Linux server system. For the
cumulative mining, we have evaluated three services in different
combinations.

3.1 Methodology
Testing was performed on a Fedora Server 37 distribution with
Medusa running on a 6.2 Linux kernel. Testing consisted of
following operations:

14

1. System is booted with the Fedora kernel.

2. Filesystem snapshot is created before running any services,
this results in a set of paths PA′. This set will be used
when evaluating owner, owner directory and non-existent
generalization algorithms.

3. System is rebooted with the Medusa kernel.

4. Constable configuration for a specific service is prepared
and Constable is started (see run_service.sh script).

5. Service is started, it is left running for a few seconds and
then stopped.

6. Constable is stopped and audit log is retrieved for analysis.

7. Steps 2.–4. are repeated to get an alternative audit log
that will be used for multiple runs generalization.

8. System is rebooted with the Fedora kernel.

9. Policy mining is executed with specific test cases. These
test cases are described in the following subsections.

Resulting mined policy is compared to the reference SELinux
policy present in Fedora. This is done by comparing a specific
set of paths (containing paths of files and directories) for two
access types supported by both Medusa and SELinux: read and
write.

Resulting permission values are evaluated using standard
binary classification techniques. Results can be classified into 4
categories:

15

hit (TP) Both mined policy and reference policy allow the
operation.

overpermission (FP) Mined policy allows the operation while
reference policy denies it.

underpermission (FN) Mined policy denies the operation
while reference policy allows it.

correct denial Both mined policy and reference policy allow
the operation.

Because of the evaluation methodology, absolute values of
these four categories for each individual service can’t be com-
pared directly and a relative metric is needed. When searching
for suitable metrics, we discarded metrics that determined the
relative value from correct denials. This is because of the permis-
sive nature of LSM — accesses that are not listed in the policy
are automatically denied. Since we could put accesses to all the
other files on the filesystem into correct denials and thus artifi-
cially inflate the metric, it is not usable for our purpose. Two
basic metrics that are suitable to compare mined and reference
policies are sensitivity (equation 2) and precision (equation 1).
Note that sensitivity is more important since it represents un-
derpermission — accesses that are not permitted cause denial
of service. Overpermission, while undesirable, can be tolerated
since it doesn’t cause the program to stop functioning.

For a combined metric, we have chosen Fβ (equation 3),
specifically F2. F1 is a harmonic mean of precision and sensitivity.
By using value of β = 2 we weigh sensitivity twice more than

16

precision. This well expresses our intention to have sensitivity
more important than accuracy.

PPV = TP
TP + FP (1)

SEN = TP
TP + FN (2)

Fβ = (1 + β2) · PPV · SEN
β2 · PPV + SEN (3)

Table 1 shows short names that are used in evaluation tables.
Combinations of generalizations are represented by a plus sign
in the order the generalizations were applied.

Table 1: Legend of generalization names used in evaluation tables

Generalization Short name
Tree coverage T
Owner O
Owner directory OD
Nonexistent N
Multiple runs M

3.2 Individual mining
This subsection presents result from evaluating single services.

17

3.2.1 PostgreSQL

Results for PostgreSQL mining are available in table 2. Gen-
eralization with lowest number of underpermission accesses (5)
was combination OD+T. This is also the combination of gen-
eralizations with the best sensitivity. However, as it had more
overpermissions (597), the best generalization according to the
F2 metric was OD (145 overpermissions, 17 underpermissions).
This generalization was so effective because PostgreSQL contains
a large number of files under /var/lib/pgsql that represent the
database. The audit log covered only some of them and OD gen-
eralization was able to cover all except for a small anomaly in sub-
folders of /usr/share/pgsql/timezonesets, which is owned by
root and not postgresql. This was improved by combining OD
and T generalizations (5 underpermissions), but at the cost of
increased overpermission (597).

3.2.2 OpenSSH SSH Daemon

Results for OpenSSH SSH daemon mining are presented in
table 3. In this case, only T and O generalizations had any effect
on the generated policy. Other generalization algorithms didn’t
provide any improvement over policy with no generalization.

Tree coverage generalization had 11 underpermission accesses,
mostly files related to the /proc filesystem. Owner generalization
fixed 9 underpermission accesses compared to no generalization,
with the total number of underpermissions of 362. However,
most of these accesses were in /usr/sbin directory and it is
assumed that after manual review these underpermissions can
be ignored.

18

Table 2: Results of policy mining for PostgreSQL

Generalization SEN PPV F2

no gen. 0.7673 0.9778 0.8018
T 0.7770 0.9157 0.8013
O/M+O 0.8775 0.9806 0.8963
OD/OD+O/M+OD 0.9980 0.9829 0.9949
N/M+N 0.7704 0.9767 0.8044
M 0.7677 0.9779 0.8021
M+T 0.7774 0.9157 0.8016
N+T 0.7802 0.9160 0.8041
O+T 0.8856 0.9252 0.8933
OD+T 0.9994 0.9332 0.9854
O+N 0.8775 0.9795 0.8961
OD+N 0.9980 0.9820 0.9947

Table 3: Results of policy mining for OpenSSH

Generalization SEN PPV F2

no gen. 0.9209 0.9769 0.9316
T 0.9977 0.8902 0.9741
O 0.9228 0.9586 0.9297

19

3.2.3 Postfix

Results for the Postfix mail transfer agent policy mining are
presented in table 3. The lowest number of overpermissions
(662) was in the policy without generalization. Every other
generalization algorithm increased the number of overpermission
accesses, as expected. Non-existent generalization didn’t provide
any effect when used on it’s own and also in most of the pairs.
There is one interesting exception with combination of M+N, that
achieved 882 underpermission accesses with F2 metric considering
this to be the best method for this service. However, it must be
mentioned that this pair had the worst result in overpermission
with 1655 accesses.

The most interesting thing about M+N method is that M nor
N on its own couldn’t provide such good results and this means
that interactions between these two generalization algorithms
produced this result. The underpermissions were mostly located
in /usr/libexec.

3.2.4 Apache

For the web server Apache only algorithm capable of generalizing
policy was the T algorithm with 336 overpermissions and 258
underpermission accesses. The T algorithm achieved F2 metric
of 0.95. Without generalization, the overpermission was just 85
accesses with F2 score of 0.81.

Apache does not use a lot of owned files or temporary files, so
the other generalization algorithms could not manifest themselves
in the resulting policy.

20

Table 4: Results of policy mining for Postfix

Generalization SEN PPV F2

no gen./N 0.8484 0.9509 0.8671
T/N+T/OD+T 0.8886 0.9268 0.8960
O/O+N 0.8541 0.9487 0.8715
OD/OD+N 0.8484 0.9500 0.8669
M/M+OD 0.8510 0.9487 0.8689
M+T 0.8912 0.9256 0.8979
O+T 0.8943 0.9249 0.9003
OD+O 0.8541 0.9478 0.8714
M+O 0.8549 0.9464 0.8718
M+N 0.9456 0.8961 0.9352

Table 5: Results of policy mining for Apache

Generalization SEN PPV F2

no gen. and others 0.8090 0.9800 0.8382
T 0.9500 0.9358 0.9471

21

3.2.5 Individual mining summary
We can see that the policy mining results for individual services
depended on the evaluated service. The best algorithm for
generalization came out based on which files the service accessed
and how the files are distributed on the disk, whether they have
metadata, such as owners.

See table 6 for the summary of the expriments with the best
algorithm for each metric. The best methods according to F2
metric were tree coverage and owner directory. In one service,
combination of multiple runs and non-existent files proved to be
the best. On the contrary, other generalization methods did not
show better results.

Table 6: Summary of policy mining for individual services

Service Best SEN Best PPV Best F2

PostgreSQL OD+T OD OD
OpenSSH T no gen. T
Postfix M+N no gen. M+N
Apache T no gen. T

3.3 Cumulative mining
This subsection contains evaluation of cumulative mining, mean-
ing evaluating how the policy changes as more services are added
to the mining algorithm. This evaluation is specifically intended
for the tree algorithm, as its generalization is based on the cov-
erage of the tree. The more services are used in the algorithm,

22

more files and directories from the real filesystem are available for
the algorithm to work with. Our hypothesis is that more services
we use for the mining, the precision should go up. We will test
this with services from the previous evaluation: PostgreSQL,
OpenSSH, Postfix and Apache HTTP server.

Results of the cumulative mining are presented in table 7.5
This small example meets our hypothesis. By adding one or
two service logs to the tree coverage algorithm, the resulting
precision increases. However, this doesn’t mean that any other
combination will also show a similar pattern. We can prove this
by adding the Apache service log, when precision drops to 0.972.

Table 7: Results of cumulative mining

Services PPV
s 0.891
postg 0.916
postf 0.936
postg + s 0.965
postg + postf 0.968
s + postf 0.941
postg + s + postf 0.974
postg + s + postf + a 0.972

5Abbrevations used in the table — s: OpenSSH, postg: PostgreSQL,
postf: Postfix, a: Apache.

23

3.4 Conclusion
Sensitivity results for the best algorithms ranged from 95.6% to
99.9%. These results show the good ability of our algorithm to
cover the program accesses that should be allowed according to
the priciple of least privilege. However, for the correct functional-
ity of the program, the sensitivity must be 100%, and thus even
after using our algorithm, manual intervention and correction
of the security policy will be necessary. This correction should
be simplified by the fact that most of the rules will be created
automatically. The precision of our algorithm in experiments
ranged from 93.4% to 98.3%.6

4 List of author’s publications
Projects

• Preparation of study materials for project “Informatika
ako nástroj rozvoja znalostnej ekonomiky” 312011G208
(principal investigator Ing. Fedor Lehocki PhD. MPH)
funded by European social fund, 2018–2020.

• Researcher on “Ontologická reprezentácia pre bezpečnosť
informačných systémov” APVV-19-0220 (principal inves-
tigator prof. Ing. Pavol Zajac, PhD.) funded by Slovak
Research and Development Agency, 2020–2024.

• Researcher on “Postkvantová kryptografia odolná voči pos-
6As in multiple cases the best precision was achieved by using no gener-

alization at all, we are listing the second best precision of a generalization
algorithm.

24

tranným kanálom” VEGA 1/0105/23 (principal investi-
gator prof. Ing. Pavol Zajac, PhD.) funded by Slovak
Research and Development Agency, 2023–2026.

Reviews
• 1 paper in Tatra Mountains Mathematical Publications 73

(2019)

• 1 paper in 22nd Central European Conference on Cryptog-
raphy (2022)

Conferences
• PLOSZEK, Roderik. Linux security modules overview.

In ELITECH´18 [electronic source] : 20th Conference of
doctoral students. Bratislava, Slovakia. May 23, 2018.
1st ed. Bratislava : Vydavateľstvo Spektrum STU, 2018,
CD-ROM, [7] p. ISBN 978-80-227-4794-3.

• PLOSZEK, Roderik. Upgrading complex single-threaded
application to support concurrency. In ELITECH´19
[electronic source] : 21st Conference of doctoral students.
Bratislava, Slovakia. May 29, 2019. 1st ed. Bratislava
: Vydavateľstvo Spektrum STU, 2019, CD-ROM, [8] p.
ISBN 978-80-227-4915-2.

• PLOSZEK, Roderik. Using self-organizing maps for se-
curity module configuration. In ELITECH´20 [electronic
source] : 22nd Conference of doctoral students. Bratislava,
Slovakia. May 27, 2020. 1st ed. Bratislava : Vydavateľstvo
Spektrum STU, 2020, [6] p. ISBN 978-80-227-5001-1.

25

• ŠVEC, Peter - PLOSZEK, Roderik. A review of encryption
schemes used in modern ransomware. In CECC 2020 :
Book of abstracts : 20th Central European conference on
cryptology. Zagreb, Croatia. June 24-26, 2020. Zagreb :
University of Zagreb, 2020, p. 50-51.

• PLOSZEK, Roderik - JÓKAY, Matúš. A look into security
policy mining. In Application of Knowledge Methods in
Information Security : Bratislava, Slovakia. September
18, 2021. 1st ed. Bratislava : SRDA, 2021, [2] p. ISBN
978-80-970145-2.

• PLOSZEK, Roderik. Inductive logic programming and
description logics. In Application of Knowledge Methods in
Information Security : Smolenice, Slovakia. June 27-29,
2022. 1st vyd. Bratislava : SRDA, 2022, [1] p. ISBN
978-80-974468-0-2.

Papers in journals
• PLOSZEK, Roderik - ŠVEC, Peter - DEBNÁR, Patrik.

Analysis of encryption schemes in modern ransomware. In
RAD Hrvatske akademije znanosti i umjetnosti : Matem-
atičke znanosti, Vol 25, No. 546. Zagreb : Hrvatska
akademija znanosti i umjetnosti, 2021, S. 1-13. ISSN 1845-
4100.

• BALOGH, Štefan - GALLO, Ondrej - PLOSZEK, Roderik
- ŠPAČEK, Peter - ZAJAC, Pavol. IoT security challenges:
Cloud and blockchain, postquantum cryptography, and

26

evolutionary techniques. In Electronics. Vol. 10, iss. 21
(2021), Art. no. 2647 [22] p. ISSN 2079-9292. DOI:
10.3390/electronics10212647.

• ČUŘÍK, Peter - PLOSZEK, Roderik - ZAJAC, Pavol. Prac-
tical use of secret sharing for enhancing privacy in clouds.
In Electronics. Vol. 11, iss. 17 (2022), Art. no. 2758 [18]
p. ISSN 2079-9292. DOI: 10.3390/electronics11172758.

Editor of the proceedings
• NEMOGA, Karol (comp.) - PLOSZEK, Roderik (comp.)

- ZAJAC, Pavol (comp.). CECC 2022 : 22nd Central
European Conference on Cryptology. Smolenice, Slovakia.
June 26 - 29, 2022. Bratislava : SAS, 2022. 112 p. ISBN
978-80-968374-6-5.

Seminars
• Introduction to Spectre Vulnerabilities, CRYPTO seminar,

21.11.2018

Pedagogical Work
• Selected lectures on Operating Systems in 2019

• Operating Systems seminars in 2016–2022

• Operating Systems seminars for mobility students (Eras-
mus) in 2018–2022

• Computer Criminality seminars in 2018–2022

27

• Consultant on 7 master theses, with four expected to finish
in 2023 and advisor of 15 bachelor theses, four of which
are expected to finish in 2023

5 Rezumé
Cieľom tejto dizertačnej práce bolo navrhnúť a implementovať
algoritmy, ktoré automaticky generujú bezpečnostnú politiku pre
bezpečnostný modul Medusa. Tento cieľ sa nám podarilo splniť
a výsledkom je hotový produkt v podobe aplikácie, ktorú môže
používateľ použiť na automatickú konfiguráciu autorizačného
servera Constable. Výsledná politika je vytvorená zo záznamov
operácií bežiacej aplikácie, napríklad systémovej služby. Riešenie
je schopné vytvoriť bezpečnostnú politiku pre niekoľko aplikácií
naraz.

Výslednú implementáciu sme porovnali so štandardnou refe-
renčnou politikou bezpečnostného modulu SELinux v distribúcii
Fedora 37. Implementáciu sme porovnávali na štyroch bežných
službách: PostgreSQL, Open SSH server, Postfix a Apache HTTP
server. Výsledky citlivosti pre najlepšie algoritmy sa pohybovali
od 95,6 % do 99,9 %. Tieto výsledky preukazujú dobrú schop-
nosť nášho algoritmu pokryť prístupy programov, ktoré by mali
byť povolené podľa princípu najmenších privilégií. Pre správnu
funkčnosť programu však musí byť citlivosť 100 %, a preto aj po
použití nášho algoritmu bude potrebný manuálny zásah a korek-
cia bezpečnostnej politiky administrátorom. Táto korekcia ale
bude zjednodušená tým, že veľká časť pravidiel sa bude vytvárať
automaticky. Presnosť nášho algoritmu sa pri experimentoch

28

pohybovala od 93,4 % do 98,3 %.7 Zníženie presnosti spôsobili
generalizačné algoritmy, ktoré do politiky pridávajú cesty, ktoré
sa nevyskytovali v záznamoch operácií, z ktorých bola politika
vytvorená.

Je potrebné uznať, že náš výskum bol v niektorých ohľadoch
obmedzený. Vyhodnotenie našich algoritmov záviselo od manuál-
neho nastavenia generalizačného algoritmu pre File Hierarchy
Standard. Naše výsledky tiež nemožno považovať za úplné, pre-
tože sme našu aplikáciu testovali len na štyroch systémových
službách.

Budúci výskum sa môže zamerať na nové algoritmy, ktoré
lepšie analyzujú požiadavky aplikácie a vylepšujú generovanú
bezpečnostnú politiku tak, aby bola v súlade s princípom naj-
menších privilégií. Ďalším smerom, ktorým sa práca môže uberať,
je statická analýza aplikácií, ktorou sme sa nezaoberali. Iným
prínosom môže byť analýza väčšieho počtu služieb a hľadanie
vzájomných súvislostí medzi nimi, napríklad pomocou strojového
učenia, ontológií alebo induktívneho logického programovania.

Hlavným prínosom tejto práce je hotová aplikácia, ktorú
možno použiť na konfiguráciu bezpečnostného modulu Medusa.
Jej modulárna konštrukcia umožňuje pridávať ďalšie generali-
začné algoritmy, čo otvára priestor skúmaniu ďalších metód na
zlepšenie vlastností výslednej generovanej bezpečnostnej politiky.
Po určitých úpravách by sa dala použiť aj na generovanie politík
pre iné bezpečnostné moduly.

7Keďže v niekoľkých testoch mal najlepšiu presnosť prípad bez generali-
zácie, uvádzame druhú najlepšiu presnosť generalizačného algoritmu.

29

Bibliography
1. WALKER, Kenneth M., STERNE, Daniel F., BADGER,

M. Lee, PETKAC, Michael J., SHERMAN, David L. and
OOSTENDORP, Karen A. Confining Root Programs with
Domain and Type Enforcement. In: 6th USENIX Security
Symposium (USENIX Security 96). San Jose, CA: USENIX
Association, 1996. Available also from: https://www.useni
x.org/conference/6th-usenix-security-symposium/c
onfining-root-programs-domain-and-type-enforceme
nt.

2. HALLYN, Serge E. Domain and Type Enforcement for Linux.
2003. PhD thesis. The College of William & Mary in Virginia.

3. ŇAŇKO, Peter. Podpora audit systému pre bezpečnostný
model Medusa. 2020. Available also from: https://opac
.crzp.sk/?fn=detailBiblioForm&sid=201CE56335A527
AB040B96791929. Bc. pr. Ústav informatiky a matematiky,
Fakulta elektrotechniky a informatiky Slovenskej technickej
univerzity v Bratislave. EČ: FEI-5382-86243.

4. YEOH, Christopher, RUSSELL, Rusty and QUINLAN, Daniel
(eds.). Filesystem Hierarchy Standard [online]. The Linux
Foundation, 2015-03-19 [visited on 2023-04-18]. Available
from: https://refspecs.linuxfoundation.org/FHS_3.0
/fhs-3.0.pdf.

5. file-hierarchy — File system hierarchy overview [online]. 2023.
[visited on 2023-04-18]. Available from: https://www.free
desktop.org/software/systemd/man/file-hierarchy.h
tml.

30

https://www.usenix.org/conference/6th-usenix-security-symposium/confining-root-programs-domain-and-type-enforcement
https://www.usenix.org/conference/6th-usenix-security-symposium/confining-root-programs-domain-and-type-enforcement
https://www.usenix.org/conference/6th-usenix-security-symposium/confining-root-programs-domain-and-type-enforcement
https://www.usenix.org/conference/6th-usenix-security-symposium/confining-root-programs-domain-and-type-enforcement
https://opac.crzp.sk/?fn=detailBiblioForm&sid=201CE56335A527AB040B96791929
https://opac.crzp.sk/?fn=detailBiblioForm&sid=201CE56335A527AB040B96791929
https://opac.crzp.sk/?fn=detailBiblioForm&sid=201CE56335A527AB040B96791929
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://www.freedesktop.org/software/systemd/man/file-hierarchy.html
https://www.freedesktop.org/software/systemd/man/file-hierarchy.html
https://www.freedesktop.org/software/systemd/man/file-hierarchy.html

6. KERRISK, Michael. hier(7) — Linux manual page [online].
2021. [visited on 2023-04-18]. Available from: https://man7
.org/linux/man-pages/man7/hier.7.html.

7. BERG, Chris van den. Super Fast String Matching in Python
[online]. 2017-10-14. [visited on 2023-05-03]. Available from:
https://bergvca.github.io/2017/10/14/super-fast-
string-matching.html.

31

https://man7.org/linux/man-pages/man7/hier.7.html
https://man7.org/linux/man-pages/man7/hier.7.html
https://bergvca.github.io/2017/10/14/super-fast-string-matching.html
https://bergvca.github.io/2017/10/14/super-fast-string-matching.html

	Introduction
	Research objectives
	Solution design and methods used
	Getting Audit Logs
	Generalization
	Tree coverage generalization
	Filesystem Hierarchy Standard generalization
	Generalization based on non-existing files
	Generalization based on ugo permissions
	Generalization based on owner directory
	Generalization based on multiple runs

	Achieved results of the dissertation
	Methodology
	Individual mining
	PostgreSQL
	OpenSSH SSH Daemon
	Postfix
	Apache
	Individual mining summary

	Cumulative mining
	Conclusion

	List of author's publications
	Rezumé
	Bibliography

