
Slovak University of Technology in Bratislava
Faculty of Electrical Engineering and Information

Technology

Reg. No.: FEI-104372-72983

Operating Systems Security

Dissertation Thesis

Ing. Roderik Ploszek

Bratislava, 2023

Slovak University of Technology in Bratislava
Faculty of Electrical Engineering and Information

Technology

Reg. No.: FEI-104372-72983

Operating Systems Security

Dissertation Thesis

Ing. Roderik Ploszek

Study Programme: Applied Informatics
Study Field: Computer Science
Training Workplace: Institute of Computer Science and Mathematics
Supervisor: doc. Ing. Milan Vojvoda, PhD.
Consultant: Mgr. Ing. Matúš Jókay, PhD.

Bratislava, 2023

Slovak University of Technology in Bratislava
Institute of Computer Science and Mathematics

Faculty of Electrical Engineering and Information Technology
Academic year: 2022/2023
Reg. No.: FEI-104372-72983

DISSERTATION THESIS TOPIC

Student: Ing. Roderik Ploszek
Student’s ID: 72983
Study programme: Applied Informatics
Study field: Computer Science
Thesis supervisor: doc. Ing. Milan Vojvoda, PhD.
Head of department: doc. Ing. Milan Vojvoda, PhD.
Consultant: Mgr. Ing. Matúš Jókay, PhD.

Topic: Operating Systems Security

Language of thesis: English

Specification of Assignment:

On the brink of the third millennium on the Faculty of Electrical Engineering and Information Technology of
STU in Bratislava, a new project, Medusa DS9 was created. Its objective was to strengthen the security of the
Linux kernel. Similar projects have started to appear around the world. That is why the community of Linux
developers defined and implemented LSM (Linux Security Modules) interface that can be used to connect any
arbitrary solution providing additional checks and access controls for the Linux kernel.

After almost twenty years, the original design of the Medusa DS9 project has been transferred to the current
version of the Linux kernel. The Medusa project differs specifically from other solutions in that only a small
fraction of the decision logic is located in the kernel. Most of it is transferred to a process called the
authorization server. It applies decision rules based on which it will decide if the event in the kernel will be
allowed or denied. Since the implementation of authorization server is separated from an OS kernel,
implementation of security model does not require special knowledge of programming and development of the
Linux kernel. For this reason, the Medusa project does not enforce any methodology of security policy (MAC,
DAC, etc.). Due to this architecture, it is possible to implement almost any access control model.

Access control in Medusa is still on a very low level, ordinary user cannot create consistent rules to increase
operating system security. The aim of the thesis is to create a system that monitors the behavior of an
application and is capable of automatic learning of rules and creating a policy that can be deployed on
a production system.

Goals:
1. Analyze access control models and their connection to operating system security.
2. Analyze the protection mechanisms present in the Linux operating system.
3. Propose a methodology that can be used to obtain information about events in the operating system to create
a security policy.
4. Design and implement automatic security rule creation for a selected authorization server.
5. Propose a methodology for comparison and compare existing security policy rules with automatically
generated policy.

Deadline for submission of Dissertation thesis: 31. 05. 2023

Approval of assignment of Dissertation thesis: 29. 05. 2023

Assignment of Dissertation thesis approved by: prof. Dr. Ing. Miloš Oravec – Chairperson of Field of Study Board

SÚHRN
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE
FAKULTA ELEKTROTECHNIKY A INFORMATIKY

Študijný program: Aplikovaná informatika
Autor: Ing. Roderik Ploszek
Dizertačná práca: Bezpečnosť operačných systémov
Vedúci záverečnej práce: doc. Ing. Milan Vojvoda, PhD.
Konzultant: Mgr. Ing. Matúš Jókay, PhD.
Miesto a rok predloženia práce: Bratislava 2023

Hlavným výskumným problémom riešeným v tejto dizertačnej práci je au-
tomatické vytváranie bezpečnostných politík. Bežný používateľ operačného
systému Linux zvyčajne používa bezpečnostné politiky navrhnuté vývojármi
distribúcie, ale vytvorenie vlastnej bezpečnostnej politiky zostáva zložitou
úlohou, ktorá si vyžaduje dôkladnú znalosť systému, jeho služieb a aplikácií.
V dizertačnej práci preto navrhujeme nové algoritmy a metodiky na automat-
ické generovanie bezpečnostných politík analýzou správania aplikácií v systéme
Linux. Primárne sa zameriavame na operácie so súbormi prostredníctvom
dynamickej analýzy. Výskum prispieva sadou algoritmov implementovaných
v jazyku Python na generovanie bezpečnostných politík prispôsobených pre
bezpečnostný modul Medusa.

Kľúčové slová: Ťažba bezpečnostnej politiky, Linux, Medusa, Linux Security
Modules, Povinné riadenie prístupu

ABSTRACTÚ
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA
FACULTY OF ELECTRICAL ENGINEERING AND INFORMATION TECH-
NOLOGY

Study Programme: Applied Informatics
Author: Ing. Roderik Ploszek
Dissertation: Operating Systems Security
Supervisor: doc. Ing. Milan Vojvoda, PhD.
Consultant: Mgr. Ing. Matúš Jókay, PhD.
Place and year of submission: Bratislava 2023

The core research problem addressed in this dissertation is the automation of
security policy creation. The average Linux user typically adopts a security
policy designed by the distribution developers, but creating a personalized
security policy remains a complex task requiring intimate knowledge of system
services and applications. The dissertation thus proposes novel algorithms and
methodologies to automatically determine security policies by analyzing ap-
plication behaviors on the Linux system. Primarily focusing on file operations
through dynamic analysis, the research contributes a suite of algorithms for
security policy mining tailored for the Medusa security module, implemented
in a Python application.

Keywords: Policy mining, Linux, Medusa, Linux Security Modules, Mandatory
Access Control

Acknowledgments
I would like to thank my supervisor for his pedagogical care during my PhD
studies.

To my advisor, thank you for your professional guidance and expert advice
on my thesis.

I thank the staff of the Institute of Computer Science and Mathematics
for the excellent working environment.

My great thanks go to the Computer crimes course team. Without their
help, this thesis would not have been finished yet.

Contents

Introduction 1

1 Access control 3
1.1 Preliminaries . 3

1.1.1 Discretionary Access Control 5
1.1.2 Mandatory Access Control 5

1.2 Classic Models . 5
1.2.1 Access Control Matrix 5
1.2.2 Access Control List . 6
1.2.3 Capabilities . 7

1.3 Military Models . 7
1.3.1 Multi-level security . 7
1.3.2 Multi categories security 9

1.4 Modern models . 9
1.4.1 Role-based Access Control 9
1.4.2 Attribute-based Access Control 11
1.4.3 Relationship-based Access Control 12

1.5 Reference Monitor . 12

2 Security in Linux 15
2.1 Discretionary Access Control 15

2.1.1 UGO model . 15
2.1.2 Access Control Lists 18

2.2 Linux capabilities . 20
2.2.1 Modification of capability sets 23
2.2.2 Computation of capabilities during execve() 24
2.2.3 Requirements and examples of capabilities 25
2.2.4 Backward compatibility of setsuid() operations . . . 26
2.2.5 Towards capability-only system 27

2.3 Mandatory Access Control . 28
2.3.1 Linux Security Modules framework 28
2.3.2 SELinux . 29

vii

2.3.3 TOMOYO . 32
2.3.4 AppArmor . 35
2.3.5 Smack . 35
2.3.6 Minor modules . 37

2.4 Automatic policy creation . 39
2.4.1 SELinux . 39
2.4.2 AppArmor . 40
2.4.3 TOMOYO . 41
2.4.4 Smack . 42

3 Introduction to Medusa 43
3.1 Overview of the Medusa system 43
3.2 Medusa Security Model . 44
3.3 Medusa Communication Protocol 45

3.3.1 Data types . 45
3.3.2 Operations . 48

3.4 Kernel module . 48
3.5 Authorization server . 50

3.5.1 Unified namespace . 50
3.5.2 Insertion into the tree 51

4 Related Work 53
4.1 Policy mining from logs . 53
4.2 Automatic policy generation 55
4.3 System call interposition . 56
4.4 Containerization and Sandboxing 57

5 Policy Mining 59
5.1 Problem Definition . 59
5.2 Research questions . 59
5.3 Solution Proposal . 60

5.3.1 Basic Definitions . 60
5.3.2 Decision function in Medusa 62
5.3.3 Getting Logs . 62
5.3.4 Generalization . 65

5.4 Evaluation . 69
5.4.1 Methodology . 72
5.4.2 Individual mining . 74
5.4.3 Cumulative mining . 77

Conclusion 79

viii

6 Rezumé 81
6.1 Riadenie prístupu . 81

6.1.1 Matica riadenia prístupu 81
6.1.2 Zoznam riadenia prístupu 82
6.1.3 Schopnosti . 82

6.2 Bezpečnosť v systéme Linux 82
6.2.1 Model UGO . 82
6.2.2 Zoznamy riadenia prístupu 83
6.2.3 Schopnosti v Linuxe 83
6.2.4 Povinné riadenie prístupu 84
6.2.5 Linux security modules 84

6.3 Bezpečnostný modul Medusa 85
6.4 Ťažba bezpečnostnej politiky 86

6.4.1 Výskumné otázky . 86
6.4.2 Návrh riešenia . 86
6.4.3 Získavanie záznamov 87
6.4.4 Generalizácia . 87
6.4.5 Zhrnutie výsledkov . 88

Bibliography 91

A Audited operations 101

B Source code 103

ix

List of Figures and Tables

Figure 2.1 Data stored within an inode to represent security
context of a file. 17

Figure 3.1 Tree structure of unified namespace in Constable. . . 50

Table 5.1 Legend of generalization names used in evaluation tables 74
Table 5.2 Results of policy mining for PostgreSQL 75
Table 5.3 Results of policy mining for OpenSSH 75
Table 5.4 Results of policy mining for Postfix 76
Table 5.5 Results of policy mining for Apache HTTP Server . . 77
Table 5.6 Summary of policy mining for individual services . . . 77
Table 5.7 Results of cumulative mining 78

xi

List of Abbreviations

ABAC Attribute-based access control
ACL Access Control List
API Application Programming Interface
ASCII American Standard Code for Information Interchange
AVC Access Vector Cache
BMU Best Matching Unit
BPF Berkeley Packet Filter
CIL Common Intermediate Language
CIPSO Commercial Internet Protocol Security Option
CPU Central Processing Unit
DAC Discretionary Access Control
dentry directory entry
DS9 Deep Space Nine
DSM DiskStation Manager
DTE Domain Type Enforcement
eUID Effective User Identifier
EVM Extended Verification Module
FHS Filesystem Hierarchy Standard
Flask Flux Advanced Security Kernel
FN False Negative
FP False Positive
GID Group Identifier
HMAC Hash-based Message Authentication Code
HTTP Hypertext Transfer Protocol
ILP Inductive Logic Programming
IMA Integrity Measurement Architecture
inode index node
IPC Inter-Process Communication
LSM Linux Security Modules
MAC Mandatory Access Control
MCP Medusa Communication Protocol

xiii

MCS Multi-Category Security
MLS Multi-Level Security
NSA National Security Agency
OS Operating System
PID Process Identifier
PPV Positive Predictive Value
RBAC Role-based access control
RCU Read-Copy-Update
ReBAC Relationship-based access control
RHEL Red Hat Enterprise Linux
RSBAC Role-Based Access Control
rUID Real User Identifier
SELinux Security Enhanced Linux
SEN Sensitivity
SID Security Identifier
SLES SUSE Linux Enterprise Server
Smack Simplified Mandatory Access Control Kernel
SOM Self-Organizing Maps
SSH Secure Shell
sUID Saved User Identifier
TCP Transmission Control Protocol
TF-IDF Term Frequency - Inverse Document Frequency
TN True Negative
TP True Positive
TPM Trusted Platform Module
TUI Text User Interface
UBAC User Based Access Control
UGO User Group Others
UID User Identifier
VS Virtual Space

xiv

List of Algorithms

1 Computation of thread capability sets during execve() 24
2 Typical processing of an access on layer L2 49
3 Computation of access . 63
4 Creation of rules from audit log 65
5 Generalization based on non-existing files 67
6 Generalization based on multiple runs 70
7 regexpFromDiff . 71
8 prefixPostfixRegexp . 71

xv

Listings

3.1 Definition of file_kobject k-class 45
3.2 Definition of file_kobject structure 46
3.3 Definition of attributes for file k-object 47
3.4 Definition of a getfile event 47
3.5 Snippet of Constable configuration for syslog domain 51
3.6 Example of an automatic hierarchy handler in Constable . . . 52
5.1 Example of an event from audit log 64

xvi

Introduction

This dissertation deals with the security of operating systems. Specifically,
it concerns mandatory access control (MAC) in the Linux operating system,
which is implemented using the Linux security modules (LSM) interface. This
interface allows modules to manage security in the system, in such a way
that it monitors all security-related operations and, depending on the subject
and the object of the operation, decides whether the operation is allowed
according to the current security policy.

There are several LSM security modules, the most popular being AppAr-
mor and SELinux. At FEI STU, the Medusa security module was developed,
which differs from existing modules in several ways. The security policy is de-
termined by an external authorization server running in the user space, which
allows, among other things, remote control of machines. The authorization
server communicates with the module in the kernel using a standard protocol,
and the information about the permissions of the system entities itself is
abstracted into sets called virtual spaces. This makes it possible to represent
most security models, as long as the user implements the transformation of
the model into a model of virtual spaces in the authorization server.

The research problem we are dealing with in our work is the automatic
creation of security policy. A user of a Linux operating system will mostly
receive this policy from the developers of the distribution they are using. This
is how it works, for example, for Ubuntu, where a standard and extended
security policy is available for AppArmor. The SELinux module provides a
reference policy for all systems from which distribution maintainers fork, as
is the case with Fedora. It is not standard for the average user to create their
own security policy.

It is the same in Medusa. For proper functioning system, the user must
create his own configuration. In order to do this, the user must have a perfect
overview of which services and applications are running on his system and
which authorizations are required for their correct operation. Since this is not
an easy task, there is an incentive to design a way to automate this activity
as much as possible, with minimal user intervention.

1

LISTINGS

Therefore, the research goal of this work is to design processes and al-
gorithms by which it is possible to determine the security policy, or the set
of objects to which the application is authorized to access. To do this, it is
necessary to analyze the behavior of applications on the Linux system and
find out the properties from which information about the security policy can
be derived. There are several sources of this information: we are mainly
interested in every operation that the program performs and the files on the
disk that are associated with the given program.

The scope of our work is limited only to a dynamic analysis of programs,
where we focus on file operations. The resulting policy is applicable to the
Constable authorization server.

The thesis begins with an explanation of the theoretical background of
access control. In the first chapter, theory of access control is introduced and
basic access control models are described. The second chapter explains how
access control is implemented in the Linux operating system. The chapter
briefly describes all the security controls, including UGO, ACL, and MAC.
Linux security modules are presented at the end of the chapter. The third
chapter is devoted to the Medusa security module. It provides basic definitions
and information that are illustrated with code snippets and examples. The
fourth chapter presents existing research in related fields. It should be noted
that research dealing with the automatic creation of security policies for LSM
modules is very small. In the chapter, we summarize the research of security
policy mining from logs, then the automatic creation of security policies,
the research that deals with the interposition of system calls and finally the
research that examines the containerization and sandboxing of processes.
In the fifth chapter, we present our security policy mining solution for the
Medusa security module.

The main contribution of the work is a set of algorithms for security policy
mining for the Medusa security module and the implementation of these
algorithms in a Python application.

2

Chapter 1

Access control

Access control is a crucial component of data security and privacy. In this
thesis, we focus on computer access control, specifically applied to an operating
system.

An operating system, as one of the fundamental components of a com-
puter, acts as a mediator between user programs and hardware. It must be
appropriately designed and implemented to accurately provide services and
ensure optimal performance. One of the basic services it provides is isolation.
Thanks to isolation, running processes (user code running on a CPU which
may be possibly harmful) is isolated from other processes and also from the
operating system itself, meaning it doesn’t have the access to read or modify
memory of other processes or the operating system itself.

Isolation provides very safe computing environment — program errors are
contained within the same process and don’t propagate through the system.
However, such strict isolation also creates very restrictive environment for
the system application programmers — restricting communication between
processes means prohibiting modular design. It is no suprise that operating
systems normally allow some sort of communication between processes and
the operating system breaks the isolation barriers in a controlled way. This is
where the access control comes in. It allows to carefully restrict communication
flows and explixitly state which operations are enabled for which process.
Detailed description of how access control can be implemented is described in
this chapter. Implementation of access control in the Linux operating system
is discussed in chapter 2.

1.1 Preliminaries
Throughout the thesis, we will be using terms that are well known in the
area of access control, but each term might have slightly different meaning

3

Access control

depending on the author or the specific publication. Purpose of this section
is to define each term as intended for this thesis.

Subject Subject is an entity in the operating system that is capable of
executing system calls. In most of today’s operating systems this unit
is called a process. If not mentioned otherwise, we denote subjects as
si individually and S collectively.

Object Object is an entity in the operating system that is capable of being
an argument of a system call or being pointed to from an argument of
a system call. In most of today’s operating systems, this entity may be
a process, file, socket, device, IPC object and so on. If not mentioned
otherwise, we denote objects as oj individually and O collectively.

Operation Operation is a procedure in which a subject executes some action
on one or more objects. In an operating system this procedure is usually
invoked through a system call.

Permission Permission is a categorical way of describing the type of an op-
eration, for example: read, write, append, execute, etc. Each operation
can have one or more permissions. Permissions may also depend on
arguments of the operation.

Domain Domain is a property of a subject that represents execution context.
This context can depend on various properties — the parent domain
(which domain executed current domain), under which effective user is
the subject running, under which group is the subject running, etc.
There is 1:N relation between domains and subjects. A subject can
only run under one domain, but there may be multiple subjects running
under the same domain. Permissions are usually assigned based on a
domain, not just a specific subject. For example, mail server program
image started by an admin user should get different privileges than the
same image started by an ordinary user.

Access Access is a tuple (d, o, P), where d is the domain of currently running
subject executing some operation on object o with a set P of requested
permissions.

Decision function Decision function dfΠ (a) : A→ {1, 0} is a function that
for a given access a returns constant 1 if a is authorized according to
policy Π, 0 otherwise. A is a set of accesses.

4

1.2. Classic Models

1.1.1 Discretionary Access Control
Access control can be categorized in multiple ways. One of the basic catego-
rizations is to split access control models into two categories: Discretionary
Access Control (DAC) and Mandatory Access Control (MAC). Definition of
DAC can be found in Trusted Computer System Evaluation Criteria [1]:

A means of restricting access to objects based on the identity of
subjects and/or groups to which they belong. The controls are
discretionary in the sense that a subject with a certain access per-
mission is capable of passing that permission (perhaps indirectly)
on to any other subject (unless restrained by mandatory access
control).

Current operating systems define owners of individual objects. These
owners then have full control over permissions on these objects. This is a
typical implementation of DAC, where users can manipulate permissions of
objects at their own discretion. Examples in the Linux operating system are
UGO (see section 2.1.1) and ACL permissions (see section 2.1.2).

1.1.2 Mandatory Access Control
MAC allows only a specific principal in the system (the administrator) to spec-
ify permissions in the system. These permissions are not overridable. In other
words, users can’t delegate their permissions to other users — permissions
are set system-wide.

It took a longer time for this type of access control to appear in operating
systems. Initially, it was designed for military use. Bell-La Padula, Biba,
Multi-layer security and Multi-category security are typical examples of MAC.
When operating systems such as UNIX were being developed, they operated
in mostly harmless environment, where the only danger was operator error.
The DAC present in this system was mostly for protection of the data. MAC
takes this notion up a level — it brings security to the access control.

1.2 Classic Models
This section presents the basic access control model, the access control matrix,
together with two models thar are derived from it: access control lists and
capability lists.

1.2.1 Access Control Matrix
This section is based on [2].

Access control matrix was described by Lampson [3]. It is a simple, but
fundamental model of access control. Access Control Matrix consists of rows

5

Access control

representing subjects in the system and columns representing objects in the
system.

State of the system is defined by a triple (S, O, M), where S is the set
of subjects, O is the set of objects and M is the access control matrix. One
element of the matrix is denoted as M [si, oj], where si is subject in i-th
row and oj object on j-th column. The matrix element contains a set of
permissions that si is able to act on oj. Since on real systems the size of
this matrix tends to be big and most of the elements are empty, it is not
used in this form. Rather, decomposition of the matrix into either rows or
columns is used. In the former case, the permissions are stored along with
subjects, creating capability lists of permissions for each object (see 1.2.3).
In the latter case, the permissions are stored with each object in the system,
creating access control lists (see 1.2.2).

Access Control Matrix models a very simple representation of the policy: it
shows which subjects can execute some operations on which objects. However,
there are some rules which cannot be easily represented in the matrix without
losing the original meaning. For example, rule such as everyone can write
o1, except s1 can be represented in the matrix, but once written, the original
semantic meaning of the rule is hard to infer just from looking at the resulting
matrix.

Either way, the access control matrix serves as a theoretical basis for other
security models, since every security model can be transformed into access
control matrix, losing the original semantic meaning of the policy model.
Since access is represented as a triple (s, o, a), we can query the decision
function of any model for each s ∈ S, o ∈ O and a ∈ A. Triples for which
the decision functions returns 1 can be used to construct an equivalent access
control matrix.

1.2.2 Access Control List

By decomposing the access control matrix by columns, we get access control
lists (ACLs). Access control list for object o is represented as a list of tuples
(si, {a1, . . . , an}), where si is a subject and {a1, . . . , an} is a set of permissions
si is allowed to act upon o. Since the access control list is stored together
with the object, this makes it easier for the system administrator to see a
complete list of subjects that are able to act upon a specific object. The
reverse is more complicated — to be able to see all operations that a specific
subject can do, we would have to scan all objects in the operating system for
their access control lists.

6

1.3. Military Models

1.2.3 Capabilities
By decomposing the access control matrix by rows, we get capability lists
(C-lists). Capability list for a subject s is represented as a list of tuples
(oi, {a1, . . . , an}), where oi is an object and {a1, . . . , an} is a set of permissions
s can act upon oi.

Now the advantages and disadvantages of C-lists are swapped when
compared to access control lists. Getting all permissions for a specific subject
is trivial, since they are stored together with the subject. Getting a list of
subjects that are allowed to make some operations on a specific object is not
possible without iterating through all subjects in the system.1

We can think of capabilities as credentials — owning them allows the owner
to access objects listed in the C-list and execute permitted operations. This
offers possibilities that are not available with ACLs, for example delegation.
Systems that support capability delegation have to solve the problem of
capability revocation.

1.3 Military Models
This section presents access control models that were originaly developed for
military purposes and later repurposed for usage in non-military systems.

1.3.1 Multi-level security
These models were created and used by the U.S. military. Most well-known
model is the model created by Bell and LaPadula, known as the Bell-LaPadula
model [4].2

For the explanation of the Bell-LaPadula model, we are using adaptation
from [5]. In this model, a partially ordered hierarchy of security levels is
defined as a security structure (L,≤), where L is a set of security levels
and ≤ is a partial order defined on L. Li ≤ Lj means that security level
Li is less than or equal to Lj. In terms of the security model, this means
that Lj dominates Li. Lj is called the dominating level and Li is the
dominated level. When L1 ≰ L2 and L2 ≰ L1, the security levels L1
and L2 are incomparable. The standard set L used by the military is
defined as {UNCLASSIFIED, CONFIDENTIAL, SECRET , TOPSECRET},
in ascending order of security level.

Each entity in the system is assigned a security level. Security level of
an object is called a classification and security level of a subject is called

1But the real time of this operation compared to searching ACLs for a specific subject
might be smaller as in most systems there is significantly more objects than subjects.

2Note that Bell-LaPadula module presented here intentionally doesn’t mention the
category part of the model. This is mentioned in the following section 1.3.2.

7

Access control

clearance.
Note that while in classic models, the permissions are given explicitly, in

the multi-level security, the permissions are inferred based on rules using the
notions of information flow [6]. Bell-LaPadula defines following properties
which determine which operations are allowed. These definitions use function
L that assigns security levels to the respective subject or object.

Simple Security Property A subject s can read object o only if the se-
curity level of object o dominates the security level of s, that is,
L(o) ≤ L(s). This property is also known as the no read-up rule,
meaning that a subject shouldn’t have read access to objects that are
above its clearance level.

*-Property A subject s is allowed to append3 to an object o only if the
security level of object o dominates security level of subject s, that
is L(s) ≤ L(o). This property is also known as no write-down rule,
meaning that a subject can’t write to a lower sensitivity objects, therefore
preventing unauthorized disclosure of high-sensitivity information to an
object that can be read by subjects with lower-sensitivity clearance.

Discretionary Security Property enables additional DAC. Individual us-
ers may modify access to an object to other users provided the previous
two propertiers are enforced (i.e., DAC can’t override denial of access
by previous properties).

As a consequence, if a subject s wants to have both read and write access
(ability to observe and modify the object) to object o, it has to have the same
clearence as the sensitivity of the object, that is, L(o) = L(s).

As stated above, Bell-LaPadula ensures only confidentiality of data. Other
important aspect of information assurance from the well-known CIA triad is
integrity. Thus, shortly after the original model by Bell-LaPadula, Biba [7]
presented an integrity model as a complementary model to the original Bell-La
Padula.

This model introduces integrity levels that may have the same values
as security levels, but they have different semantic meaning. Each subject
and object in the system are assigned an integrity level. Function I returns
integrity level for a given subject or object. The system complies with the
strict integrity policy if the following properties are kept [2]:

3In the original technical report by Bell and LaPadula, append access is defined as
having the right to write to an object without observing the object

8

1.4. Modern models

The Simple Integrity Property A subject s can observe object o only
if the integrity level of s dominates the integrity level of o, that is,
I(s) ≤ I(o). This property is also known as the no read-down rule,
meaning that a subject shouldn’t have read access to objects with lower
integrity that may corrupt the integrity of the subject.

*-Integrity Property A subject s is allowed to write to an object o only
if the integrity level of s dominates the integrity level of o, that is
I(o) ≤ I(s). This property is also known as no write-up rule, meaning
that a subject of lower integrity level can’t write to a higher integrity
object, therefore preventing the corruption of a high-integrity object.

Invocation Property Subject s can invoke other subject s′ only if the in-
tegrity of s dominates integrity of s′, that is, I(s′) ≤ I(s). This prevents
subject s from affecting high-integrity objects indirectly through another
high-integrity subject.

1.3.2 Multi categories security
This section is based on [2].

Until now, we have presented only one dimension of Bell-LaPadula model
that lies in the security level. Next formal security designation is a formal
category. Set of categories C is usually determined according to the entities
of the organization, or the topic of the given object. An example set for an
organization might be: management, public relations, accounting, audit, etc.

Motivation for adding categories to the model is a need-to-know principle.
According to this principle, subjects should have access only to objects that
are necessary for their function.

Definition of a security level is changed to a tuple (l, c), where l is a
confidentiality level and c is a set of categories. The definition of partial order
≤ on security levels is also changed. Security level (l, c) dominates (l′, c′)
when l ≤ l′ and c′ ⊆ c.

1.4 Modern models
Following models are “modern” in the sense that they were developed after the
classic and military models and they are focused on improving the management
of policies and bring the model closer to the actual structure of the protected
system.

1.4.1 Role-based Access Control
Role-based access control (RBAC) was introduced by Ferrailo and Kuhn [8]
and later formalized into four reference models by Sandhu et al. [9]. RBAC is

9

Access control

a form of mandatary access control, but a discretionary version has also been
developed.

As RBAC was developed for organizational security requirements, subjects
are represented by users in the organization. These users can perform
transactions which are higher-level collections of operations on some data
contrary to read/write permissions of simpler access control models. However,
later papers use the term permissions instead of transactions. From now on,
we will use the term permissions. RBAC adds a layer of indirection between
users and permissions represented by roles. A role defines permissions that
the user who is assigned to this role can perform. Users are then assigned to
roles according to their position in the organization.

Dynamic state of the system is represented by sessions. These are
controlled by the individual users. When user starts a session, he can choose
which roles to activate. During the session, he can disable or enable roles
that are assigned to the user. This encompasses the base reference model
that is referred to as RBAC0. The main advantage of RBAC comes from
the management abilities of this model. When a new person is introduced
to the organization, security officer will assign roles to him according to his
position without the need of consulting and assigning individual permissions.
A similar procedure applies when revocating privileges for people switching
departments or leaving the organization. Security officer simply removes
or adds necessary roles. When a new system is added to the organization,
security officer can assign new permissions to existing roles without manually
assigning permissions to users. This minimizes mistakes and allows principle
of least privilege to be enforced (each role contains permissions necessary to
perform that role, nothing more).

In adition to RBAC0, two independent models were introduced. The first
one, RBAC1 introduces role hierarchies. These hierarchies naturally reflect
organization’s lines of authority and responsibility [9]. More powerful senior
roles inherit permissions from less powerful junior roles. As an example, take
a hiearchy of these roles: teaching assistant, lecturer and course supervisor.
Course supervisor is the senior role, so it has it’s own permissions along with
inherited permissions from the teaching assistant and lecturer roles. Role of a
lecturer is in the middle of the hierarchy, so it inherits permissions of teaching
assistant but it doesn’t include permissions assigned to course supervisor.
The hierarchy of roles inherently creates a partially ordered set.

The second additional model, RBAC2, introduces concept of constraints.
Multiple types of constraints were described in the literature. The first
one is the ability to forbid mutually exclusive roles. This means that the
system won’t allow security officer to assign mutually exclusive roles to one
user. This allows separation of duties, a well known concept from physical

10

1.4. Modern models

security that predates computer access control. Second type of constraints
are cardinality constraints. These can be used to limit number of users for one
role. For example, the role of a dean of a faculty can be assigned to one user
at a time. Last type of constraints mentioned in this section are prerequisite
constraints. These are based on notions of competence and appropriateness [9].
Prerequisite constraints can relate to roles themselves — for example a user
can only be assgined role B if she already has role A assigned. They can also
relate to permissions — permission p can be assigned to a role only if that
role already possesses permission q [9].

Last reference model, RBAC3 is a consolidated model that combines
hierarchy model RBAC1 and constraints from RBAC2.

RBAC can be considered high-level model compared to ACLs or C-lists,
since it doesn’t define system-level operations such as read or write but rather
complete transactions that don’t just include data, but specific operations
in correct order needed to succesfully execute the transaction. Thus we say
that RBAC allows data abstraction [9]. As a result, it’s not used as much in
operating system security as it is used in application-level security. RBAC
is currently considered a standard model for almost all software. It is used
in numerous applications, including Discord, Azure Active Directory [10],
Kubernetes [11] and many others.

1.4.2 Attribute-based Access Control
Description of Attribute-based access control (ABAC) is based on [12, 13].

ABAC is a continuation of RBAC intended for complex and dynamic
systems, where role administration may be too cumbersome. Instead of
working with identities of user and object, it bases the access decision on
attributes of the subject (id, clearance, role, company position, . . .), the
object (type, sensitivity, location, . . .), the operation (read, write, execute,
. . .) and the environment (current time, location or other attributes that
dynamically change according to context).

There are two types of attributes [13]: atomic-valued and set-valued.
Atomic-valued are represented by a single value. For example sensitivity(o) =
S specifies atomic-valued object attribute sensitivity that for object o has a
single value S (secret). Similarly, set-valued attributes return a set of values.
For example, roles(u) = {instructor , examiner} returns set-valued subject
attribute roles.

In ABAC models, the policy rules can primarily be articulated through
two distinct methods: based on logic formulas and enumerated policies. The
traditional method involves the creation of policies using logical formulas
that incorporate the values of attributes. These formulas consist of one or
more predicates joined by various logical operators. One predicate compares

11

Access control

a subject/object attribute with another subject/object attribute or a constant
value. The alternative method for formulating policies relies on enumeration.
Policy expressed in Policy Machine is defined as (sai, OP, oai), where sa is
value of subject attribute, oa is the value of object attribute and OP is a set
of allowed operations for subjects and objects with the listed attributes.

Similar to RBAC, ABAC is implemented at the application level in web-
based applications and information systems. We have not found any notable
implementation of ABAC for an operating system.

1.4.3 Relationship-based Access Control
Relationship-based access control (ReBAC) makes authorization decisions
based on relationship between subjects and objects. Typical usage scenarios
are for social networks. For example, a post can be edited by user who created
it and read only by friends of that user.

Term ReBAC was used for the first time by Carrie E. Gates [14]. One
notable implementation of a ReBAC system is Zanzibar [15] by Google.
Altough it never specifically mentions ReBAC, it has the characteristics of
ReBAC. Rules are represented by triples (u, r, o) which mean user u has
relation r to object o. Language of Zanzibar includes set-algebraic operators
that allows to create more complex rules, such as set of users S has relation r
to object o. S itself may be defined as another object-relation pair.

1.5 Reference Monitor
Reference monitor is an abstract concept that describes requirements of the
enforcement mechanism of a perfectly secure system. It can be used to
implement some access control model into a real system. The security policy
can be correctly enforced if these requirements are followed [2]:

Complete mediation requirement The enforcement mechanism should
mediate all security-sensitive operations. Correct authorization of do-
main operations can be performed only if the security monitor is always
invoked during security-sensitive operations.

Tamper-proof requirement This requirement prohibits anyone from chang-
ing the reference validation mechanism except the system administrator
(meaning an ordinary user shouldn’t be able to override the permission
decision of the policy). An ordinary user should also be not able to
modify the security policy itself.

Verifiability requirement This requirement states that practical verifica-
tion of correctness of the reference monitor should be possible. One

12

1.5. Reference Monitor

should be able to verify if the reference monitor produces correct access
tuple, if this tuple is correctly processed against the security policy
and if the resulting decision is correct according to the security policy.
Individual reference monitors can also state their own verifiable goals
that should be followed by the reference monitor mechanism.

Fulfilling all requirements of the security monitor might not be enough to
have a secure system. Correct function of the reference monitor mechanism
also depends on a number of supporting functions, such as authentication
system, correct hardware operation and physical security [16].

13

Chapter 2

Security in Linux

2.1 Discretionary Access Control
Linux, as a unix-derived operating system inherited basic protection scheme
from the unix operating system. In this section, we will introduce two systems
of discretionary access control available on most Linux distributions.

As a reminder, discretionary access control allows owners of objects to
change the permissions at their own discretion. This allows simple sharing
of objects, but at the cost of information disclosure — any user can set
permissions too low (either by mistake or intentionally), allowing data to be
read by unauthorized users. This problem is solved by using mandatory access
control. Implementation of mandatory access control in Linux is explained in
section 2.3.

2.1.1 UGO model
This section is based on [16].

UGO architecture is a simplification of fully-fledged access control lists that
was proposed and implemented due to memory and processing requirements
of full ACLs.

Note that the main purpose of UGO architecture is to compartmentalize
and secure accesses to files to each individual user on the system and provide
methods to share these files in a controlled way. In this case, it can be
controlled by owners of these files — thus, UGO is a DAC model.

Each file is assigned an owner and a protection group. These are identified
by numerical identifiers UID and GID, respectively. When a new file is created,
these values are usually set using the effective UID and GID of the thread
that creates it.

Permissions in the UGO model can be assigned to three “sets” of users:

15

Security in Linux

owning user These permissions apply to the user that owns this file. This
set always contains just one user.

group Permissions that apply to users that belong to the owning file group.

other users Permissions that apply to users not covered by the previous
sets.

Each of these sets may contain three permissions: read, write and execute,
denoted by r, w and x, respectively. Current state of permissions in a given
set is represented by three bits.

Lastly, there are three special protection bits that are not linked to any
UGO set, but apply to the whole file: setuid, setgid and restricted deletion
bit, also known as sticky or t-bit. Closer explanation of these special bits
follows:

setuid When a process executes a program file with setuid, it’s effective
UID will be set to the owner of the program file.1 When setuid is
set on a directory, this causes newly created files in that directory to
inherit the directory owner UID. setuid is also recursively applied to
new subdirectories.

setgid Has the same effect as setuid, but affects the group UID.1

restricted deletion When set on a directory, files inside the directory can
only be removed or renamed by their owner, owner of the directory
or a privileged process. This is useful for writeable public directories
such as /tmp, as it protects files from being deleted by other malicious
processes. Setting it on a file doesn’t have an effect in Linux.2

Note that permissions are checked against the first set that matches. This
means that owning user can disable permissions to herself. This can be useful
when she wants to protect the file from accidental modification or for disabling
a configuration file by removing read acces to it [17].

1There are three exceptions to this. Effective UID or GID is left unchanged if the
no_new_privs sttribute is set for the calling thread, if the underlying filesystem is mounted
with nosuid flag or if the calling process is being ptraced.

2In other Unix-like operating systems it was used to “stick” the program file to swap
space, so it loads faster in subsequent executions. Advances in memory caching techniques
and hardware made it obsolete and it was never implemented in Linux.

16

2.1. Discretionary Access Control

owner
r w x

group
r w x

others
r w xGIDUID special

u g t

32 bits 32 bits 12 bits

Figure 2.1: Data stored within an inode to represent security context of a file.

Credentials
Linux stores all process identifiers in a special structure whose contents is
called credentials. There are few identifiers, that concern users and groups:

Real user and group IDs These IDs determine who owns the process.

Effective user and group IDs These IDs are used by the kernel to check
permissions when the process accesses shared resources such as message
queues, shared memory and semaphores.

Saved set-user-ID and set-group-ID These IDs are used for storage of
the corresponding previous effective IDs when process executes a set-
user-ID or set-group-ID programs. Such program can switch the value
of the effective ID between real and saved ID as needed.

Filesystem user ID and group ID These IDs are used to match file owner
and group IDs to determine permissions for accessing files in the filesys-
tem. When effective UID or GID is set, the filesystem UID/GID is set
to the same value as well. These IDs were introduced to protect user
space servers (such as NFS) from receiving signals from processes with
the same effective UID. By splitting effective and filesystem UIDs, the
server could use less privileged UID for filesystem access while staying
protected from unwanted signals with higher privileges.
However, this was made obsolete and these IDs are kept just for back-
wards compatibility.

Supplementary group IDs This set contains other group IDs to which
the process belongs. Together with the filesystem group ID, they are
used for permissions checks as long as one of these groups matches the
file group.

Permission checks
Permission bits are checked during the path resolution. First, the process
needs to have search permission to all components up to the final component
of the path. The final component represents the accessed object. The

17

Security in Linux

permissions to access it are determined by the access required (read, write,
execute). To allow the operation, the credentials of the thread must contain
all required permissions.

2.1.2 Access Control Lists
This section is based on the withdrawn POSIX.1e draft [18] that defined
requirements for Access Control List (ACL) implementations and acl(5) Linux
manual page [19] that documents the Linux implementation of ACL.

Access Control Lists as defined by POSIX.1e set out to solve the problem
of expressiveness of the original UGO implementation with the goal of keeping
the implementation as simple as possible and compatible with UGO model.
The result was an extension of the UGO model. ACL uses the same rwx
permissions from the UGO model, but allows more fine-grained access control
of additional users and groups.

There are two types of ACLs: access ACLs and default ACLs. Access
ACLs are used when requesting access to an object, while default ACLs are
used when a new object is created within a folder.

ACLs consist of individual ACL entries. An ACL entry contains type of
the entry, qualifier specifying identity of a user or a group and permissions
pertaining to the entry. Valid ACL has to contain at least three ACL entries of
these types: ACL_USER_OBJ, ACL_GROUP_OBJ and ACL_OTHER. These directly
reflect UGO permissions in that order (however, there is an exception for
ACL_GROUP_OBJ and file group permissions, see below).

Granularity that wasn’t possible with standard UGO model is achieved
using ACL entries of two additional types: ACL_USER and ACL_GROUP. ACL
can contain arbitrary number of entries of these types. These types allow
to specify permissions for individual users other than the file owner (using
the ACL_USER type). Also, compare this with the situation from the UGO
model — if the object owner wanted to share an object with multiple users,
he would have to group those users in a group. Restricting permissions
is also possible — ACL_USER entry may prohibit access of some user even
though the user may be present in a group that has permissions to access the
object. This can be achieved because the order of permission check is the
same as in UGO model. It starts matching against the most specific entries
(ACL_USER_OBJ and ACL_USER entries), moving to group entries and finally
using permissions listed in the ACL_OTHER entry if no other entry matched.
For the full description of ACL decision algorithm, see the end of this section.

The ACL_GROUP type gives file owner an ability to set additional permissions
to groups that are distinct from the file group. This allows administrators to
create more specific groups with finer granularity of users that improves the
application of the principle of least privilege.

18

2.1. Discretionary Access Control

The implementation explained up till now has some drawbacks. Consider
following scenarios [18]:

1. Legacy program that doesn’t support ACLs calls chmod(object, 0).
In the UGO model, this would prevent access to the object to everyone.
However, if the object has access ACL with entries of types ACL_USER
or ACL_GROUP, these would still allow users or groups specified in those
entries to access the object. Thus, the original semantics of chmod()
operation would be broken.

2. Similarly, the command chmod go-rwx restricts access only to the file
owner (if such permission already exists for the file owner) according
to the UGO model. However, if ACL entries of types ACL_USER or
ACL_GROUP exist for the file, there may be users or groups that still have
access to the file.

To solve these compatibility issues, a new type of entry was added,
ACL_MASK. Permissions included in this mask represent the maximum permis-
sions that can be granted by ACL entries of type ACL_USER, ACL_GROUP_OBJ
and ACL_GROUP. There can be only one entry of this type in ACL and it’s
required to be present if there is any entry of type ACL_USER or ACL_GROUP
(note that the compatibility problems with UGO were present if any of those
entry types was present in ACL).

Addition of ACL_MASK entry also changes the interconnection between
UGO and ACL models. When ACL_MASK is present in ACL, changes to it are
propagated into file group permissions and vice versa. This is to preserve
backwards compatibility with UGO model, as explained in the examples
above.

Another type of ACLs, default ACLs can be assigned to directories. Entries
contained within default ACL are automatically assigned to new objects
created in that directory as their access ACL. Operations that create new
objects (creat, open, mkdir, mkfifo and mknod) honor the mode parameter
and set permissions of ACL entries that correspond to file permission bits so
that if the permission is not present in mode, it is removed from the related
ACL entry.

Whether access is granted to a object is determined according to this
algorithm:

1. If the current effective user is owner of the object:

(a) if ACL_USER_OBJ entry contains permissions, access is granted.
(b) otherwise, the access is denied.

19

Security in Linux

2. If the current effective user matches any ACL_USER entry:

(a) if ACL_MASK entry and ACL_USER entry contain the requested per-
mission, operation is granted.

(b) otherwise, operation is denied.

3. If the current effective group or supplementary group matches entry of
type ACL_GROUP_OBJ or any entry of type ACL_GROUP:

(a) if ACL contains entry of type ACL_MASK:
i. if ACL_MASK entry and any matching entry belonging to the

types ACL_GROUP_OBJ or ACL_GROUP contains requested per-
mission, operation is granted.

ii. otherwise, operation is denied.
(b) otherwise, if ACL_GROUP_OBJ contains requested permission, oper-

ation is granted.
(c) otherwise, operation is denied.

4. Otherwise, if ACL_OTHER entry contains the requested permission, oper-
taion is granted.

5. otherwise, operation is denied.

2.2 Linux capabilities
This section is based on Linux kernel manual page on capabilities [20] and
withdrawn POSIX-1003.1 draft [18].

In UNIX-like operating systems (without capability support), there are
two basic privilege levels. When process is running under effective UID equal
to zero, it is privileged and can perform any task on the system. Otherwise,
it is unprivileged and can’t execute privileged actions (such as opening low
port or rebooting the system).

Capabilities in Linux is a set of permissions that divides privileges of the
superuser into smaller units, making it possible to explicitly specify which
permissions are needed for the running process, thus adhering to the principle
of least privilege.

The main motivation for the introduction of capabilities were privileged
applications (e.g., network daemons) that did not need all the privileges of
the superuser. Since such programs were often available remotely via open
ports to the Internet, they became targets of attacks. If an attacker was able
to execute arbitrary code through such a program, he automatically obtained
all superuser privileges and could perform arbitrary actions on the system.

20

2.2. Linux capabilities

There are two types of capabilities in Linux: ones that are assigned to
a running thread (thread capabilities) and those that are assigned to an
executable file (file capabilities). File capabilities are activated once the
executable is executed using execve() system call. This allows unprivileged
threads to acquire new privileges in a controlled way and also to specify
capabilities at the level of individual program images. For the full explanation
of capability activation during execve(), see section 2.2.2.

Before we introduce specifics of capabilities in Linux, we have to establish
requirements placed on capability system during its design:

• It should be possible to set capabilities for each program image individ-
ually.

• A thread should be able to obtain capabilities from a program image
by executing (execve()) the program.

• Running thread should be able to temporarily disable or enable capa-
bilities according to current needs and the principle of least privilege.

• Running thread should be able to revoke obtained capabilities so it can’t
use them anymore unless they execute another program that grants
capabilities.

• Running thread should be able to selectively pass capabilities to executed
programs (via “inheritence”).

• Program images should be able to restrict which capabilities can be
inherited by the executing thread.

• Capability system should be backwards compatible with programs that
don’t support capabilities or rely on standard POSIX privilege-gaining
mechanisms via set-user-ID-root.

To implement these requirements, each thread needs to have multiple sets
of capabilities. They are described in the list below. Note that bounding and
ambient sets were added in later versions. See the explanation and rationale
below the list.

effective This is the set of capabilities that is used for permission checking.
Having a capability in this set means that the capability is active and
the thread can utilize it.

permitted This is the maximum set of capabilities that a thread can use.
It is also the maximum set of capabilities that a thread can add into
the inheritable and effective set.

21

Security in Linux

inheritable Capabilities in this set are marked to be preserved during
execve() if the program image capabilities agree with this.

bounding This set restricts capabilities that the thread can gain during
execve(). Bounding set was originally a system set and per-thread
support was added later in 2008 [21]. It normally contains all capabilities
(capabilities not present in the set are not inherited).

ambient Capabilities in this set are preserved during execve() when ex-
ecuting non-privileged files. Note that this is useful for unpriviliged
threads as privileged threads can use the inheritable set for the same
purpose. A capability can be inserted into this set only if it is already
present in permitted and inheritable sets.

When capabilities were originally introduced, only first three sets from
the POSIX draft were available. It soon became evident that another sets
were needed to better control transfer of capabilities during execve().

Bounding set was originally introduced in version 2.2.11 as a system-wide
set [22]. Capabilities not present in this set were automatically removed from
all threads, essentially removing them from the system.

Ambient capabilities were added as a compatibility “inheritence” solution
for unprivileged processes that want to execute unprivileged image files.
Typical example presented in the proposal [23] is when an unprivileged (non-
root) thread with capabilities executes a helper program image without file
capabilities, this thread can’t keep the inheritable capabilities according to
exec transition rules (see 2.2.2). Thus, ambient capabilities are essentially
inheritable capabilities for unprivileged threads.

As mentioned above, the only way to gain new permitted capabilities is to
execute a program image that offers some new capabilities. This is achieved
by interlinking file capabilities with executable files. When the program
image is executed using execve(), the capabilities of the image file together
with capabilities of the calling thread are used to determine final capabilities.
Similar to thread capabilities, there are multiple sets of capabilities that can
be used to precisely specify the final thread capabilities. There are two file
capability sets and one file capability flag:

permitted Capabilities in this set are automatically permitted to the calling
thread during execve() (except for capabilities not present in the
bounding set). This set should contain required capabilities without
which the program can’t function properly.

inheritable This set is compared with the inheritable set of the calling
thread and only capabilities present in both sets are transferred into

22

2.2. Linux capabilities

the permitted set. Inheritable set should contain capabilities that the
program can potentially use, but are not required for normal operation.
It is the responsibility of the calling thread to set requested capabilities
into it’s inheritable set.

effective This is not a set, but merely just a bit flag. If it is set, then
capabilities present in the permitted set are automatically activated in
the effective set. This is useful for programs that are not capability-
aware and can’t change effective capability set on their own (they are
also referred to as capability-dumb in the manual).

2.2.1 Modification of capability sets
Capability sets of a thread can be changed dynamically during the duration of
thread execution using capset() system call, or preferably, using the libcap
library. Thanks to this, a thread can achieve better granularity of capabilities
according to current need by selectively enabling, disabling or revoking its
capabilities.

For thread capabilities, it is always valid to remove capability from effective,
inheritable and ambient set. See the list below for the rest of the rules:

permitted Thread can only remove capabilities from this set. A capability
can’t be removed if it’s also present in the effective set. The same capa-
bility is also removed from the ambient set, if present. New capabilities
can be added into this set only by executing program images that have
file capabilities.

effective A thread can “activate” a capability by adding it to it’s effective
set. This can be done only if the capability is present in the permitted
set.

inheritable Capablity can be added to this set only if it is present in both
permitted and bounding set. When removing a capability, it is also
removed from the ambient set, if present.

bounding Capablities can be removed from the set if the thread posesses
CAP_SETPCAP capability. Capabilities can not be added to the set.

ambient Capabilities can be added to this set only if they are present in
both permitted and inheritable set.

File capabilities can be arbitrarily modified by a thread that holds the
CAP_SETFCAP capability.

23

Security in Linux

2.2.2 Computation of capabilities during execve()
Algorithm 1 shows the transformation of thread capability sets when executing
a program image. P denotes state of thread capability sets right before
execve(). Low indices of P : e, p, i, b and a signify effective, permitted,
inheritable, bounding and ambient sets, respectively. P ′ denotes state of
thread capability sets after execve(), i.e. after the new program image is
executed. F denotes state of file capabilities of the program image that is
about to be executed. Meaning of low indices of F : e, p, i is the same as
for the thread capabilities. F is privileged if the file has file capabilities or
set-user-ID or set-group-ID bit set. C is a set of all capabilities. See the
explanation of the algorithm below.

Algorithm 1 Computation of thread capability sets during execve()
Input: P, F
Output: P ′

1: if Pruid = 0 or (Peuid = 0 and F is not privileged) then
2: Fp ← C
3: Fi ← C
4: end if
5: if Peuid = 0 then
6: Fe ← 1
7: end if
8: if F is privileged then
9: P ′

a ← {}
10: else
11: P ′

a ← Pa

12: end if
13: P ′

p ← (Pi ∩ Fi) ∪ (Pb ∩ Fp) ∪ P ′
a

14: if Fe = 1 then
15: P ′

e ← P ′
p

16: else
17: P ′

e ← P ′
a

18: end if
19: P ′

i ← Pi

20: P ′
b ← Pb

Lines 1–7 are provided for backwards compatibility with standard UNIX
semantics. When thread is running under supervisor, the file capabilities
are ignored and file capability sets are considered to contain all possible
capabilities with file capability effective bit considered to be set. Evaluation

24

2.2. Linux capabilities

continues by determining the new ambient set (lines 8–12). As mentioned
above, ambient capabilities were designed to be used with unprivileged files.
Ambient set of thread that executes a privileged file (such as a file with
associated file capabilities) is cleared, so that file capabilities are observed.

New permitted set is computed as a combination of three sets: ambient
capabilities, permitted file capabilities intersected with thread’s bounding set
and file inheritable set intersected with thread inheritable set (line 13).

Next, effective set is evaluated based on the file capability effective flag.
If it is set, the permitted set is copied into the effective set (every possible
capability that might be activated for this thread is activated). Otherwise,
ambient set is copied into the thread effective set (lines 14–18).

Inheritable and bounding sets are left unchanged.

2.2.3 Requirements and examples of capabilities
This section shortly summarizes recommendations for designing the actual
capability set. These principles were originally developed in the POSIX
draft [18] and later followed by the Linux kernel developers when introducing
capabilities into the Linux kernel.

• A capability should permit the system to exempt a process from a
specific security requirement. This means that the capability should
provide only the minimum rights to perform a specific task. This
essentially captures the principle of the least privilege.

• There should be a minimal overlap between the effects of capabilities.
Capabilities should be unique and specialized. No capability or combi-
nation of capabilities should provide the privileges supplied by another
capability.

• Considering previous two principles, fewer capabilities are better than
more. There are two reasons that support this principle: fewer ca-
pabilites are more manageable for the system administrator, and the
memory requirements are lower.
Minimum number of capabilities can be achieved by comparing security
requirements of proposed capabilities. If there is an overlap between
two capabilities, it’s better to combine them into one capability.

As of Linux 6.1, there are 40 capabilities defined [20]. Here is a random
small selection of them. The last two capabilities in the list are presented as
examples of bad capability proposals that got into the kernel.

CAP_CHOWN Allows making arbitrary changes to file UIDs and GIDs.

25

Security in Linux

CAP_DAC_OVERRIDE Bypasses UGO file permission checks.

CAP_KILL Bypasses permission checks for sending signals.

CAP_MAC_OVERRIDE Overrides Mandatory Access Control (see 2.3). This is
currently recognized only by the Smack security module.

CAP_NET_BIND_SERVICE Allows to bind a socket to Internet domain privi-
leged ports (port numbers less than 1024).

CAP_SYS_BOOT Allows thread to use reboot() and kexec_load().

SYS_TIME Allows to set system and real-time clocks.

CAP_SYS_PTRACE Among other abilities, allows to trace arbitrary processes
and inspect them using kcmp().

CAP_SYS_MODULE Allows loading and unloading of kernel modules.

CAP_SYS_ADMIN Perform various system administration operations. The
flawed design of this capability became apparent only later, when it
contained large amount of security privileges. It is not advised to for
kernel developers to use this capability for new privileged features of
the kernel.

CAP_SYS_PACCT Allows to disable/enable process accounting. This is an
example of a capability that is too specific and it should have been
merged into other capability.

2.2.4 Backward compatibility of setsuid() operations
As mentioned earlier, one of the requirements for capability system was to
provide backwards-compatible behavior that would preserve the original se-
mantics of standard UNIX user–superuser. We already mentioned one of
those behaviors in section 2.2.2, when threads running under root automati-
cally consider file capabilities to be all present in permitted and effective set.
In this section, we present remaining backwards-compatible behaviors. For
additional information, see the capability(7) manual page [20].

1. If any of the real, effective, or saved set user IDs was zero and after
the set-id operation all of these IDs have non-zero value, then effective,
permitted and ambient capability sets are cleared. This represents
dropping of privileges when switching to an unprivileged user.

26

2.2. Linux capabilities

2. If the effective user ID is changed from zero to a non-zero value, the
effective capability set is cleared.

3. If the effective user ID is changed from a non-zero ID to zero, the
permitted set is copied into the effective set.

4. If the filesystem user ID is changed from zero to non-zero, then selected
capabilities3 concerning the DAC are cleared from the effective set.
Capabilities are copied back into the effective set from the permitted
set when the filesystem user ID changes to a zero value.

2.2.5 Towards capability-only system
The purpose of capabilities is to make set-user-id-root flag obsolete. To
achieve this, file capabilities have to be included with all executable files in
the system and the backwards-compatibility behavior of capabilities has to
be disabled. To help make this change gradual, Linux includes following
per-thread securebits flags to disable certain backwards-compatible capability
behavior:

SECBIT_KEEP_CAPS Setting this flag will stop the kernel from clearing capa-
bility sets when a thread switches all of its UIDs to non-zero values
(assuming at least one of them was zero before). Note that this just
concerns behavior 1 from the previous section. This means that effective
set will be still cleared when a thread switches its effective UID from
zero to a non-zero value.

SECBIT_NO_SETUID_FIXUP This is a superset of the previous flag and pro-
hibits the kernel from making changes to thread’s capability sets when
UID changes.

SECBIT_NOROOT Setting this flag will cause lines 1–7 of algorithm 1 not to
be applied, meaning that executing a new program under root or with
set-user-ID-root will not automatically set filesystem capability sets so
that the thread gets all existing capabilities.

SECBIT_NO_CAP_AMBIENT_RAISE Setting this flag disables the ability to raise
ambient capabilities.

3These capabilitie are: CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_DAC_READ_SEARCH,
CAP_FOWNER, CAP_FSETID, CAP_LINUX_IMMUTABLE, CAP_MAC_OVERRIDE and CAP_MKNOD.

27

Security in Linux

2.3 Mandatory Access Control
Near the end of the 90s, it became evident that access control mechanisms of
Linux are inadequate to provide strong security. First projects that enhanced
access control mechanisms in Linux relied on system call interposition or
required a patch that inserted decision functions to appropriately selected
locations, following the complete mediation principle. Medusa, SELinux,
grsecurity and other security solutions were originally implemented as such
patches.

2.3.1 Linux Security Modules framework
First security module that was considered to be included in the kernel was
SELinux. Linus Torvalds4 requested that instead of implementing a one
security module, the kernel should be modified to allow user to choose which
security module should be activated. So he asked kernel developers to create
a generic framework that would allow any module complying with the API
to be loaded and used as a security enhancement. This lead to the creation
of the Linux security modules framework [24].

This framework allows security module to intervene operations in critical
kernel sections, usually during system calls. This is thanks to a careful
placement of hook function right before kernel provides access to some resource.
Security modules can place callback functions to these hooks. Every callback
in a hook has to be called — this allows each security module to evaluate
the access and decide whether it follows enforced security policy. For the
operation to be permitted, all security modules have to allow it. Denial from
one security module suffices to deny the whole operation. As of Linux kernel
v6.2, LSM provides 247 security hooks.

There are two types of hooks in LSM:

security hooks These are actual security hooks used to decide access re-
quests to resources. They are located in places of code where user space
subjects are about to access a kernel object. Security module has to
decide if the access is granted.

control hooks These hooks serve purpose of notifying security modules
about important events in the system that may concern them. Most
notable examples are alloc and free hooks. These hooks can be used by
the security module to allocate and initialize (or free in the case of a
free hook) a security blob (see below). These hooks are usually called
when a new kernel object is created or freed, respectively.

4the creator and current maintainer of the Linux project

28

2.3. Mandatory Access Control

Another important feature of LSM are the opaque security fields, also
called security blobs. These are pointers to data structures that are used by
the security module for storing information about the system object. It is
responsibility of the security module to allocate and free memory for these
data structures. As explained above, control hooks are used for this purpose.

Even though LSM was designed to be generic, there are still some disad-
vantages of the framework. For example, if the operation is denied by the
DAC privileges, there is no way for LSM to override this decision (for the
full evaluation path, see section 5.4). In other words, LSM is a restrictive
framework, not permissive5. Another disadvantage is that critical sections,
where the security modules can decide are fixed by the LSM framework and
programmer can’t choose arbitrary location of security module intervention.

There are still some security modules distributed as a kernel patch because
of these problems. Grsecurity6 and RSBAC7 are notable examples.

2.3.2 SELinux
SELinux was the first security module included in the mainline kernel in
December 2003. Originally developed by NSA, it is now maintained by Red
Hat. It is enabled by default in Fedora, RHEL, CentOS, Android and available
in other distributions as well.

SELinux provides most advanced coverage of access control out of security
modules available in the Linux kernel. This makes it very powerful to be able
to implement many types of security models, but it’s also harder to manage
than other security modules.
Architecture
SELinux implements Flask architecture (Flux Advanced Security Kernel) that
was developed by the Utah university and the US Department of Defense [25].
SELinux is composed of following components:

Object manager manages available operations of objects and enforces se-
curity policy decisions. SELinux implements default object manager
of kernel objects. It is also possible to implement a user space object
manager that can manage objects not known by SELinux and then
apply security policy decisions on these objects.

Access vector cache stores decisions made by the security server to make
repeated security decisions faster.

5Synonym for “permissive” that is commonly used is “authoritative”.
6https://grsecurity.net/
7https://www.rsbac.org/

29

https://grsecurity.net/
https://www.rsbac.org/

Security in Linux

Security server makes decisions based on the current security policy.

Security model

SELinux uses labeling approach to system security. Every kernel entity has
assigned a label and policy decisions are made based on contents of these
labels.

SELinux provides multiple types of mandatory access control that may
be used simultaneously. In this section, we explain available access control
types.

Security context SELinux labels subjects and objects in the system with
security contexts. Security decisions are based on the contents of this label,
class of the object, type of operation and context of the subject. Label is
represented by a variable length string of form: user:role:type[:mls/mcs],
where mls/mcs is an optional field. Explanation of fields follows:

SELinux user Linux users are mapped to SELinux users. Based on
a configuration file, once the user logs into the system, they get assigned a
SELinux user. This user is immutable, user cannot change it once it has been
assigned. One SELinux user might be used by many Linux users.

SELinux role Roles are used in the role-based access control model.
Role contains a list of permissions and can be assigned to any SELinux user,
if it is contained in a set of roles available for that user. Role is mutable,
meaning the user can change roles in a session, but only one role can be active
at a time.

SELinux type Type is the most important field of the security context,
as it covers most of the access control decisions. That is to say, most of
the rules specified in the security policy are concerned with the type of the
subject, object and type of the access [26].

Type in a process security context determines which objects can be accessed
by that process. SELinux types of processes are also called domains. Type in
a object security context (file, socket, pipe, . . .) defines access permissions
which a SELinux user has to that object.

MLS/MCS This optional field specifies either security level or security
range. Security level is in the form of sensitivity[:category], where
sensitivity represents object classification and optional category repre-
sents compartment of the object. The range specification is specified as
sensitivity[:category]-sensitivity[:category]. These fields are used
in multi-level security model. For more information, see section 2.3.2.

30

2.3. Mandatory Access Control

Type enforcement Type enforcement is the primary MAC model of
SELinux. Policy rules in this model consist of three parts:

• Subject of the operation,

• Object of the operation. It is defined by its type and class (see below).

• Type of the access.

This triplet is also called an access vector. Each time an access control is
requested, a new triplet is created and searched in the active security policy.
If it’s found, the request is allowed. Access vectors not contained in the policy
are denied.

Object classes Classes are used to differentiate policy rules on objects
of different types (not in a sense of SELinux type but by the kernel type).
For example, classes are used to distinguish rules applied to files with some
label from sockets with the same label. In other words, files labeled lib_t
have different privileges than sockets with the same label.

Classes are defined by the SELinux implementation and the Linux kernel,
they can’t be defined by system administrator.

Permissions Permissions are supported accesses that can be performed
by subjects [27]. For each resource class (class of the object), SELinux defines
a set of permissions that is supported by that class. Supported permissions
can be displayed using the selinuxfs pseudo file system.

If some access is not mentioned, then it’s not known to the Linux kernel
or not yet supported by SELinux. Policy can be configured to either allow or
deny unknown permissions.
Role-based access control For explanation of RBAC, see section 1.4.1.
To correctly set up RBAC in SELinux, following steps must be followed:

1. Linux accounts must be mapped to SELinux users.

2. SELinux user is allowed one or more roles (this achieves segregation of
duties).

3. Roles have accesses to certain domains (types and classes of subject).

Multi-level security For the explanation of the MLS model, see sec-
tion 1.3.1.

Each process may define two sensitivities — one at which it is running
and another one which is the maximum reachable sensitivity of objects.

31

Security in Linux

MLS also provides fine-grained approach to security on top of sensitivity
layers. Second part of MLS is the category system. A set of categories is
defined for each subject that the subject is allowed to access. Unlike sensitivity
layers, categories are not hierarchical. They are compartments used to divide
objects into groups (for example based on departments).

Sets of categories are also defined for objects. Access to an object is
allowed if the categories of subject and object match and sensitivity of the
object is in the range of sensitivity of the subject.

Multi-level security is optional. In the case it is turned off, the fourth field
of the security context is empty.
Configuration of the security policy
Security policy for SELinux is usually not written by administrator from
scratch. Instead, each new policy is based on the Reference Policy [28]. It
is a repository containing various policies that may be configured to suit
administrator’s needs. Distribution maintainers contribute to the reference
policy project where their contributions are peer reviewed so that changes to
the reference policy don’t break security policy on other distributions.

Reference policy is a modular system. One module should contain access
control policy for one application or a group of related applications. Module
also contains private and shared resources, information about labels and
definitions of interfaces used to communicate with other modules.

2.3.3 TOMOYO
TOMOYO was the third security module included in the mainline kernel in
June 2009.

TOMOYO was originally developed as a series of kernel patches and thus
didn’t implement its interface on top of LSM. This version is now known as
1.x and it is supported by kernels v2.4 and v2.6.

Authors of TOMOYO wanted to include it into mainline kernel and created
a new version that used hooks provided by the LSM framework. This version
is known as 2.x and is a part of mainline Linux kernel. However, as it is
restricted by the LSM framework, it doesn’t include all of the functionality
of the 1.x version.

There is also a third version of TOMOYO called AKARI. It is based on
the 1.x version of TOMOYO, but uses the LSM framework to implement its
security features. It is distributed as a kernel module, so end users have to
compile just the module, not the full kernel with patches applied. AKARI
has fewer features than 1.x, but more then 2.x.

In this overview, we will focus on the 2.x version, since it is part of the
mainline kernel.

32

2.3. Mandatory Access Control

Security model
TOMOYO differs from other security modules in its security model. It doesn’t
use the standard subject-object entity relationship. Instead, it focuses on
the behavior of processes. Process in TOMOYO is called a domain. Every
process in the system belongs to some domain. Domains are stored in a tree
structure based on the execution history of corresponding processes. Root
of the domain tree is called <kernel>. First process in the system is usually
the init process. This means that the first domain in the system for the init
process is identified as <kernel> /sbin/init. Once the init process starts
executing other processes, new domains will be created by appending the path
of the executable to the domain of init process. Creation of a new domain is
called a domain transition. This means that there might be two processes
with the same executable that have different domains, because they were
executed in a different context.
Domain transitions Since TOMOYO is focused on processes, it offers
extensive management of domain assignment to new processes. As denoted
in the previous section, creation of a new process is called domain transition.
This section explains various ways of managing domain transitions. For
clearer understanding, it also includes configuration snippets. For the full
reference, refer to the TOMOYO manual [29].

Rule initialize_domain Normally, domain of the new process will be
derived from its parent — parent domain will be a prefix of the child domain.
However, this behavior might not be always desired. Some applications
need to have the same restrictions no matter which process executed them.
Administrators can use rule initialize_domain to set this behavior. For
example, following directive in the exception policy:

initialize_domain /usr/sbin/sshd from any

will cause all newly executed instances of sshd program to switch to domain
<kernel> /usr/sbin/sshd upon their execution.

This directive can also be used to choose any domain when executing some
program from other domain. Instead of from any, administrator can define
from which domain the domain transition to <kernel> /usr/sbin/sshd will
occur. Rule
initialize_domain /usr/sbin/sshd from <kernel> /etc/rc.d/init.d/sshd

will cause sshd program to switch domains only when executed from the
specified domain.

Domain specification doesn’t have to be complete, it is possible to use just
a part of the domain name from right side (at least one full path). For example,

33

Security in Linux

instead of <kernel> /usr/sbin/sshd, one can use /usr/sbin/sshd. This
allows creation of more general rules that apply to more domains disregarding
their origin.

Rule no_initialize_domain This rule is useful when exceptions to
rule from the previous section are desired, i.e. domains shouldn’t switch when
starting some program with initialize_domain *** from any rule. For
example, following rule is in the exception policy:

initialize_domain /usr/sbin/sendmail.sendmail from any

Application /bin/mail executes /usr/sbin/sendmail.sendmail to send
mails. If you want to do a normal domain transition when starting sendmail
from mail, you can use following rule:

no_initialize_domain /usr/sbin/sendmail.sendmail from /bin/mail

Rule keep_domain In other security modules, when a new process is
starting, it usually inherits security context of its parent (if the module is not
configured to do otherwise). This behavior is also supported by TOMOYO.

Suppose that the same policy (and hence domain) is needed for all
applications executed by the sshd daemon. This can be configured us-
ing the following rule: keep_domain any from <kernel> /usr/sbin/sshd
/bin/bash. This rule can also be generalized to all bash instances like this:
keep_domain any from /bin/bash.

The rule can also specify domains that will be kept. For example, rule
keep_domain /usr/bin/xargs from /bin/bash will cause program xargs
to run under the same domain as bash, but every other program executed
under bash will undergo domain transition.

Directive initialize_domain has higher precedence than keep_domain.
Rule no_keep_domain This rule has the same meaning to keep_domain

as no_initialize_domain has to initialize_domain. It defines exceptions
to a previous keep_domain rule.
Domain policy Domain policy is a list of actions that may be performed by
the domain. If the action is not on the list, it normally may not be performed,
but that depends on the profile used.

TOMOYO supports access control of following actions:
file actions TOMOYO supports standard file operations that correspond

to file LSM hooks. Complete list of supported file operations [30] follows:
execute, read, write, append, getattr, create, unlink, chown, chgrp,
chmod, mkdir, rmdir, mkfifo, mksock, mkblock, mkchar, symlink, truncate,
link, rename, ioctl, mount, unmount, chroot, pivot_root.

34

2.3. Mandatory Access Control

network actions TOMOYO supports access control on both network
sockets and unix domain sockets. Administrator can specify to which address
(and port in the case of network sockets) the socket may perform operations.
Supported operations are: bind, listen and connect for streaming sockets
and unix sequential packet sockets, bind and send for datagram and raw
sockets.
Exception policy Exception policy is a list of actions that may be per-
formed by any domain, it is applied globally to all domains.

2.3.4 AppArmor
AppArmor was the fourth security module to be included in the mainline
kernel in October 2010. So far it is also the last major security module
included.

AppArmor is one of the most popular security modules, it is enabled by
default in SLES, openSUSE [31], Ubuntu [32], Synology’s DSM, Solus [33]
and also Debian starting from version 10 [34].

Similar to TOMOYO, AppArmor is focused on task-based security. Pro-
cesses in AppArmor are confined by objects they can access — files, network
connections, capabilities and others. List of process privileges is called a
profile. Main difference between TOMOYO and AppArmor is that while
TOMOYO creates domain for every running process, AppArmor manages
only processes with assigned profiles. Processes without profile are running
unconfined, i.e., they are not controlled by AppArmor.

Partition into profiles allows easy deactivation of a misbehaving profile
without disturbing rest of the mandatory access control. Similar approach
can be found in SELinux’s Reference Policy, where every application has its
own module that can be activated or deactivated at run time.

2.3.5 Smack
Smack was the second security module included in the Linux kernel, in
February 2008.

It’s goal is simplicity. Contrary to SELinux, which provides multiple
security models with highly customizable configuration, Smack provides
simplified mandatory access control. Simpler configuration makes it a popular
choice for embedded Linux distributions. For example, it is used by the Tizen
mobile operating system [35].
Security model
For its basic security model, Smack uses a labeling system. Labels for subjects
and objects are represented as regular ASCII strings. Their size is limited
to 255 characters by definition, but developers of Smack recommend to use

35

Security in Linux

twenty-three characters at most. One-character non-alphanumeric labels
are reserved for the Smack development team. Currently, there are five
one-character labels that serve a special purpose.

Security decisions are made according to these rules:

1. Any access requested by a subject labeled * (star) is denied.

2. A read or execute access requested on an object labeled ˆ (hat) is
permitted. This label is useful for backup software that should have
read access to any file on the system.

3. A read or execute access requested on an object labeled _ (floor) is
permitted. This is useful for system libraries, root of the file system, or
any other file that should be available for everyone to read or execute.

4. Any access requested on an object labeled * is permitted. This is
more permissive version of the _ label. It should be set on files which
everyone can write to, in addition to reading and executing, for example
/dev/null.

5. Any access requested by a subject on an object with the same label is
permitted.

6. Any access requested that is explicitly defined in the loaded rule set is
permitted.

7. Any other access is denied.

For file system objects, Smack closely follows traditional DAC permission
types. To open a file for reading, a read access permission is required on
the file. To search a directory, an execute access is required. Creating a file
with write permission requires both read and write access on the containing
directory. Sending a kill signal is a write access from the sender to the
receiving process.

For sockets, sending a packet from one process to another requires a write
access of sender to the receiver. Receiving process doesn’t need to have a
read access to the sender, since receiver is not the executer of this operation.
Explicit rules
Implementing a basic separation of privileges using basic labeling system is
easy. However, there may be special cases, where limited access by subjects to
objects with different labels is needed. An example of this is the Bell-LaPadula
model. Hence, Smack allows explicit definition of access rules between two
labels. Rule format definition is:

36

2.3. Mandatory Access Control

subject-label object-label access

Accesses are defined by single letters. These are written together, with
no space between them in any order. Smack supports standard access types:
r (read), w (write), x (execute), a (append) and two special types that are
described below.

t rule requests transmutation. Normally, when a process creates a new file,
this file gets the label of the process. However, if the parent directory
of the file is marked as transmuting and an explicit rule for the label of
the process (as subject) and the directory (as object) exists with the
t access type set, then the new file will have the label of the directory
instead of the process.

b rule should be reported for bring-up. This means that any rule marked with
b will be logged on a successful access using that rule if the bring-up
mode is turned on. Bring-up mode is a special mode of operation that
allows rules to be logged when they are applied. It is useful during
creation of a new configuration.

2.3.6 Minor modules
Integrity
Integrity is comprised of a number of different submodules, including the
Integrity Measurement Architecture (IMA), Extended Verification Module
(EVM), IMA-appraisal extension, digital signature verification extension and
audit measurement log support. [36] It doesn’t use LSM hooks, it defines its
own hooks that are called from the main security modules.

Its main purpose is to verify integrity of loaded programs and running
processes. EVM protects integrity of file’s security extended attributes using
HMAC [37]. IMA maintains a list of hash values of executables and other
sensitive files. It compares hash values when the files are executed or read. It
can also use facilities provided by a specialized TPM chip, if present in the
system [38].
Loadpin
Loading files into the kernel may present security risks. That’s why Linux
kernel provides options to cryptographically check loaded kernel modules and
accept only those whose signature is valid. However, there may be situations
where the authenticity of kernel modules is verified at the file system level.
The device from which modules are loaded may be read-only, so tampering of
files is impossible.

37

Security in Linux

Policy of Loadpin security module is focused on loading modules from
such file systems. First kernel module loaded causes originating file system
to be pinned and further modules are inserted only from that same file
system. After the file system is unmounted, no other modules are allowed to
be inserted without rebooting the system.

Lockdown

Lockdown provides an interface for the system administrator to disable (lock
down) various features of the kernel that would allow the user to modify
it somehow. As of Linux v6.2, it supports 29 reason levels of lockdown
operations. Sensitive operations in the kernel are allowed only if their level is
lower than the current level set in the lockdown module.

Security levels offered by the lockdown module can be grouped into
two categories. First one is integrity, that keeps kernel safe from userland
modifications. Second one is confidentiality that denies accesses that would
leak information from the kernel.

SafeSetID

SafeSetID is a minor LSM module that prevents change of process UID/GID
values. It can also prohibit assigning capabilities to change these values
(CAP_SETUID, CAP_SETGID). SafeSetID maintains a list of approved UID/GID
transitions and only these are allowed.

Yama

One of the main security issues of Linux is that processes of one user may
examine memory of other processes owned by that same user. This can be
performed using the ptrace() system call which is used by debuggers and
system call trace tools.

This means that once a process is compromised, attacker may compromise
other processes of that user and gather more confidential data. For example,
by compromising a web browser, attacker may read memory of ssh-agent
and steal keys.

Processes themselves may disable ptrace() attachment to them by calling
prctl(PR_SET_DUMPABLE, 0). This is done by the ssh-agent and other
programs that wish to be protected against this vulnerability. However, many
programs don’t do this step and are left vulnerable to ptrace() malicious
attacks.

Access control of Yama security module focuses on restricting access to
ptrace() system call to limited set of processes. The exact set of processes
is determined by a ptrace_scope level kernel parameter. Yama defines four
levels of ptrace_scope: [39]

38

2.4. Automatic policy creation

0. classic ptrace() permissions This security level adds no restrictive
access control to ptrace() system call. ptrace() is still available to
execute on processes which run under the same user, are not privileged
and have not disabled PR_SET_DUMPABLE option using prctl().

1. restricted ptrace() With this setting, processes can ptrace() only
their children or processes that explicitly set the pid of the tracer using
prctl(PR_SET_TRACER, debugger).

2. admin-only attach On this level, ptrace() may be executed only by
processes holding the CAP_SYS_PTRACE capability.

3. no attach ptrace() is completely denied. Once this setting is set in
kernel, it cannot be reverted without rebooting the machine.

BPF LSM
BPF LSM doesn’t provide any security model out-of-the box. It just provides
an interface for BPF programs so they can hook into LSM hooks. BPF
programs are byte-code programs that are loaded from user space by a
privileged user.
Capability
Linux capabilities (see section 2.2) are implemented as a minor LSM module.
Although they were not designed as a separate module, their implementation
is a good example of code refactoring, where code previously interwoven is
extracted using a generic API.

2.4 Automatic policy creation
In this section, we present tools for creating new security policies for existing
security modules in Linux. They are usually referred to as learning modes
in the documentation. At the end of each subsetion, we also summarize key
points notable to our goal in the dissertation thesis.

2.4.1 SELinux
Tools helping with the creation of a new security policy, for example audit2why
or audit2allow.

if the system is running a custom application, the system administrator
has to create a new policy module for that application. There are two ways
of doing that. The administrator might write the policy files from scratch
using the knowledge of what the program does. This requires a very good
knowledge of the reference policy and also of the confined program.

39

Security in Linux

The second approach, which might be used along with the first one is to
change SELinux enforcing mode to permissive. This allows the program to
function normally and all operations that would be denied are stored in the
audit log. Now the administrator has to execute all operations of the program,
so that everything needed will included in the finished policy. After this, the
administrator needs to filter the output of audit log to include events just
for the program in question and redirect it into the audit2allow script with
switch -M to create a new policy module. Note that this doesn’t contain file
context. If new labels are needed, administrator has to create these manually.
After the policy module was created, it can be loaded into SELinux using
semodule -i.

2.4.2 AppArmor
Following tools can be used to generate new profiles or update existing ones:

aa-autodep Generates minimal AppArmor profile for one or multiple exe-
cutables. It doesn’t perform complete static analysis of an executable,
so that resulting profile might not be complete, but it’s a good starting
point for creating a new profile. Internally it works by calling ldd and
generating a profile based on linked libraries [40].

aa-logprof Interactive tool that can be used to modify existing profiles
that are running in complain mode. User will be presented with denied
accesses which can be added to the policy, denied in the profile, or they
can manually create a new globbing rule for detected path. Globbing
rule can also be automatically generated from the last part of the path,
if user selects that option.
Similar tool for generating file globbing rules can also be found in
TOMOYO user space utilities suite (see 2.4.3).

aa-genprof Interactive utility that executes new process in complain mode,
detects all events and allows user to store generated rules in a new
profile.

AppArmor allows policy to be developed one process at a time. Ad-
ministrator starts the procedure by running the aa-genprof command with
the name of the executable to be confined. This creates a new profile and
sets it to complain mode. The application can then be executed and all of
its legitimate features have to be used, so that the final policy contains all
necessary permissions. After all events are logged, the administrator presses
S to scan the system log using aa-logprof utility.

40

2.4. Automatic policy creation

This utility then interactively presents all logged events and provides
various options. In the case of starting a new process, it asks if the new
process should inherit the current profile, use a new profile or a subprofile.

AppArmor also provides suggested glob rules and abstractions. An ab-
straction provides a reusable set of access rules grouping together multiple
resources that are commonly used together [41]. Administrator can further
specify the exact type of the added rule:

allow to add an allow rule to the policy

deny to add a deny rule to the policy, meaning it won’t be logged next time

ignore to ignore the event, meaning it will be denied and logged in the
enforcing mode

new user has to enter new globbed entry to include the path

glob globs the last element of the path /*, which includes all of the files in
the directory

2.4.3 TOMOYO
Automatic policy creation from system call logs was TOMOYO’s design goal.
When creating a new policy, administrator has to use the policy editor to
analyze a behavior of an application. Standard process for this goes as follows:

First, the application to be confined has to be running. Then, a new
domain for the application should be initialized using the initialize_domain
directive. This is to make sure that the same domain will be used for this
application no matter how the application was executed. Then the profile for
this domain should be set to learning mode. TOMOYO provides standard
profile with learning mode stored at position 1. After the profile has been
set, application in question should be restarted, so that TOMOYO can detect
behavior during shutdown and startup of the application and add it to the
security policy. After the program is restarted, administrator should leave
it running for some time, or execute all its features that might occur during
its normal operation. It is important to do this step thoroughly, because all
unrecorded behaviors will be denied after the profile is set to enforcing mode.

Once the behavior has been recorded, the policy can be stored on the
hard drive, since now it exists just in the operating memory. Policy can be
stored on hard drive using the tomoyo-savepolicy tool.

41

Security in Linux

Memory requirements
Since TOMOYO stores a list of actions one process (domain) can execute, its
memory usage can be quite high compared to other security modules. This
usage is especially evident with learning mode.

Memory statistics are available in /sys/kernel/security/tomoyo/stat
file. This interface provides summary of memory usage by each subsystem.
Patterning domain policy rules
Domain policy access rules in TOMOYO consist of full pathnames along
with corresponding operations. However, it is not always possible to generate
all possible pathnames a program can access. Temporary files are a perfect
example. Their file name is usually a sequence of random characters prefixed
with a constant string.

TOMOYO allows to create patterns in access rules to handle all possi-
bilities. It offers a number of wildcard rules similar to regular expressions,
but with special focus on often occurring patterns in filenames. For example,
\$ means 1 or more repetitions of decimal digits and \A means 1 or more
repetitions of alphabet characters.

TOMOYO also offers extensive tools to work with patterning rules. One of
them is user space tool tomoyo-findtemp which can be used to find potential
temporary files suitable for patterning. Utility tomoyo-patternize uses
rewrite rules from /etc/tomoyo/tools/patternize.conf to automatically
generate patterns from domain policy generated from learning mode.

2.4.4 Smack
Smack doesn’t provide any tools for automatic policy creation. Administrator
has to manually label files and directories using the chsmack utility and
create configuration files in /etc/smack/accesses.d. Smack doesn’t support
configuration file inclusion, but there may be more then one configuration
file.

The only distribution that offers ready Smack policies is Tizen which
focuses on embedded devices like TVs, wearables and mobile phones. Other
desktop distributions don’t contain Smack policy packages. Hence, the
administrator has to create his own policy.

42

Chapter 3

Introduction to Medusa

Medusa is a security module for the Linux operating system that was developed
at the Faculty of Electrical Engineering and Information Technology during
the turn of the century by Marek Zelem and Milan Pikula [42, 43, 44].

3.1 Overview of the Medusa system
The complete Medusa system is defined by these parts:

1. Kernel module that represents the authorization module and partially
policy store of a reference monitor. Architecture of Medusa allows
multiple kernel modules that don’t have to be a part of the operat-
ing system (e.g. a reference monitor implemented inside a database
server). Currently there is one implementation for the Linux operating
system integrated using LSM framework. Kernel module implements
the Medusa security model (see section 3.2).
Kernel module is structured into four layers. Lower layers are closer to
the kernel and higher layers are closer to the authorization server.

2. Communication protocol used to transfer information from multiple
kernel modules to an authorization server. This protocol is generic
enough so that it’s able to serialize any entity or programming object
that needs to be examined for access control (see section 3.3).

3. Authorization server that represents the policy store component of the
reference monitor. It is the main component that parses and stores access
control policy. Functions vsPermissiona and vsMember are defined by
the authorization server based on the loaded policy. It is a requirement
from the kernel module that any previously unencountered entity has to
be sent to the authorization server for a process of labelling (assigment

43

Introduction to Medusa

of virtual spaces, see section 3.5.2. One authorization server can control
one or several kernel modules.

3.2 Medusa Security Model
This section is based on an unpublished article by Zelem and Pikula [42], in
which the security model of Medusa security module was presented under its
original name — ZP Security Framework.
Terminology 1. The state of Medusa system is a tuple (S,O, m,VS,A),
where S is a set of subjects, O is the set of objects, m is the access function
that represents access matrix, VS is a set of virtual spaces and A is a set of
access permissions that are recognized by Medusa.
Terminology 2. Let S be a set of subjects and O be a set of objects. We
define a set of entities E as the union of S and O, i.e., E = S ∪ O.

Virtual spaces are a key concept in Medusa that makes it specific from
other security models. Virtual space groups together a set of related system
entities. Note that one entity can be present in multiple virtual spaces
(suggesting that the object can be accessed from different contexts). Entities
in one virtual space have the same access rights (see below for detailed
explanation). Such notion is similar to namespaces or containers.
Definition 1. Function m : S ×O → 2A, where S is a set of subjects, O is
the set of objects and A is a set of access permissions, assigns set of allowed
permissions to pairs of subjects and objects. Subject s ∈ S can invoke access
a ∈ A on object o ∈ O iff a ∈ m(s, o).

Function m can be thought of as the function that gives contents of cells
inside access matrix (see section 1.2.1).

Note that S ∩ O ̸= ∅. Subjects may pose as objects in some operations,
for example when process sends a signal to another process.
Definition 2. Function vsMember : E → 2VS returns a set of virtual spaces
for a given entity, where E is a set of entities and VS is a set of virtual spaces.
Entity e ∈ E is a member of a virtual space v ∈ VS iff v ∈ vsMember(e).
Definition 3. Function vsPermissiona : S → 2VS where S is a set of subjects
and VS is a set of virtual spaces returns a set of virtual spaces that subject
is allowed to act upon using access permission a. Subject s ∈ S can invoke
access a ∈ A on object that is a member of virtual space v ∈ VS iff v ∈
vsPermissiona(s).

In other words, the access is allowed if the object is a member of at least
one virtual space that the subject has permission to access.

44

3.3. Medusa Communication Protocol

3.3 Medusa Communication Protocol
The Medusa communication protocol (MCP) is used to mediate communi-
cation between the kernel module and the authorization server. Since the
authorization server manages the security policy, it needs to be aware of
kernel status and events that change the state of the system. To inform about
events and represent kernel objects, the communication protocol defines a
way to serialize this data.

3.3.1 Data types
This section presents data types that are used in the MCP.

K-class K-class is used to internally represent a class of a kernel data
structure. It consists of a definition of data (see K-object below)
and pointers to functions that are used to invoke operations on the
k-class. There is a constructor and destructor function, functions for
fetch and update operations (explained below) and unmonitor function
used to disable monitoring of operations of objects of the class. K-
class design is indicative of an object-oriented design that is present in
Medusa.
We will use file_kobject for code examples of data types. See list-
ing 3.1 for definition of file_kobject k-class. MEDUSA_KCLASS_HEADER
is a macro that connects this k-class with its k-object definition and
definition of its attributes. See below for description of these objects.

MED_KCLASS(file_kobject) {
MEDUSA_KCLASS_HEADER(file_kobject),
"file",

NULL, /* init kclass */
NULL, /* destroy kclass */
file_fetch, /* fetch kobject */
file_update, /* update kobject */
file_unmonitor, /* disable all monitoring on kobj. */

};

Listing 3.1: Definition of file_kobject k-class

Attribute type Attribute types are data types used to define attributes
of k-objects. They specify a common data format used by the kernel
module and the authorization server to exchange information about
k-objects. There are also special key attributes that are used to find
the kernel object to update (they serve as unique identifiers).

45

Introduction to Medusa

When updating an object, attributes that are not read-only are updated
to attribute values sent by the authorization server.

K-object K-object internally represents data of a kernel structure. There
are two views of a k-object: view of the kernel module, which may
contain additional information for internal purposes and view of the
authorization module which is determined by the attributes. Listing 3.2
contains the layout of the file_kobject structure. This is an example
of a kernel-side k-object structure. It mimics contents of inode structure
and contains only fields that are needed for the authorization server.
Compare it with the definition of attributes of the same k-object in
listing 3.3 — that is how the authorization server will see the k-object.
For each k-object, there are two important conversion routines, conven-
tionally called kern2kobj and kobj2kern.1 The first one is used usually
by code in layer L2 before transferring kernel object to the authorization
server. The second one is used usually by the update operation, i.e.,
when the authorization server updates values of k-object attributes.

struct file_kobject {
unsigned long dev;
unsigned long ino;

umode_t mode;
nlink_t nlink;
kuid_t uid;
kgid_t gid;
unsigned long rdev;

struct medusa_object_s med_object;
};

Listing 3.2: Definition of file_kobject structure

Event type Event types define structure of objects used to inform the
authorization server about an event in the kernel. There are three main
components of an event type: subject k-object, object k-object and
attributes of the event itself.
Definition of getfile event is shown in listing 3.4. Starting from the
top, it begins with a definition of a structure getfile_event that is
used to represent the event in the kernel. Below it is a definition of

1Full names include name of the k-object as a prefix. For file k-object that is
file_kern2kobj and file_kobj2kern.

46

3.3. Medusa Communication Protocol

MED_ATTRS(file_kobject) {
MED_ATTR_KEY_RO(file_kobject, dev, "dev", MED_UNSIGNED),
MED_ATTR_KEY_RO(file_kobject, ino, "ino", MED_UNSIGNED),
MED_ATTR(file_kobject, mode, "mode", MED_UNSIGNED),
MED_ATTR_RO(file_kobject, nlink, "nlink", MED_UNSIGNED),
MED_ATTR(file_kobject, uid, "uid", MED_UNSIGNED),
MED_ATTR(file_kobject, gid, "gid", MED_UNSIGNED),
MED_ATTR_RO(file_kobject, rdev, "rdev", MED_UNSIGNED),
MED_ATTR_OBJECT(file_kobject),
MED_ATTR(file_kobject, user, "user", MED_UNSIGNED),
MED_ATTR_END

};

Listing 3.3: Definition of attributes for file k-object

attributes used when transferring data to and from the authorization
server and definition ends with macro MED_EVTYPE that defines the event
itself. Name of its subject is file and name of its object is parent.

struct getfile_event {
MEDUSA_ACCESS_HEADER;
char filename[NAME_MAX + 1];
int pid;

};

MED_ATTRS(getfile_event) {
MED_ATTR_RO(getfile_event, filename, "filename", MED_STRING),
MED_ATTR_RO(getfile_event, pid, "pid", MED_SIGNED),
MED_ATTR_END

};

MED_EVTYPE(getfile_event, "getfile", file_kobject, "file",
file_kobject, "parent");

Listing 3.4: Definition of a getfile event

When browsing source code of Medusa, one can notice that there are
5 event types defined.2 These are used to notify authorization server
about an event that is not a security access. Events starting with get
are generated when kernel module encounters an entity that is not
classified into virtual spaces. One of the tasks of the authorization
server is to set the correct virtual spaces according to the identity of

2These event types are: fuck (files under critical kidnapping), getfile, getipc, getprocess
and getsocket.

47

Introduction to Medusa

the entity and update it (see section 3.5).
There is also a special case of event types, called access types. In the
MCP, there is no difference between event and access types. There
is however an important semantic difference — access types represent
actual security accesses. If such event is sent to the authorization server,
it has to decide whether this access is permitted or not.

3.3.2 Operations
This subsection describes operations that are used by the authorization server
to access or modify data in the kernel.

Fetch Fetch operation is used by the authorization server for getting k-object
from the kernel. Authorization server has to create new k-object and
fill key attributes. Kernel will use these attributes to locate the object
and if found, it will be sent back to the authorization server.
Fetch is seldom used in the authorization server, as k-objects needed
for an event are already included in the event.

Update Update operation is used by the authorization server to modify
data of some kernel object by modifying attributes of its corresponding
k-object.

As these operations are defined as methods of each k-class, they can
perform any action inside the kernel. For example, printk k-class uses the
update operation to print a message to the kernel log from the authorization
server.

3.4 Kernel module
To explain the functionality of the kernel module, we will use the mkdir
operation as an example. LSM path hook path_mkdir for this operation is
registered on layer L1. Hooked function calls medusa_mkdir on L2. Func-
tions of access types on L2 are the main place where the access decision is
implemented. Necessary actions of such functions are shown in algorithm 2.
Specific implementation depends on the access. For example, link needs to
validate two objects and also check virtual spaces of these objects.

Procedure starts by checking validity of subject and object of the access.
Validity means that the entity is classified into virtual spaces (i.e., it has its
security context set). If the entity is not valid, a new get event is generated
and sent to the authorization server. The task of the authorization server

48

3.4. Kernel module

is to assign virtual spaces to the entity according to the configured security
policy.

After it is confirmed that both the subject and the object of the access
have virtual spaces assigned to them, the intersection of the virtual spaces
of the subject and the object is calculated. If there is no intersection, the
access is denied without consulting the authorization server. Notice that this
is similar to a pattern of UGO and MAC checks in Linux — if UGO denies
the operation, MAC is not considered.

After virtual space intersection check, an access decision request may be
generated and sent to the authorization server if the access is monitored.
Whether the access is monitored is determined either from the subject or the
object of the access. Which entity is used depends on the specific access.3
For the mkdir operation, the object determines if the access will be sent to
the authorization server (note that monitoring information has been assigned
earlier by the authorization server together with classification into virtual
spaces).

Algorithm 2 Typical processing of an access on layer L2
Input: event, subject, object
Output: 1 if event is allowed, 0 otherwise

1: if subject is invalid then
2: validate(subject)
3: end if
4: if object is invalid then
5: validate(object)
6: end if
7: if not virtual spaces of subject and object intersect then
8: return 0
9: end if

10: if event is monitored then
11: return authserverDecide(event, subject, object)
12: else
13: return 1
14: end if

3This is a drawback in the Medusa design, which is planned to be removed in the
future. However, its consequences are only performance-related and do not directly affect
the policy mining.

49

Introduction to Medusa

3.5 Authorization server
The task of the authorization server is to assign virtual spaces to the entities ac-
cording to the configured security policy. There are three authorization servers
currently available: Constable (the original one), mYstable and Rustable. We
will focus on Constable from now, as the other two are experimental and
more suited to development purposes.

3.5.1 Unified namespace
The main data structure used by Constable is the unified namespace. It is
a tree structure that unites several subtrees defined by the administrator in
the configuration. Figure 3.1 shows a typical example of such a tree. There
are two subtrees: domain and fs. Subtree domain contains processes. In
this specific example, processes are assigned to tree nodes according to their
category. Processes of PostgreSQL database daemon will be assigned under
pgsql node and normal user processes will be assigned under user node.
Notice that multiple processes can be assigned under one node. This applies
to any subtree.

Subtree fs contains the filesystem as it’s seen by the authorization server.
Note that although it may resemble the filesystem structure of the protected
machine, it doesn not get the structure from the actual filesystem. The
structure is determined by the policy configuration only. Constable does not
change the tree at runtime, so creating or deleting files is not reflected in the
tree. Another example of a subtree in the unified namespace is the tree of
roles in RBAC model (not shown in the figure).

root
domain

pgsql
user
init
...

fs
mnt
tmp
var
...

Figure 3.1: Tree structure of unified namespace in Constable.

50

3.5. Authorization server

3.5.2 Insertion into the tree
There are two basic ways of how an entity is classified into some node in the
unified namespace. The first one is explicit classification. It is usually used
when classifying processes. This is illustrated in listing 3.5. Line 5 defines
syslog virtual space. Permissions for this virtual space are defined below
on lines 6–10. Handler fexec on line 12 does the actual work of classifying
a process into another domain. Access type fexec is invoked when process
tries to execute a program file using the exec system call. In this case, the
handler is invoked by any subject (denoted by a star *) and only one object —
file located at fs/usr/sbin/syslog in the unified namespace.4 Thus when
some process tries to execute syslogd and it succeeds,5 it is moved into
domain/syslog node by the enter_domain function that is defined in the
policy on line 1. This in turn classifies the subject into virtual spaces that
are assigned to this node. In this case, that’s the syslog virtual space.

1 function enter_domain {
2 enter(process, str2path("domain/" + $1));
3 }
4
5 primary space syslog = "domain/syslog";
6 syslog READ tty, daemondev, temp, var, syslog, logs,
7 bin, etc, proc, home_public,
8 WRITE tty, daemondev, temp, var, syslog, logs,
9 SEE tty, daemondev, temp, var, syslog, logs,

10 bin, etc, proc, home_public;
11
12 * fexec:NOTIFY_ALLOW "/usr/sbin/syslogd" {
13 enter_domain("syslog");
14 }

Listing 3.5: Snippet of Constable configuration for syslog domain

Second type of classification is automatic based on the position in the
unified namespace tree hierarchy. It is executed by a special handler, see
example in listing 3.6. This type of handler is also called a hierarchy handler.

The explanation of the handler now follows. The tree is called fs and it
consists of file k-objects (tree ”fs” of file). This handler is called when

4Curious readers may wonder why the root of the subtree fs is not present in the
path in the listing. That’s because Constable allows to label one subtree primary and all
absolute paths will be automatically computed starting at the root of that subtree. This is
normally used for the fs subtree so file paths may be defined naturally as absolute paths.

5The handler is executed after the operation is evaluated as allowed, due to the
NOTIFY_ALLOW specifier.

51

Introduction to Medusa

tree "fs" clone of file by getfile getfile.filename;

Listing 3.6: Example of an automatic hierarchy handler in Constable

Constable receives getfile event from the kernel module (by getfile).
Subject and object of the getfile event are important for the hierarchy
handler to work. In this case, subject represents the file object that should be
classified and object is parent folder of the subject that is already classified
into some node.6 Handler extracts node from the object due to clone handler
modifier. Children nodes of the extracted node are search for a node with a
name specified in the filename attribute of the event (getfile.filename).
If found, subject will be classified into this node.

6Similar relation is also used for the getprocess event, where object is parent process
of the subject.

52

Chapter 4

Related Work

This chapter introduces related work that concerns topics similar to this
thesis. It can be roughly divided into two classes: sandboxing, that uses
system call interposition to disallow certain processes from doing actions they
are not allowed to and policy mining that pursues automatic creation of
security policies for some security model from existing data, such as existing
policy in a different security model or access logs.

4.1 Policy mining from logs
Molloy et al. [45] proposed an approach to producing usable RBAC models
from usage of permissions. Such models reflect the actual pattern of usage
and are therefore interpretable. Evaluation of the proposed algorithms shows
improvement on previous approaches including exact mining, approximate
mining, and probabilistic algorithms; the results are more temporally stable
than exact mining approaches, and are faster than probabilistic algorithms
while removing artificial constraints such as the number of roles assigned to
each user.

Xu and Stoller [46] presented two solutions that are capable of creating
ABAC policies from access logs. First one was an algorithm that worked by
creating initial candidate rules from selected log entries and then iterating
the rest of the log entries and generalizing and merging existing rules. Second
one was implemented in the Progol inductive logic programming language.
This work was the first published solution of such a problem.

Iyer and Masoumzadeh [47] proposed an approach to mine ABAC policies
from access control logs that may contain both positive and negative autho-
rization rules. They evaluated the approach using two different policies in
terms of correctness, quality of rules (conciseness), and time. The algorithm
outperformed previous approach to ABAC mining in terms of time.

53

Related Work

Cotrini et al. [48] proposed an algorithm for mining ABAC rules from
sparse logs that overcomes various problems that were present in previous
solutions, such as overly permissive rules or large rules.

Karimi and Joshi [49] present a methodology for automatically learning
ABAC policy rules from access logs in a system. The proposed approach uses
an unsupervised learning-based technique for detecting patterns in a set of
access records and extracting ABAC policy rules from these patterns. Two
algorithms are presented, rule pruning, and policy refinement, to improve the
quality of the mined policy. The proposed approach is evaluated on three
different sample policies as well as a randomly synthesized policy.

The authors followed up with an unsupervised learning-based algorithm
for detecting patterns in access logs and extracting ABAC authorization rules
from these patterns [50]. In addition, they presented two policy improve-
ment algorithms, including rule pruning and policy refinement algorithms to
generate a higher quality mined policy.

Bui et al. [51] presented algorithms for mining ReBAC policies from
information about entitlements together with information about entities. It
presented the first such algorithms designed to handle incomplete information
about entitlements, typically obtained from operation logs, and noise in
information about entitlements. Two algorithms were presented: a greedy
search guided by heuristics, and an evolutionary algorithm.

Cotrini et al. [52] presented a generalized method for policy mining sup-
porting wide variety of policy languages, called universal access control
policy mining (Unicorn). Supported models are ABAC, RBAC, RBAC with
user-atribute constraints, RBAC with spatio-temporal constraints, and an
expressive fragment of XACML. For the later two, no known policy miners
were available previously. To design a policy miner using Unicorn, there are
two requirements: a policy language and a metric quantifying how well a
policy fits an assignment of permissions to users. Policy miners built on Uni-
corn were experimentally evaluated on logs from Amazon and access control
matrices from other companies. Despite the genericity of the method, policy
miners were competitive with and sometimes even beter than specialized
state-of-the-art policy miners.

The problem that we set out to solve in this thesis is similar to these works
in that they work with logs that might be incomplete. Thus we will need to
deal with missing entries and control creation of over-assignments without
compromising the system security. Other aspects, such as the security model
(ABAC) is different from our pursuit. Since in our thesis we are devising a
new system for automatic generation of security policies, we have to start
with small steps and choose security model that is most suitable for operating
system security, such as the domain model.

54

4.2. Automatic policy generation

4.2 Automatic policy generation
One of the first works published about automatic policy creation is Polgen [53].
It is a tool for human-guided semi-automated SELinux policy generation.
Polgen processes traces of the dynamic behavior of a target program. In
that behavior, it observes instances of information flow patterns and based
on these patterns, it creates new SELinux types and generates policy rules.
The authors however deemed dynamic behavior as insufficient to determine
security policy. Hence, Polgen uses a wizard-style interface for additional
human input to the policy. They call this interaction “guided automatic
policy generation.”

Lachmund [54] presented a call graph based static analysis approach for
application policy generation, which is augmented by an additional string
analysis to identify user input propagating through the application’s control
flow, until it reaches permission checks. The main contribution of the method
is that it distinguishes resource accesses initiated by the application from those
initiated by the user and generates an application policy, which only contains
access rights that are not derived from user interaction. The generated policy
satisfies the principle of least privileges. User initiated accesses are handled
separately at runtime.

Rauter et al. [55] provided a framework to automate generation of security
policies and a proof-of-concept implementation that uses binary analysis to
generate a model of the resource requirements of an application. They used a
new approach to refine the policy by connecting different accesses to the same
resource via their least common ancestor in the call graph. The proposed
methods were tested with Nginx web-server and shown a high potential to
significantly simplify the policy generation process.

Wang et al. [56] proposed EASEAndroid, an analytic platform for auto-
matic policy analysis and refinement for SEAndroid, a SELinux implementa-
tion used in the Android operating system. It is not a fully automatic policy
generator, as it needs an existing policy and a small set of known access
patterns for operation. EASEAndroid dynamically processes new audit logs,
producing suggestions for policy refinement. The solution was evaluated on
1.3 million audit logs from real-world devices discovering eight categories of
attack access patterns.

Mocanu et al. [57] proposed work on the development of a deep learning
technique to infer policies from logs. The proposal improves the state-of-the-
art by supporting denied access requests and different types of noise in logs.
It is based on restricted boltzmann machines.

In his dissertation, Sanders [58] explored the use of automated methods
to create least privilege access control policies. Specifically, he developed a

55

Related Work

framework for policy generation algorithms, developed two machine learning
based algorithms for generating role based policies and developed a rule
mining based algorithm to create attribute based policies.

Law et al. [59] presented a new ILP system, called FastLAS, that takes as
input a learning task and a customised scoring function, and computes an
optimal solution with respect to the given scoring function. While the system
is generic and not specifically designed for generating access control policies,
the authors have evaluated its accuracy on real-world access log datasets.

Jabal et al [60] proposes a framework for learning ABAC policies from
data (inluding logs) named Polisma. It combines data mining, statistical, and
machine learning techniques, capitalizing on potential context information
obtained from external sources (e.g., LDAP directories) to enhance the
learning process. The authors evaluate the approach empirically using two
datasets (real and synthetic).

Li et al [61] proposed ASPGen, which is a framework for generating
AppArmor security policies automatically. ASPGen can autogenerate security
policy with the least privilege and RBAC (Role-Based Access Control) for
applications, and effectively alleviate the complexity and subjectivity in
manually configuring AppArmor’s security policy, as well as the security
threats that result from the improper policy. Inside ASPGen, a path-based
confidence model for AppArmor is used to support the auto-generation of
security policy. It is the first and so far the only public security framework
supporting automated policy generation for AppArmor as far as we know.

4.3 System call interposition
Request decision can be made on various levels. The first one is on the level
of a system call without considering its arguments. This is on the level of
seccomp (without BPF). It’s a good first step towards good direction, but
consider that some system calls that might be necessary for the application
might be misused by the attacker. Such system can’t reliably manage system
calls.

Second level is system call interposition with filtering based on the argu-
ments of system calls. For example, seccomp-bpf uses bpf programs attached
to seccomp system call filter. These programs may decide if the system call
is allowed.

LSM works in a similar way, although it abstracts away system calls and
instead uses the idea of hooks placed in the kernel when the kernel accesses
some resource. Security modules can work with more information than simple
syscall interposition — they can limit the access to an object based on the
subject and object identity.

56

4.4. Containerization and Sandboxing

Golberg [62] built Janus, a secure environmment for untrusted helper
applications. It used Solaris process tracing facililty. Pnacholi et al. [63]
introduced TIMELOOPS, a novel technique for automatically learning system
call filtering policies for containerized microservices applications. It used
seccomp-BPF, systemd, and Podman containers.

4.4 Containerization and Sandboxing
One of the earliest works that considered sandboxing a program which receives
untrusted data from the internet was by Goldberg et al. [64]. It intercepted
and filtered dangerous system calls via the Solaris process tracking facility.
System calls were allowed based on a configuration file that would have to be
created by an administrator.

Another classic paper by Walker et al. [65] introduced domain type en-
forcement (DTE), a strong, configurable operating system access control
technology that minimized the damage root programs could cause if sub-
verted. The goals of the paper align with goals of LSM, such as protecting
from attacks where malicious programs gain root privilege.

DTE was later implemented as LSM module to the Linux operating system
by Hallyn [66] in his dissertation. Author implemented tools for creation
and management of security policies, but no automatic policy creation was
mentioned.

Acharya and Raje [67] presented MAPbox, a confinement mechanism for
user applications. It is based on an idea to group application behaviors into
classes based on their expected functionality and the resources required to
achieve that functionality. However, the configuration in the form of allowed
bahaviors had to be provided by the user of the application.

Fraser et al. [68] presented techniques for developing Generic Software
Wrappers — protected, non-bypassable kernel-resident software extensions for
augmenting security without modification of the application source code. The
key elements of the work are: high-level Wrapper Definition Language, and
framework for configuring, activating, and managing wrappers. Automatic
generation of the wrappers was not discussed in the paper.

Ko et al. [69] built on the previous work to integrate intrusion detection
techniques. Resulting implementation is a software layer dynamically in-
serted into the kernel that can selectively intercept and analyze system calls
performed by processes as well as respond to intrusive events.

Provos [70] introduced an approach for application confinement that
supports automatic and interactive policy generation, auditing, intrusion
detection and privilege elevation and applies to both system services and user
applications. Automatic generation of policies is provided by Systrace.

57

Related Work

Jabłoński and Pawłowski [71] presented a sandboxing solution for GNU/Lin-
ux operating system. It didn’t include facilities for automatic policy configu-
ration.

Shan et al. [72] designed a MAC model incorporating intrusion detection
and tracing in a commercial operating system, named Tracer. Their target
users were common users who are not system experts. The model concep-
tually consists of three actions: detecting, tracing and restricting suspected
intruders. One novelty is that it leverages light-weight intrusion detection
and tracing techniques to automate security label configuration that is widely
acknowledged as a tough issue when applying a MAC system in practice.

The other is that, rather than restricting information flow as a traditional
MAC does, it traces intruders and restricts only their critical malware behav-
iors, where intruders represent processes and executables that are potential
agents of a remote attacker. Experiments on Windows showed that Tracer can
effectively defeat all malware samples tested via blocking malware behaviors
while not causing a significant compatibility problem.

58

Chapter 5

Policy Mining

5.1 Problem Definition
The main objective of this thesis is to design and implement an algorithm
that creates a functional security policy for the Medusa security module with
minimal administrative intervention. This is a general objective that might
be too overwhelming to achieve. To make it more focused and specific, we
introduce these constraints:

1. Security policy will only take into account filesystem operations and
accesses.

2. Creation of security policy will focus on limiting the set of available
objects to a user or system application. This concept is similar to
sandboxing. By limiting access of the application, we limit the attack
surface of the application. This is useful for network daemons, as
explained earlier in the thesis.

In other words, our focus is on creating a policy for system services as
opposed to creating a policy for individual users that use the system.

3. Created policy is static. This means that if the administrator wants
to later update the policy, she has to run the policy mining algorithm
again.

5.2 Research questions
The expected output of the thesis can be summarized in the following research
questions:

59

Policy Mining

1. If we construct an algorithm that would create security policy just from
operation logs, how would it compare to an administrator-authored
policy?

2. If we construct an algorithm that would create security policy from op-
eration logs including some external information, how would it compare
to an administrator-authored policy?

5.3 Solution Proposal
Our proposed solution takes inspiration from domain-type enforcement [65, 66],
specifically it creates domains for each executed application. By observing
activities of the application (on the premise that the application is not
malicious), we can construct a list of objects that the application should have
access to.

Brief summary of the proposed solution is:

1. Monitor operation of an application for which the security policy will
be created.

2. Preliminary policy will be created for each subject (represented by
an execution domain) based on the name of the object and requested
operation.

3. Preliminary policy will be analyzed for missing rules that create un-
derpermissions and additional rules will be added to the policy. We
call this step generalization. After this step, a full usable policy for an
application should be available.

In the following sections, each point of the proposed solution will be explained
in more detail.

5.3.1 Basic Definitions
This section presents definitions that will be used later in the chapter.

Terminology 3. Thread info is a tuple (exe, euid) that represents a running
thread, where exe is the path to the program file and euid is the effective
UID of the runnning thread.

Notation tiexe represents the exe portion of the thread info tuple and tieuid

represents the euid portion respectively.

Terminology 4. Domain is a list of thread infos [ti1, . . . , tin]. tin contains
thread info valid for the running thread. ti1, . . . , tin−1 represent the execution
history of a thread.

60

5.3. Solution Proposal

Terminology 5. Domain transition is a change of domain for a particular
process. There are three ways a domain transition can happen:

1. By calling exec system call. New domain of a thread will be [ti1, . . . , tin+1],
where tiexe

n+1 is the path of the executed binary and tieuid
n+1 = tieuid

n (eUID
remains unchanged).

2. When eUID is changed, for example by calling the setresuid system
call. New domain of a thread will be [ti1, . . . , tin−1, tin′], where tin′ =
(tiexe

n , euid ′) and euid ′ is the new euid.

3. By calling exec system call on a setuid binary. New domain of a thread
will be [ti1, . . . , tin−1, tin′], where tin′ = (exe′, euid ′), exe′ is the path of
the executed binary and euid ′ is the new euid. Since setuid binaries are
depracted in modern systems, we have not considered this way in our
solution.

In all cases, [ti1, . . . , tin] is the original domain of the process.

Terminology 6. Policy rule is a tuple (path, do, P ′, F), where path ∈ PA is
a string representing a path, do is the domain to which this rule applies, P ′

is a set of permissions that this rule grants and F is a set of flags that affects
how the rule is applied when granting access (see section 5.3.2).

Definition 4. dirname : PA → PA is a function that for a given path
returns path of its parent directory (PA is a set of file paths). It conforms to
POSIX.1-2008.

For example, dirname(”/usr/bin/cat”) = ”/usr/bin”.

Definition 5. children : PA→ 2PA returns a set of children paths of a given
path, where PA is a set of paths.

children(p) = {q ∈ PA | dirname(q) = p}

Definition 6. match : R× PA→ {0, 1} returns 1, if regular expression from
R matches path from PA, where R is a set of regular expressions and PA is a
set of paths.

Definition 7. prefix : PA→ 2PA returns a set of all parent paths in the folder
hierarchy, where PA is a set of paths. Example: prefix(”/usr/bin/cat”) =
{”/”, ”/usr”, ”/usr/bin”}.

Definition 8. matchPrefix : R×PA→ {0, 1} returns 1, if ∃p ∈ prefix(path) :
match(regexp, p) = 1, where regexp ∈ R is a regular expression and path ∈ PA
is a path.

61

Policy Mining

Definition 9. recChildren : PA → 2PA returns all paths that are available
under input path.

recChildren(p) =
⋃

p′∈children(p)
recChildren(p′)

Definition 10. numericRegexp : PA → R, where PA is a set of paths and
R is a set of regular expressions, is a function that for a given path creates
a regexp. This regexp keeps the path intact except for numeric characters.
Each numeric character (or multiple characters if located next to each other)
are replaced by \d*.

For example, numericRegexp(”/run/postgresql/.s.PGSQL.5432.lock”) =
”/run/postgresql/\.s\.PGSQL\.\d ∗ \.lock”.

Definition 11. unique : P → 2PA returns a set of paths having multiplicity 1
in the input multiset, where P is a multiset of paths and PA is a set of paths.

Definition 12. Let best(R′, PA′) : 2R × 2PA → R be a function returning
r ∈ R′ that matches all paths in PA′ ⊆ PA. If such r doesn’t exist, it returns
empty regexp.

5.3.2 Decision function in Medusa
Algorithm 3 shows how the decision function is computed for a specific access.
How the access is computed depends on flags in the rule. There are two flags:

regexp Path in this rule is not matched literally, but as a regular expression.

recursive Rule applies to the specified path and all possible paths under it.

First, literal rules are applied (line 1). These rules target specific, literal
paths within the file system. If a matching rule is found and its permissions
cover the requested permissions, the access is allowed. If a matching literal
path was not found, the algorithm searches for regexp rules (line 3). If that
fails, search continues for matching recursive literal rules (line 5). The last
rules searched are the recursive regexp rules (line 7). If no suitable rule was
found, the access is denied.

5.3.3 Getting Logs
Input data for the algorithm should be complete, meaning that every system
access should be logged without exceptions. Another requirement is that
audit should be applicable only to a selected number of processes. This is
mostly for performance reasons during development as logging every system
call for every process might cause unacceptable decline of performance.

62

5.3. Solution Proposal

Algorithm 3 Computation of access
Input: access request (do, path, P), policy Π
Output: answer ∈ {0, 1}

1: if ∃P ′′ ∈ {P ′ | (path, do, P ′, ∅) ∈ Π} : P ′′ ⊇ P then
2: return 1
3: else if ∃P ′′ ∈ {P ′ | (path′, do, P ′, {regexp}) ∈ Π ∧ match(path′, path) =

True} : P ′′ ⊇ P then
4: return 1
5: else if ∃P ′′ ∈ {P ′ | (path′, do, P ′, {recursive}) ∈ Π ∧ path ∈

recChildren(path′) ∪ {path′}} : P ′′ ⊇ P then
6: return 1
7: else if ∃P ′′ ∈ {P ′ | (path′, do, P ′, {regexp, recursive}) ∈ Π ∧

matchPrefix(path′, path) = 1} : P ′′ ⊇ P then
8: return 1
9: else

10: return 0
11: end if

Ideal way of getting logs on the Linux operating system is the audit
system. It is able to log system calls and various security-related events in
the operating system based on the settings provided by the auditd deamon.

Using contributions from [73], we modified Medusa security module to
audit every hooked operation of a chosen process. Process to audit can be
selected by a fexec handler in the authorization server configuration. Once
Medusa-specific auditing is enabled for a thread, each hook call will create
an audit record containing information about the thread, the operation, the
object of the operation and any other useful information provided through
the hook interface. This also applies to new processes forked by each audited
process. Executing a new program file using exec system call doesn’t change
the audit state and process remains audited. Operations that are audited are
listed in appendix A.

Listing 5.1 shows an example of operation as captured by the audit
subsystem. It consists of three entries of different types. AVC1 entries are

1The name AVC was taken from SELinux’s access vector cache and it is a standard
type for auditing LSM specific information, also used by AppArmor and Smack. During
implementation of audit support for Medusa, we have closely followed SELinux’s format.
Not following the format may result in incompatibility with some system tools. For
example, tool ausearch can’t process AppArmor audit entries due to a long-standing bug,
see https://bugs.launchpad.net/ubuntu/+source/audit/+bug/1117804.

63

https://bugs.launchpad.net/ubuntu/+source/audit/+bug/1117804

Policy Mining

generated from Medusa hooks, SYSCALL2 and PROCTITLE entries are generated
during exit from a system call. Value of proctitle3 is encoded in Base16
binary to text encoding as untrusted string. If values may contain unsafe
characters, they are represented in this encoding. Such representation can be
distinguished from literal string by examining the first byte — literal strings
start with double quotes (").

Audit system for Medusa was designed to generate AVC entries with useful
information for the policy mining algorithm that are not present in other
standard entries. For the open operation in the listing, that is the file value
that specifies path to the file that was opened and mode that specifies the
requested permissions on the file.

Preparation of this data directly in Medusa simplifies subsequent pro-
cessing in policy mining. This advantage can be seen in the SYSCALL record,
where the operation is represented by a number syscall that has to be
mapped to a specific name (note that the open operation can be invoked by
multiple system calls). The path to the open file is not possible to get from
this record, since it is represented by a pointer to a string that no longer
exists when the log is parsed.

type=AVC msg=audit(1679413684.051:1955): Medusa: op=open ans=ALLOW
as_request=0 file="/var/lib/pgsql/data/global/1262" mode=6

type=SYSCALL msg=audit(1679413684.051:1955): arch=c000003e syscall=257
success=yes exit=4 a0=ffffff9c a1=55bde45b6fc8 a2=2 a3=0 items=0
ppid=20244 pid=20253 auid=4294967295 uid=26 gid=26 euid=26 suid=26
fsuid=26 egid=26 sgid=26 fsgid=26 tty=(none) ses=4294967295
comm="postmaster" exe="/usr/bin/postgres" key=(null)^]ARCH=x86_64
SYSCALL=openat AUID="unset" UID="postgres" GID="postgres"
EUID="postgres" SUID="postgres" FSUID="postgres" EGID="postgres"
SGID="postgres" FSGID="postgres"

type=PROCTITLE msg=audit(1679413684.051:1955):
proctitle=2F7573722F62696E2F706F73746D6173746572002D44002F76617...

Listing 5.1: Example of an event from audit log

After getting the audit log (for example by starting and stopping the
service), we can assemble policy Π from the recorded accesses. The initial
policy generated from the audit log will contain rules with literal paths. This
process is presented in algorithm 4.

2Careful readers may notice ^] characters inside the record. These represent the
ASCII character “Information Separator Three” that separates raw numerical values from
computed values.

3Value in the listing was shortened to fit on the page.

64

5.3. Solution Proposal

Algorithm 4 Creation of rules from audit log
Input: accesses A
Output: policy Π

1: Π = {}
2: for all a = (do, path, P) ∈ A do
3: Π← Π ∪ (path, do, P, {})
4: end for

5.3.4 Generalization
From the nature of the audit logs, we can identify the following problems
that cause underpermission:

1. Based on the execution of the application, not all execution paths may
have been executed and thus some accesses may not have manifested.
These accesses will be denied once the policy will be enforced.

2. Accesses to temporary files or newly created files will refer to paths that
were not captured in the original audit logs. Note that compared to the
previous point, the access was requested, but the path is different in
the next execution. The consequence is the same — after the policy is
enforced, these accesses will be denied.

Solution to this problem is generalization — the policy mining module
has to relax the generated rules so they will match a larger set of possible
paths. This causes overpermission, which is undesirable. Policy mining has
to solve an optimization problem — keep overpermission low while causing
as few access misses as possible.

Generalization creates rules that apply to multiple paths which may not
be present in the filesystem. This can be achieved using regexp and/or recur-
sive rules. For example, rule (”/var/log/pgsql/. ∗ ”, do, P, {regexp}) allows
processes under domain do to execute operations that require permissions P
on any file under /var/log/pgsql directory.

In the following subsections, we propose various generalization algorithms.
We discuss their requirements and expected results. Experimental results
along with testing methodology are then presented in section 5.4.
Tree coverage generalization

In this generalization, we assume that if all files in a folder have the same
access permission, we can generalize this access permission for the entire
content of the folder.

65

Policy Mining

A new rule (d∥”/. ∗ ”, do, P, {regexp}) is added for folder d if the following
inequality holds:

|{ d′ ∈ children(d) | (d′, do, P ′, {}) ∈ Π ∧ P ⊆ P ′ }|
|children(d)| ≥ t

where do is the process domain, P is a set of access permissions, Π is a set of
policy rules generated from the audit log and t ∈ (0, 1] is a threshold constant
that controls sensitivity of the generalization.

Note that this generalization takes into account only information from the
audit logs. This means that if a process didn’t access some path that exists
in the filesystem, the generalization algorithm assumes the path doesn’t exist.

We expect that this generalization will work well for services that store
their files together in folders and they access all or most of these files. It won’t
work well for services that have many files in different folders and access them
only sporadically.
Filesystem Hierarchy Standard generalization
This generalization takes into account standard hierarchy of folders in Linux
systems as defined in File Hierarchy Standard [74] (FHS) and systemd’s
file-hierarchy [75] and Linux’s hier(7) [76] manual pages.

For example, folder /proc contains information about running processes.
This information is available under numerical subdirectories for each running
process in the form of /proc/<pid>, where <pid> is the PID of the process.
Files under /proc/<pid> provide various information about the specific
process. Processes use these files to get information from the kernel about
their current status in various Linux subsystems. For example, process may
write to /proc/<pid>/oom_score_adj to adjust the heuristic used to select
which process gets killed in out-of-memory conditions [77]. Such write may
show up in the audit logs as write access to /proc/1826/oom_score_adj.
As the <pid> portion of the path is variable, this results in a different path
being generated each time the process runs. As a consequence, access to the
path would be denied due to the inconsistency between the stored path in
the policy and the actual path at runtime.

Similar reasoning can be used for wide-available files, such as libraries
in /usr/lib64 or binaries in /usr/bin that should automatically get read
permission for all processes.

The goal of this generalization is to employ standard paths defined in
FHS to automatically generalize dynamic parts of accessed paths. Note that
there are Linux distributions such as NixOS [78] or GoboLinux [79] that
don’t utilize FHS and provide their own file hierarchy structure. For these
systems, this specific generalization cannot be used, but administrators can

66

5.3. Solution Proposal

easily change the configuration file with standard permission to suit their
system.
Generalization based on non-existing files
This generalization is based on two path sets. Path set PA′ is created from
the real filesystem before the service(s) for which the policy is mined are
started. Path set PA is derived from access set A created from the audit log
(see section 5.3.3).

Algorithm for this generalization takes every path from PA′ that is not
present in PA, computes its parent directory and applies read and write
permission to it,4 see algorithm 5.

Algorithm 5 Generalization based on non-existing files
Input: path set PA′, domain do, policy Π
Output: policy Π

1: PA = {path | (do, path, P) ∈ A}
2: for all p ∈ PA′ \ PA do
3: Π← Π ∪ (dirname(p) ∥ ”/. ∗ ”, do, {R, W}, {regexp})
4: end for

This method compares accessed paths in the logs with a filesystem snap-
shot. If the accessed path doesn’t exist in the snapshot, we can proclaim
that this path is dynamic (as opposed to static files) and its name may be
dynamic.

This generalization method is just supplementary with a specific focus
on non-existent files, it cannot provide general generalization. Therefore
it is expected that it might improve performance of other generalization
algorithms, such as the tree coverage generalization, when used together.
Generalization based on UGO permissions
This generalization relies on external information stored on the filesystem.
Most of the services on the Linux system are assigned a special user ID. These
IDs are used as eUIDs when a service is running, but also as owner and group
owner IDs of files associated with the service. We can use this information
when constructing the policy. We propose four generalization strategies that
can be used independently:

1. Generalization by directory owner UID Access to directories that
4Write permission to the parent directory is applied automatically after loading to audit

log, since to create a file in the directory, process has to have a write permission to that
directory.

67

Policy Mining

are owned by eUID of the domain can be generalized so that the domain
gets privilege to access (read/write) any file in those directories.
Rationale for this strategy is that it approximates standard UGO per-
missions. Namely, if a user owns a directory, he can access all files in
this directory as well with high certainty.
Note that this strategy can’t be used for root as most configuration
directories in the system have zero UID owner and there is no special
distinction accross various subsystems (for example, on a standard
Debian system, folders audit, alsa, dpkg and mysql in /etc have all
zero owner UID, but their purpose and importance varies — reading
passwords from mysql configuration may have more dire consequences
than changing configuration of alsa).

2. Generalization by file UID This strategy is similar to the previous
one, with the difference that it considers files inside a directory. For an
access to any file in a directory to be generalized, all accessed files have
to be owned by the effective user of the running domain.
Rationale is the same as in the previous strategy, but the heuristic is
different. Root user is again ignored for the same reasons.

3. Generalization by read access to files If the directory contains
items that are readable by the effective user of the process, read access
to files in this directory can be generalized. This considers computation
of DAC permissions according to UGO permissions of each file (as
explained in section 2.1.1).

4. Generalization by write access to files If the directory contains
items that are writable by the effective user of the process, write access
to files in this directory can be generalized similarly as the read access.

Generalization based on owner directory
Unlike generalization by directory UID, this generalization relies just on
external information and not on information from audit logs. Inputs to this
generalization are: set of file paths PA′ obtained from the real filesystem, set
of user UIDs U , set of group IDs G and a set of domains D.

U and G contain IDs that are associated with the audited service (for
example, the service daemon runs with euid ∈ U and gid ∈ G). Similarly,
domains in D are associated with the service, i.e., service daemons run under
these domains. Generalization algorithm searches for folders that match
provided UIDs or GIDs. Files inside these folders are then generalized for
read and write access.

68

5.4. Evaluation

We presume that this generalization will achieve the best results, since it
relies entirely on external information. However, it is not usable for services
that don’t run under some specialized user.
Generalization based on multiple runs
This generalization method takes advantage of the fact that temporary files
change names across executions of a service. Thus we can start a service
multiple times, get audit log information from each run and compare them.
Paths that are unique across all runs can be considered to be ephemeral and
can be generalized accordingly.

Interesting problem is the generalization of the paths. They usually consist
of static and dynamic parts. The problem lies in identifying these dynamic
parts and providing generalization of them.

Algorithm 6 shows this generalization. First, a multiset union of path sets
from all runs is computed and unique paths are extracted (line 1). Function
group groups paths according to similarity computed using cosine similarity
of TF-IDF N-gram vectors (line 2). This is implemented using external
library [80]. Each group is then processed separately. Paths that have not
been grouped (a group that contains one path) are processed on lines 6–10.
There are two ways how a regexp can be created from this path. Using
numericRegexp function (see definition 10) that replaces numeric characters
or a full regexp that replaces name of the file by .*? matching any other file
in its parent directory.

When more paths are grouped together, a regexp is computed that matches
all paths in the group. The first approach is to is to select one control path
(line 13) and for each remaining path in the group, calculate the difference
between the path and the control path. The result from the comparison
algorithm is used as input to the regexpFromDiff function, which computes
a regular expression based on the difference, see algorithm 7. Function best
(line 18) returns the first regexp that matches all paths in P (see definition 12).
If that fails (no regexp created from differences matches all paths in the
group), function prefixPostfixRegexp (see algorithm 8) is called that searches
for longest common substring in paths that are left by removing their common
prefixes and suffixes. If this fails, a generic .*? regexp is used instead.

5.4 Evaluation
This section presents the evaluation of suggested algorithms. First, we
introduce the methodology used to test our algorithms. Then, we present
results from two tests: generating policy for individual services and generating
policy for multiple services using the tree generalization algorithm (cumulative
mining). For the individual services, we have evaluated four applications

69

Policy Mining

Algorithm 6 Generalization based on multiple runs
Input: path sets PA1, . . . , PAn, type ∈ {numerical, full}
Output: policy Π

1: PA′ ← unique(⋃PAn
PA=PA1 PA)

2: G← group(PA′)
3: Π← {}
4: for all P ∈ G do
5: if |P | = 1 then
6: if type = numerical then
7: Π← Π ∪ (numericRegexp(P [1]), do, {R, W}, {regexp})
8: else if type = full then
9: Π← Π ∪ (dirname(P [1]) ∥ ”/. ∗ ”, do, {R, W}, {regexp})

10: end if
11: else
12: R← {}
13: control ← p1
14: for all p ∈ {p2, . . . , pn} do
15: d← computeDiff (control, p)
16: R← R ∪ {regexpFromDiff (d)}
17: end for
18: b← best(R, P)
19: if b ̸= ”” then
20: Π← Π ∪ (b, do, {R, W}, {regexp})
21: else
22: Π← Π ∪ (prefixPostfixRegexp(R, P), do, {R, W}, {regexp})
23: end if
24: end if
25: end for

70

5.4. Evaluation

Algorithm 7 regexpFromDiff
Input: DIFF
Output: regexp r ∈ R

1: r ← ””
2: modifications ← []
3: for all (op, change) ∈ DIFF do
4: if op = equal then
5: if modifications ̸= [] then
6: r ← r ∥ ”.∗?”
7: modifications ← []
8: end if
9: r ← r ∥ escape(change)

10: else if op = insert then
11: modifications ← (op, change)
12: else if op = delete then
13: modifications ← (op, change)
14: end if
15: if modifications ̸= [] then
16: r ← r ∥ ”.∗?”
17: end if
18: end for

Algorithm 8 prefixPostfixRegexp
Input: PA′ ⊆ PA
Output: regexp r ∈ R

1: prefix ← commonprefix(PA′)
2: postfix ← commonpostfix(PA′)
3: common ← []
4: for all s ∈ PA′ do
5: common← common ∥ removeprefix(removepostfix(s, postfix), prefix)
6: end for
7: lcs ← longestCommonSubstring(common)
8: return prefix ∥ ”.∗?” ∥ lcs ∥ ”.∗?” ∥ postfix

71

Policy Mining

that are standard components of a Linux server system. For the cumulative
mining, we have evaluated three services in different combinations.

5.4.1 Methodology
Testing was performed on a Fedora Server 37 distribution with Medusa
running on a 6.2 Linux kernel. Testing consisted of following operations:

1. System is booted with the Fedora kernel.

2. Filesystem snapshot is created before running any services, this results
in a set of paths PA′. This set will be used when evaluating owner,
owner directory and non-existent generalization algorithms.

3. System is rebooted with the Medusa kernel.

4. Constable configuration for a specific service is prepared and Constable
is started (see run_service.sh script).

5. Service is started, it is left running for a few seconds and then stopped.

6. Constable is stopped and audit log is retrieved for analysis.

7. Steps 2.–4. are repeated to get an alternative audit log that will be
used for multiple runs generalization.

8. System is rebooted with the Fedora kernel.

9. Policy mining is executed with specific test cases. These test cases are
described in the following subsections.

Resulting mined policy is compared to the reference SELinux policy present
in Fedora. This is done by comparing a specific set of paths (containing paths
of files and directories) for two access types supported by both Medusa and
SELinux: read and write. The evaluated set of paths consists of:

1. Literal paths from the policy Π that is created as a union of initial policy
from audit log and generalized policies by individual generalization
algorithms.

2. FHS generalization algorithm is automatically applied with a static
policy for each case.

72

5.4. Evaluation

3. Paths determined by expanding regexp and recursive rules from policy
Π applied on PA′. The role of these paths is to detect overpermission,
since generalization rules cause overpermission.
For example, if a rule in Π specifies regexp path /etc/.*, this takes all
files located under /etc/ from the filesystem snapshot PA′.

4. Paths that are associated with the service according to the SELinux
reference policy. This has to be determined manually by consulting the
reference policy. The role of these paths is to detect underpermission,
as these paths will usually be accessible by the service according to the
reference policy and the path may not have been captured in the logs
or by any generalization rule.
For example, for the Open SSH service, we get paths to files with
SELinux types beginning with sshd, such as sshd_exec_t, sshd_key_t,
sshd_keygen_exec_t and sshd_keygen_unit_file_t.

Resulting permission values are evaluated using standard binary classifi-
cation techniques. Results can be classified into 4 categories:

hit (TP) Both mined policy and reference policy allow the operation.

overpermission (FP) Mined policy allows the operation while reference
policy denies it.

underpermission (FN) Mined policy denies the operation while reference
policy allows it.

correct denial Both mined policy and reference policy allow the operation.

Because of the evaluation methodology, absolute values of these four
categories for each individual service can’t be compared directly and a relative
metric is needed. When searching for suitable metrics, we discarded metrics
that determined the relative value from correct denials. This is because of
the permissive nature of LSM — accesses that are not listed in the policy are
automatically denied. Since we could put accesses to all the other files on the
disk into correct denials and thus artificially inflate the metric, it is not usable
for our purpose. Two basic metrics that are suitable to compare mined and
reference policies are sensitivity (equation 5.2) and precision (equation 5.1).
Note that sensitivity is more important since it represents underpermission

— accesses that are not permitted cause denial of service. Overpermission,
while undesirable, can be tolerated since it doesn’t cause the program to stop
functioning.

73

Policy Mining

For a combined metric, we have chosen Fβ (equation 5.3), specifically F2.
F1 is a harmonic mean of precision and sensitivity. By using value of β = 2 we
weigh sensitivity twice more than precision. This well expresses our intention
to have sensitivity more important than accuracy.

PPV = TP
TP + FP (5.1)

SEN = TP
TP + FN (5.2)

Fβ = (1 + β2) · PPV · SEN
β2 · PPV + SEN (5.3)

Table 5.1 shows short names of generalizations that are used in evaluation
tables. Combinations of generalizations are represented by a plus sign in the
order the generalizations were applied.

Table 5.1: Legend of generalization names used in evaluation tables

Generalization Short name
Tree coverage T
Owner O
Owner directory OD
Nonexistent N
Multiple runs M

5.4.2 Individual mining
This subsection presents result from evaluating single services.
PostgreSQL
Results for PostgreSQL mining are available in table 5.2. Generalization with
lowest number of underpermission accesses (5) was combination OD+T. This
is also the combination of generalizations with the best sensitivity. However,
as it had more overpermissions (597), the best generalization according to
the F2 metric was OD (145 overpermissions, 17 underpermissions). This
generalization was so effective because PostgreSQL contains a large number
of files under /var/lib/pgsql that represent the database. The audit log
covered only some of them and OD generalization was able to cover all ex-
cept for a small anomaly in subfolders of /usr/share/pgsql/timezonesets,
which is owned by root and not postgresql. This was improved by combining

74

5.4. Evaluation

OD and T generalizations (5 underpermissions), but at the cost of increased
overpermission (597).

Table 5.2: Results of policy mining for PostgreSQL

Generalization SEN PPV F2

no gen. 0.7673 0.9778 0.8018
T 0.7770 0.9157 0.8013
O/M+O 0.8775 0.9806 0.8963
OD/OD+O/M+OD 0.9980 0.9829 0.9949
N/M+N 0.7704 0.9767 0.8044
M 0.7677 0.9779 0.8021
M+T 0.7774 0.9157 0.8016
N+T 0.7802 0.9160 0.8041
O+T 0.8856 0.9252 0.8933
OD+T 0.9994 0.9332 0.9854
O+N 0.8775 0.9795 0.8961
OD+N 0.9980 0.9820 0.9947

OpenSSH SSH Daemon

Results for OpenSSH SSH daemon mining are presented in table 5.3. In this
case, only T and O generalizations had any effect on the generated policy.
Other generalization algorithms didn’t provide any improvement over policy
with no generalization.

Tree coverage generalization had 11 underpermission accesses, mostly files
related to the /proc filesystem. Owner generalization fixed 9 underpermission
accesses compared to no generalization, with the total number of underper-
missions of 362. However, most of these accesses were in /usr/sbin directory
and it is assumed that after manual review these underpermissions can be
ignored.

Table 5.3: Results of policy mining for OpenSSH

Generalization SEN PPV F2

no gen. 0.9209 0.9769 0.9316
T 0.9977 0.8902 0.9741
O 0.9228 0.9586 0.9297

75

Policy Mining

Postfix

Results for the Postfix mail transfer agent policy mining are presented in
table 5.3. The lowest number of overpermissions (662) was in the policy
without generalization. Every other generalization algorithm increased the
number of overpermission accesses, as expected. Non-existent generalization
didn’t provide any effect when used on it’s own and also in most of the pairs.
There is one interesting exception with combination of M+N, that achieved
882 underpermission accesses with F2 metric considering this to be the best
method for this service. However, it must be mentioned that this pair had
the worst result in overpermission with 1655 accesses.

The most interesting thing about M+N method is that M nor N on its own
couldn’t provide such good results and this means that interactions between
these two generalization algorithms produced this result. The underpermis-
sions were mostly located in /usr/libexec.

Table 5.4: Results of policy mining for Postfix

Generalization SEN PPV F2

no gen./N 0.8484 0.9509 0.8671
T/N+T/OD+T 0.8886 0.9268 0.8960
O/O+N 0.8541 0.9487 0.8715
OD/OD+N 0.8484 0.9500 0.8669
M/M+OD 0.8510 0.9487 0.8689
M+T 0.8912 0.9256 0.8979
O+T 0.8943 0.9249 0.9003
OD+O 0.8541 0.9478 0.8714
M+O 0.8549 0.9464 0.8718
M+N 0.9456 0.8961 0.9352

Apache HTTP Server

For the Apache HTTP Server only algorithm capable of generalizing policy
was the T algorithm with 336 overpermissions and 258 underpermission
accesses. The T algorithm achieved F2 metric of 0.95. Without generalization,
the overpermission was just 85 accesses with F2 score of 0.81.

Apache HTTP Server does not use a lot of owned files or temporary files,
so the other generalization algorithms could not manifest themselves in the
resulting policy.

76

5.4. Evaluation

Table 5.5: Results of policy mining for Apache HTTP Server

Generalization SEN PPV F2

no gen. and others 0.8090 0.9800 0.8382
T 0.9500 0.9358 0.9471

Individual mining summary
We can see that the policy mining results for individual services depended on
the evaluated service. The best algorithm for generalization came out based
on which files the service accessed and how the files are distributed in the file
hierarchy, whether they have metadata, such as owners.

See table 5.6 for the summary of the expriments with the best algorithm
for each metric. The best methods according to F2 metric were tree coverage
and owner directory. In one service, combination of multiple runs and non-
existent files proved to be the best. On the contrary, other generalization
methods did not show better results.

Table 5.6: Summary of policy mining for individual services

Service Best SEN Best PPV Best F2

PostgreSQL OD+T OD OD
OpenSSH T no gen. T
Postfix M+N no gen. M+N
Apache HTTP Server T no gen. T

5.4.3 Cumulative mining
This subsection contains evaluation of cumulative mining, meaning evaluating
how the policy changes as more services are added to the mining algorithm.
This evaluation is specifically intended for the tree algorithm, as its general-
ization is based on the coverage of the tree. The more services are used in the
algorithm, more files and directories from the real filesystem are available for
the algorithm to work with. Our hypothesis is that more services we use for
the mining, the precision should go up. We will test this with services from
the previous evaluation: PostgreSQL, OpenSSH, Postfix and Apache HTTP
Server.

Results of the cumulative mining are presented in table 5.7.5 This small
5Abbrevations used in the table — s: OpenSSH, postg: PostgreSQL, postf: Postfix, a:

Apache HTTP Server.

77

Policy Mining

example meets our hypothesis. By adding one or two service logs to the tree
coverage algorithm, the resulting precision increases. However, this doesn’t
mean that any other combination will also show a similar pattern. We can
prove this by adding the Apache service log, when precision drops to 0.972.

Table 5.7: Results of cumulative mining

Services PPV
s 0.891
postg 0.916
postf 0.936
postg + s 0.965
postg + postf 0.968
s + postf 0.941
postg + s + postf 0.974
postg + s + postf + a 0.972

78

Conclusion

The goal of this dissertation was to design and implement algorithms that
automatically generate a security policy for the Medusa security module.
We managed to fulfill this goal and the result is a finished product in the
form of an application that the user can use to configure the Constable
authorization server. The resulting policy is created from an audit log of
a running aplication, such as a system service. The solution is capable of
creating security policy for multiple applications at once.

We compared the resulting implementation with the standard reference
policy of the SELinux security module on the Fedora 37 distribution. The
implementation was compared on four common services in the Linux operating
system: PostgreSQL, Open SSH server, Postfix and Apache. Sensitivity results
for the best algorithms ranged from 95.6% to 99.9%. These results show the
good ability of our algorithm to cover the program accesses that should be
allowed according to the priciple of least privilege. However, for the correct
functionality of the program, the sensitivity must be 100%, and thus even
after using our algorithm, manual intervention and correction of the security
policy will be necessary. This correction should be simplified by the fact that
most of the rules will be created automatically. The precision of our algorithm
in experiments ranged from 93.4% to 98.3%.6 The decrease in precision was
caused by the generalization algorithms, which add paths to the policy that
did not occur in the audit logs from which the policy was generated.

We must acknowledge that our research was limited in some respects. The
evaluation of our algorithms was dependent on the manual setting of the
generalization algorithm for FHS. Our results cannot be considered complete
either, since we tested our application on only four system services.

With our work, we only scratched the surface of the problem. Future
research may focus on new algorithms that better analyze the application
requirements and improve the generated security policy so it complies with
the principle of least privilege. Another direction in which the work can go

6As in multiple cases the best precision was achieved by using no generalization at all,
we are listing the second best precision of a generalization algorithm.

79

Policy Mining

is the static analysis of applications, which we did not deal with. Another
benefit can be analyzing a larger number of services and finding mutual
connections between them, for example by using machine learning, ontologies,
or inductive logic programming.

The main contribution of this work is a finished application that can be
used to configure the Medusa security module. Its modular design makes
it possible to add additional generalization algorithms, where there are still
open calls for research and improvement of the properties of the resulting
generated security policy. After certain changes, it could be also used to
generate policies for other security modules.

80

Kapitola 6

Rezumé

V tejto kapitole priblížime najdôležitejšie časti vybraných kapitol z práce
v slovenskom jazyku. Netajíme sa ale tým, že pre úplne pochopenie proble-
matiky preberanej v práci je potrebné prečítať originálnu verziu v anglickom
jazyku.

6.1 Riadenie prístupu
Medzi základné modely riadenia prístupu patrí prístupová matica. Podľa toho,
ako túto maticu rozdelíme, môžeme definovať ďalšie dva modely riadenia
prístupu: zoznam riadenia prístupu (Access control list, ACL) a schopnosti
(capability).

6.1.1 Matica riadenia prístupu
Maticu riadenia prístupu opísal Lampson. Pozostáva z riadkov reprezentujú-
cich subjekty1 v systéme a stĺpcov reprezentujúcich objekty2 v systéme.

Stav systému je definovaný trojicou (S, O, M), kde S je množina subjektov,
O je množina objektov a M je matica riadenia prístupu. Jeden prvok matice
je označený ako M [si, oj], kde si je subjekt v i-tom riadku a oj objekt v j-tom
stĺpci. Prvok matice obsahuje množinu oprávnení, ktoré si môže vykonať na
oj. Keďže na reálnych systémoch býva veľkosť tejto matice veľká a väčšina
prvkov matice je prázdna, v tejto forme sa nepoužíva. Namiesto reprezentácie
oprávnení pomocou matice sa používa jej rozklad na riadky alebo stĺpce.
V prvom prípade sa povolenia ukladajú spolu so subjektmi, čím sa vytvárajú
zoznamy schopností, ktoré má daný subjekt pre každý objekt v zozname
(pozri 6.1.3). V druhom prípade sú oprávnenia uložené s každým objektom
v systéme, čím sa vytvárajú zoznamy riadenia prístupu (pozri 6.1.2).

1Systémové entity, ktoré vykonávajú operácie na objektoch, napr. procesy.
2Systémové entity, na ktorých sú vykonávané operácie, napr. súbory.

81

Rezumé

6.1.2 Zoznam riadenia prístupu
Rozložením matice riadenia prístupu podľa stĺpcov získame zoznamy riadenia
prístupu (ACL). Zoznam riadenia prístupu pre objekt o je reprezentovaný ako
zoznam dvojíc (si, {a1, . . . , an}), kde si je subjekt a {a1, . . . , an} je množina
oprávnení, ktoré si môže vykonať na o. Keďže zoznam riadenia prístupu je
uložený spolu s objektom, správcovi systému to uľahčuje zobrazenie úplného
zoznamu subjektov, ktoré môžu narábať s konkrétnym objektom. Opak je
zložitejší – aby sme mohli vidieť všetky operácie, ktoré môže konkrétny subjekt
vykonávať, museli by sme hľadať tento subjekt v zoznamoch prístupových
práv všetkých objektov v operačnom systéme.

6.1.3 Schopnosti
Rozložením matice riadenia prístupu po riadkoch získame zoznamy schop-
ností. Zoznam schopností pre subjekt s je reprezentovaný ako zoznam dvojíc
(oi, {a1, . . . , an}), kde oi je objekt a {a1, . . . , an} je množina oprávnení, ktoré
môže s vykonať na oi.

Teraz sú výhody a nevýhody zoznamov schopností vymenené v porovnaní
s prístupovými zoznamami. Zistiť všetky povolenia pre konkrétny subjekt je
triviálne, pretože sú uložené spolu so subjektom. Zistiť zoznam subjektov,
ktoré môžu vykonávať nejaké operácie na konkrétnom objekte nie je možné
bez iterácie cez všetky subjekty v systéme.3

Schopnosti si môžeme predstaviť ako poverenia – ich vlastníctvo umož-
ňuje vlastníkovi pristupovať k objektom uvedeným v zozname schopností
a vykonávať povolené operácie. To ponúka možnosti, ktoré nie sú dostupné
pri ACL, napríklad delegovanie. Na druhú stranu, systémy, ktoré podporujú
delegovanie schopností musia vyriešiť problém odvolania schopnosti.

6.2 Bezpečnosť v systéme Linux
V tejto sekcii predstavíme komponenty systému Linux, ktoré sú zodpovedné
za riadenie prístupu k systémovým objektom. Jedná sa o základný model
UGO, ktorý Linux prevzal z UNIX-u, ďalej zoznamy riadenia prístupu, ktoré
sú rozšírením UGO modelu, schopnosti a na záver povinné riadenie prístupu,
ktoré je v Linuxe implementované cez rozhranie Linux security modules (LSM).

6.2.1 Model UGO
Hlavným účelom architektúry UGO je rozdeliť a zabezpečiť prístupy k sú-
borom pre každého používateľa v systéme a poskytnúť metódy na zdieľanie

3Skutočný čas vykonania tejto operácie v porovnaní s vyhľadávaním zoznamov ACL
pre konkrétny subjekt môže byť kratší, pretože vo väčšine systémov je podstatne viac
objektov ako subjektov.

82

6.2. Bezpečnosť v systéme Linux

týchto súborov kontrolovaným spôsobom. V tomto prípade oprávnenia určujú
vlastníci týchto súborov. Takýto prístup sa označuje ako voliteľné riadenie
prístupu (DAC).

Každému súboru je priradený vlastník a skupina. Tieto sú identifikované
číselnými identifikátormi UID a GID. Keď sa vytvára nový súbor, tieto
identifikátory sa zvyčajne nastavia pomocou efektívneho UID a GID vlákna,
ktoré ho vytvára.

Povolenia v modeli UGO pre jeden súbor môžu byť priradené trom mno-
žinám používateľov:

vlastniaci používateľ Používateľ, ktorý vlastní súbor (jednoprvková mno-
žina).

skupina Používatelia patriaci do skupiny, ktorá vlastní súbor.

ostatní používatelia Všetci ostatní používatelia.

Každá z týchto množín môže obsahovať tri oprávnenia: čítanie, zápis
a vykonanie, označené r, w a x. Aktuálny stav oprávnení v danej množine
reprezentujú tri bity. Povolenia sa kontrolujú podľa prvej vhodnej množiny v
poradí, ako sú zapísané vyššie.

6.2.2 Zoznamy riadenia prístupu
Zoznamy riadenia prístupu používajú rovnaké povolenia ako model UGO,
ale umožňujú granulárnejšie riadenie prístupu ďalších používateľov a sku-
pín. Pozostávajú zo záznamov ACL. Jeden záznam obsahuje typ záznamu,
kvalifikátor špecifikujúci identitu používateľa alebo skupiny a oprávnenia
týkajúce sa záznamu. Platný ACL musí obsahovať aspoň tri záznamy týchto
typov: ACL_USER_OBJ, ACL_GROUP_OBJ a ACL_OTHER. Tieto priamo odrážajú
povolenia vlastníka, skupiny a ostatných používateľov.

Oproti štandardnému modelu UGO, je možné špecifikovať oprávnenia aj
pre iných používateľov a iné skupiny pomocou záznamov typov ACL_USER
a ACL_GROUP.

6.2.3 Schopnosti v Linuxe
V operačných systémoch podobných UNIX-u (bez podpory schopností) exis-
tujú dve základné úrovne privilégií. Keď proces beží pod efektívnym UID
rovným nule, je privilegovaný a môže vykonávať akúkoľvek úlohu v systéme.
V opačnom prípade je neprivilegovaný a nemôže vykonávať privilegované
akcie (napr. otvorenie nízkeho portu alebo reštartovanie systému).

Schopnosti v Linuxe sú množina oprávnení, ktoré vznikli rozdelením opráv-
není superužívateľa na menšie jednotky. Toto umožňuje explicitne špecifikovať,

83

Rezumé

ktoré oprávnenia z celkovej množiny sú potrebné pre spustený proces, čím sa
dodržiava princíp najmenších privilégií.

Hlavnou motiváciou pre zavedenie schopností boli privilegované aplikácie
(napr. sieťové služby), ktoré nepotrebovali všetky privilégiá superužívateľa.
Keďže takéto programy boli často dostupné na diaľku cez otvorené porty na
internet, stali sa terčom útokov. Ak bol útočník schopný spustiť ľubovoľný
kód prostredníctvom takéhoto programu, automaticky získal všetky privilégiá
superužívateľa a mohol vykonávať ľubovoľné akcie v systéme.

6.2.4 Povinné riadenie prístupu
Koncom 90-tych rokov sa ukázalo, že mechanizmy riadenia prístupu v Linuxe
nie sú dostatočné na to, aby poskytovali silné zabezpečenie. Prvé projekty,
ktoré zlepšili mechanizmy riadenia prístupu v Linuxe, sa spoliehali na interven-
ciu systémových volaní alebo vyžadovali záplatu, ktorá vložila rozhodovacie
funkcie na vhodne vybrané miesta. Medusa, SELinux, grSecurity a ďalšie
bezpečnostné riešenia boli pôvodne implementované ako takéto záplaty.

6.2.5 Linux security modules
Prvý bezpečnostný modul, ktorý bol zahrnutý v jadre, bol SELinux. Linus
Torvalds4 požadoval, aby sa namiesto implementácie jedného bezpečnostného
modulu upravilo jadro, aby si používateľ mohol vybrať, ktorý bezpečnostný
modul má byť aktivovaný. Požiadal teda vývojárov jadra, aby vytvorili ge-
nerický rámec, ktorý by umožnil načítať a použiť akýkoľvek modul, ktorý
implementuje dohodnuté rozhranie. To viedlo k vytvoreniu rámca Linux
security modules (LSM).

Tento rámec umožňuje bezpečnostnému modulu zasahovať do operácií
v kritických častiach jadra, zvyčajne počas systémových volaní. Je to vďaka
umiestneniu záchytných funkcií tesne pred prístupom jadra k nejakému zdroju.
Bezpečnostné moduly môžu do týchto záchytných funkcií zavesiť svoje vlastné
funkcie. Po zavolaní záchytnej funkcie je každá zavesená funkcia zavolaná –
vďaka tomu môže každý bezpečnostný modul vyhodnotiť prístup a rozhodnúť,
či aplikácia dodržiava bezpečnostnú politiku. Aby bola operácia povolená,
musia ju povoliť všetky bezpečnostné moduly. Odmietnutie z jedného bezpeč-
nostného modulu postačuje na odmietnutie celej operácie. Verzia OS Linux
6.2 poskytuje LSM 247 záchytných funkcií. Záchytné funkcie delíme na dva
druhy:

bezpečnostné záchytné funkcie Tieto funkcie sa používajú na rozhodova-
nie o bezpečnostných udalostiach v systéme. Sú umiestnené na miestach
kódu, kde sa subjekty chystajú pristupovať z používateľského priestoru

4Tvorca a súčasný správca projektu Linux.

84

6.3. Bezpečnostný modul Medusa

k objektom jadra. Bezpečnostný modul musí rozhodnúť, či je prístup
povolený.

ovládacie záchytné funkcie Tieto funkcie slúžia na notifikáciu bezpečnost-
ných modulov o dôležitých udalostiach v systéme, ktoré sa ich môžu
týkať. Typické príklady sú funkcie alloc a free. Tieto funkcie môže
bezpečnostný modul použiť na alokáciu alebo uvoľnenie bezpečnostnej
položky (pozri nižšie). Tieto funkcie sa zvyčajne volajú, keď sa vytvorí
alebo uvoľní nový objekt jadra.

Ďalšou dôležitou súčasťou LSM sú bezpečnostné položky, nazývané aj
security blobs. Sú to smerníky na dátové štruktúry, ktoré používa bezpečnostný
modul na ukladanie svojich vlastných informácií o entitách v jadre.

Medzi nevýhody LSM patrí to, že LSM nie je autoritatívny, teda po
zamietnutí operácie politikou iného bezpečnostného mechanizmu jadra už
LSM nemôže zmeniť toto rozhodnutie.

6.3 Bezpečnostný modul Medusa
Medusa je bezpečnostný modul pre operačný systém Linux, ktorý bol vyvi-
nutý na Fakulte elektrotechniky a informatiky na prelome tisícročí Marekom
Zelemom a Milanom Pikulom [42, 43, 44]. Celý systém sa skladá z týchto
častí:

1. Modul jadra. Architektúra systému Medusa umožňuje viacero takýchto
modulov, ktoré nemusia byť priamou súčasťou operačného systému
(napr. rozhodovací modul implementovaný v databázovom serveri).
V súčasnosti existuje jedna implementácia pre operačný systém Linux
integrovaná pomocou LSM.

2. Komunikačný protokol, ktorý sa používa na prenos informácií z viace-
rých modulov jadra na autorizačný server. Tento protokol je schopný
serializovať akúkoľvek entitu jadra, ktorú je potrebné preskúmať z hľa-
diska riadenia prístupu.

3. Autorizačný server, ktorý analyzuje a ukladá politiku riadenia prístupu.
Funkcie, ktoré priraďujú členstvo vo virtuálnych svetoch (pozri nižšie) sú
definované autorizačným server na základe načítanej politiky. Od modulu
jadra sa očakáva, že každú neoznačenú entitu odošle autorizačnému
serveru na označkovanie (zaradenie do virtuálnych svetov, pozri nižšie).
Jeden autorizačný server môže ovládať jeden alebo niekoľko modulov
jadra.

85

Rezumé

Hlavným princípom bezpečnostného modelu Medusy je priradenie sys-
témoch entít do množín nazývaných virtuálne svety (VS). Subjekty majú
niekoľko množín VS podľa typu prístupu (čítanie, zápis). Keď je subjekt vo
virtuálnom svete v na čítanie, potom môže čítať všetky objekty, ktoré sa
nachádzajú v tom istom svete.

6.4 Ťažba bezpečnostnej politiky
Hlavným cieľom tejto práce je navrhnúť a implementovať algoritmus, ktorý
vytvorí funkčnú bezpečnostnú politiku pre bezpečnostný modul Medusa
s minimálnym administratívnym zásahom. Ide o všeobecný cieľ, ktorého
dosiahnutie by mohlo byť príliš náročné. Aby sme ho lepšie konkretizovali,
zavádzame tieto obmedzenia:

1. Bezpečnostná politika bude brať do úvahy len operácie a prístupy
k súborovému systému.

2. Generovanie bezpečnostnej politiky sa zameria na obmedzenie množiny
dostupných objektov pre aplikáciu. Tento koncept je podobný technike
sandboxu. Obmedzením prístupu aplikácie obmedzíme priestor vektorov
útokov na aplikáciu. To je obzvlášť užitočné pre sieťové služby.

3. Vytvorená politika je statická. To znamená, že ak chce správca neskôr
politiku aktualizovať, musí znova spustiť algoritmus na ťažbu politík.

6.4.1 Výskumné otázky
Očakávané výstupy práce možno zhrnúť do týchto výskumných otázok:

1. Ak by sme skonštruovali algoritmus, ktorý by vytváral bezpečnostnú
politiku len zo záznamov operácií, vyrovnala by sa táto politika politike
vytvorenej správcom?

2. Ak by sme skonštruovali algoritmus, ktorý by vytvoril bezpečnostnú
politiku zo záznamov operácií vrátane externých informácií z prostredia
systému, vyrovnala by sa táto politika politike vytvorenej správcom?

6.4.2 Návrh riešenia
Naše navrhované riešenie sa inšpiruje modelom domain-type enforcement [65,
66], ktorý vytvára domény pre každú spustenú aplikáciu. Pozorovaním činnosti
aplikácie (za predpokladu, že aplikácia nie je škodlivá) môžeme vytvoriť
zoznam objektov, ku ktorým by mala mať aplikácia prístup.

86

6.4. Ťažba bezpečnostnej politiky

Stručné zhrnutie navrhovaného riešenia je takéto:

1. Budeme sledovať činnosť aplikácie, pre ktorú bude vytvorená bezpeč-
nostná politika.

2. Vytvoríme predbežnú politiku pre každý subjekt (reprezentovaný domé-
nou) na základe názvu objektu a požadovanej operácie.

3. V predbežnej politike budeme skúmať a dopĺňať chýbajúce pravidlá,
ktoré spôsobujú zamietnutia legitímnych oeprácií. Tento krok nazývame
generalizácia. Po tomto kroku by mala byť k dispozícii úplná použiteľná
politika pre aplikáciu.

6.4.3 Získavanie záznamov
Vstupné údaje pre algoritmus by mali byť úplné, čo znamená, že každý prístup
do systému by mal byť bez výnimiek zaznamenaný. Ideálnym spôsobom
získavania záznamov v operačnom systéme Linux je subsystém audit. Dokáže
zaznamenávať systémové volania a rôzne udalosti súvisiace s bezpečnosťou
v operačnom systéme na základe nastavení poskytnutých službou auditd.

S využitím príspevkov z [73] sme upravili bezpečnostný modul Medusa tak,
aby auditoval každú zachytenú operáciu vybraného procesu. Proces, ktorý sa
má auditovať, možno vybrať pomocou obslužnej funkcie fexec v konfigurácii
autorizačného servera. Operácie, ktoré sú auditované, sú uvedené v prílohe A.

6.4.4 Generalizácia
Z povahy záznamov z auditu sme identifikovali tieto problémy, ktoré spôsobujú
chýbajúce povolenia:5

1. Na základe vykonávania aplikácie sa nemuseli vykonať všetky cesty
vykonávania, a preto sa niektoré prístupy nemuseli prejaviť v záznamoch.
Tieto prístupy budú po uplatnení politiky zamietnuté.

2. Prístupy k dočasným alebo novo vytvoreným súborom sa budú týkať
ciest, ktoré neboli zachytené v pôvodných protokoloch auditu. Zdôrazňu-
jeme, že v porovnaní s predchádzajúcim bodom bol prístup požadovaný,
ale cesta je pri ďalšom vykonaní iná. Dôsledok je rovnaký – po vynútení
politiky budú tieto prístupy zamietnuté.

Riešením tohto problému je zovšeobecnenie – modul na generovanie poli-
tík musí uvoľniť vygenerované pravidlá tak, aby zväčšili množinu pokrytia

5Prístupy, ktoré v politike chýbajú, aby mohla aplikácia normálne fungovať.

87

Rezumé

možných ciest. Generalizácia zároveň vytvorí nadbytočné povolenia,6 ktoré
sú nežiaduce. Generovanie politiky musí vyriešiť optimalizačný problém –
udržiavať nadbytočné povolenia na nízkej úrovni a zároveň mať čo najmenej
chýbajúcich povolení, ideálne žiadne.

Generalizáciou sa vytvárajú pravidlá, ktoré sa vzťahujú na viacero ciest,
ktoré sa v súborovom systéme nemusia vyskytovať. To sa dá dosiahnuť
pomocou regulárnych výrazov a/alebo rekurzívnych pravidiel. Napríklad
pravidlo (”/var/log/pgsql/. ∗ ”, do, P) umožňuje procesom v doméne do
vykonávať operácie, ktoré vyžadujú oprávnenia P na ľubovoľnom súbore
v adresári /var/log/pgsql.

Navrhli sme tieto generalizačné algoritmy:

• generalizácia podľa pokrytia súborovej hierarchie,

• generalizácia podľa štandardu Filesystem Hierarchy (FHS),

• generalizácia na základe neexistujúcich súborov,

• generalizácia podľa oprávnení UGO,

• generalizácia podľa vlastníka priečinka,

• generalizácia na základe viacnásobného spustenia.

6.4.5 Zhrnutie výsledkov
Výslednú implementáciu sme porovnali so štandardnou referenčnou politikou
bezpečnostného modulu SELinux v distribúcii Fedora 37. Implementáciu sme
porovnávali na štyroch bežných službách: PostgreSQL, Open SSH server,
Postfix a Apache HTTP server. Výsledky citlivosti pre najlepšie algoritmy sa
pohybovali od 95,6 % do 99,9 %. Tieto výsledky preukazujú dobrú schopnosť
nášho algoritmu pokryť prístupy programov, ktoré by mali byť povolené podľa
princípu najmenších privilégií. Pre správnu funkčnosť programu však musí
byť citlivosť 100 %, a preto aj po použití nášho algoritmu bude potrebný
manuálny zásah a korekcia bezpečnostnej politiky administrátorom. Táto
korekcia ale bude zjednodušená tým, že veľká časť pravidiel sa bude vytvárať
automaticky. Presnosť nášho algoritmu sa pri experimentoch pohybovala od
93,4 % do 98,3 %.7 Zníženie presnosti spôsobili generalizačné algoritmy, ktoré

6Pravidlá v politike, ktoré povoľujú operácie, ktoré aplikácia nepotrebuje ku svojej
bežnej činnosti.

7Keďže v niekoľkých testoch mal najlepšiu presnosť prípad bez generalizácie, uvádzame
druhú najlepšiu presnosť generalizačného algoritmu.

88

6.4. Ťažba bezpečnostnej politiky

do politiky pridávajú cesty, ktoré sa nevyskytovali v záznamoch operácií,
z ktorých bola politika vytvorená.

Je potrebné uznať, že náš výskum bol v niektorých ohľadoch obmedzený.
Vyhodnotenie našich algoritmov záviselo od manuálneho nastavenia generali-
začného algoritmu pre File Hierarchy Standard. Naše výsledky tiež nemožno
považovať za úplné, pretože sme našu aplikáciu testovali len na štyroch
systémových službách.

Budúci výskum sa môže zamerať na nové algoritmy, ktoré lepšie analyzujú
požiadavky aplikácie a vylepšujú generovanú bezpečnostnú politiku tak, aby
bola v súlade s princípom najmenších privilégií. Ďalším smerom, ktorým sa
práca môže uberať, je statická analýza aplikácií, ktorou sme sa nezaoberali.
Iným prínosom môže byť analýza väčšieho počtu služieb a hľadanie vzájomných
súvislostí medzi nimi, napríklad pomocou strojového učenia, ontológií alebo
induktívneho logického programovania.

Hlavným prínosom tejto práce je hotová aplikácia, ktorú možno použiť
na konfiguráciu bezpečnostného modulu Medusa. Jej modulárna konštrukcia
umožňuje pridávať ďalšie generalizačné algoritmy, čo otvára priestor skúmaniu
ďalších metód na zlepšenie vlastností výslednej generovanej bezpečnostnej
politiky. Po určitých úpravách by sa dala použiť aj na generovanie politík pre
iné bezpečnostné moduly.

89

Bibliography

1. 5200.28-STD, DoD. Trusted Computer System Evaluation Criteria. Dod
Computer Security Center, 1985.

2. TILBORG, Henk C. A. van and JAJODIA, Sushil (eds.). Encyclopedia
of Cryptography and Security, 2nd Ed. Springer, 2011. isbn 978-1-4419-
5905-8. Available from doi: 10.1007/978-1-4419-5906-5.

3. LAMPSON, Butler W. Protection. ACM SIGOPS Operating Systems
Review. 1974, vol. 8, no. 1, pp. 18–24. Available from doi: 10.1145/775
265.775268.

4. BELL, E. D. and LA PADULA, J. L. Secure computer system: Unified
exposition and Multics interpretation. Bedford, MA: Mitre Corporation,
1976. Available also from: http://csrc.nist.gov/publications/his
tory/bell76.pdf.

5. RAY, Indrakshi and KUMAR, Mahendra. Towards a location-based
mandatory access control model. Computers & Security. 2006, vol. 25,
no. 1, pp. 36–44. issn 0167-4048. Available from doi: https://doi.org
/10.1016/j.cose.2005.06.007.

6. RAY, Indrakshi and KUMAR, Mahendra. Towards a location-based
mandatory access control model. Computers & Security. 2006, vol. 25,
no. 1, pp. 36–44.

7. BIBA, J. K. Integrity Considerations for Secure Computer Systems.
Bedford, MA: U.S. Air Force Electronic Systems Division, 1977-04. Tech.
rep. The MITRE Corporation.

8. FERRAIOLO, D. F. and KUHN, D. R. Role-based access control. 15th
National Computer Security Conference. 1992.

9. SANDHU, Ravi S, COYNE, Edward J, FEINSTEIN, Hal L and YOUMAN,
Charles E. Role-based access control models. Computer. 1996, vol. 29,
no. 2, pp. 38–47.

91

https://doi.org/10.1007/978-1-4419-5906-5
https://doi.org/10.1145/775265.775268
https://doi.org/10.1145/775265.775268
http://csrc.nist.gov/publications/history/bell76.pdf
http://csrc.nist.gov/publications/history/bell76.pdf
https://doi.org/https://doi.org/10.1016/j.cose.2005.06.007
https://doi.org/https://doi.org/10.1016/j.cose.2005.06.007

BIBLIOGRAPHY

10. Overview of role-based access control in Azure Active Directory [online].
2023-04-10. [visited on 2023-05-14]. Available from: https://learn.mi
crosoft.com/en-us/azure/active-directory/roles/custom-over
view.

11. THE KUBERNETES AUTHORS. Using RBAC Authorization [online].
2022-01-08. [visited on 2023-05-14]. Available from: https://kubernet
es.io/docs/reference/access-authn-authz/rbac/.

12. HU, Vincent C, FERRAIOLO, David F, CHANDRAMOULI, Ramaswamy
and KUHN, D Richard. Attribute-Based Access Control. Artech House,
2017.

13. BISWAS, Prosunjit, SANDHU, Ravi and KRISHNAN, Ram. Label-
Based Access Control: An ABAC Model with Enumerated Authorization
Policy. In: Proceedings of the 2016 ACM International Workshop on
Attribute Based Access Control. New Orleans, Louisiana, USA: Asso-
ciation for Computing Machinery, 2016, pp. 1–12. ABAC ’16. isbn
9781450340793. Available from doi: 10.1145/2875491.2875498.

14. GATES, Carrie. Access Control Requirements for Web 2.0 Security and
Privacy. 2007.

15. PANG, Ruoming, CACERES, Ramon, BURROWS, Mike, CHEN, Zhifeng,
DAVE, Pratik, GERMER, Nathan, GOLYNSKI, Alexander, GRANEY,
Kevin, KANG, Nina, KISSNER, Lea, KORN, Jeffrey L., PARMAR,
Abhishek, RICHARDS, Christina D. and WANG, Mengzhi. Zanzibar:
Google’s Consistent, Global Authorization System. In: 2019 USENIX
Annual Technical Conference (USENIX ATC ’19). Renton, WA, 2019.

16. OORSCHOT, Paul C. van. Computer Security and the Internet - Tools
and Jewels from Malware to Bitcoin, Second Edition. Springer, 2021. In-
formation Security and Cryptography. isbn 978-3-030-83410-4. Available
from doi: 10.1007/978-3-030-83411-1.

17. SPEIGHT, Toby. Answer to question: What is the reason for having or
restricting file owner’s permissions? [online]. 2022. [visited on 2023-02-
12]. Available from: https://unix.stackexchange.com/a/699436.

18. IEEE. Draft Standard for Information Technology—Portable Operating
System Interface (POSIX)—Part 1: System Application Program Inter-
face (API)— Amendment #: Protection, Audit and Control Interfaces
[C Language]. New York, NY, USA: IEEE, 1997.

19. GRUENBACHER, Andreas. acl(5) — BSD File Formats Manual [on-
line]. 2002. [visited on 2023-01-25]. Available from: https://man7.org
/linux/man-pages/man5/acl.5.html.

92

https://learn.microsoft.com/en-us/azure/active-directory/roles/custom-overview
https://learn.microsoft.com/en-us/azure/active-directory/roles/custom-overview
https://learn.microsoft.com/en-us/azure/active-directory/roles/custom-overview
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://doi.org/10.1145/2875491.2875498
https://doi.org/10.1007/978-3-030-83411-1
https://unix.stackexchange.com/a/699436
https://man7.org/linux/man-pages/man5/acl.5.html
https://man7.org/linux/man-pages/man5/acl.5.html

BIBLIOGRAPHY

20. KERRISK, Michael. capabilities(7) — Linux manual page [online]. 2021.
[visited on 2023-01-11]. Available from: https://man7.org/linux/man-
pages/man7/capabilities.7.html.

21. HALLYN, Serge E and MORGAN, Andrew G. Linux capabilities: making
them work. In: Proceedings of the Linux Symposium. 2008.

22. CORBET, Jon (ed.). Kernel development [online]. 1999. [visited on 2023-
02-06]. Available from: https://lwn.net/1999/1202/kernel.php3.

23. LUTOMIRSKI, Andy. capabilities: Ambient capabilities [online]. 2015.
[visited on 2023-02-10]. Available from: https://lwn.net/Articles/6
36533/.

24. WRIGHT, C., COWAN, C., MORRIS, J., SMALLEY, S. and KROAH-
HARTMAN, G. Linux Security Modules: General Security Support for
the Linux Kernel. Security 2002. 2002. Available also from: https://ww
w.kernel.org/doc/ols/2008/ols2008v1-pages-163-172.pdf.

25. HAINES, Richard. The SELinux Notebook. 2014.
26. VERMEULEN, Sven. Selinux System Administration. Packt Publishing,

2016. isbn 978-1-78712-695-4.
27. VERMEULEN, Sven and EVANS, Brian. SELinux/Users and logins

[online]. Gentoo Foundation, Inc., 2015-01-13. [visited on 2020-01-27].
Available from: https://wiki.gentoo.org/wiki/SELinux/Type_enfo
rcement#Permissions.

28. SELinux Reference Policy [online]. [visited on 2018-12-10]. Available
from: https://github.com/SELinuxProject/refpolicy.

29. TOMOYO Linux 2.6.x : The Official Guide [online]. [visited on 2020-01-
27]. Available from: http://tomoyo.osdn.jp/2.6/index.html.en.

30. Policy specification [online]. .62nd ed. NTT DATA Corporation, 2019-
02-06. [visited on 2020-01-22]. Available from: https://tomoyo.osdn.j
p/2.6/policy-specification/index.html.en.

31. CONTRIBUTORS & OTHERS, openSUSE. SDB:AppArmor [online].
SUSE LLC, 2017-08-10. [visited on 2020-01-22]. Available from: https:
//en.opensuse.org/SDB:AppArmor.

32. AppArmor Profiles [online]. [visited on 2019-01-15]. Available from: htt
ps://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/AppArmorPr
ofiles.

33. LARABEL, Michael. Solus 3 Linux Distribution Released For Enthusiasts
[online]. [visited on 2019-01-15]. Available from: https://www.phoroni
x.com/scan.php?page=news_item&px=Solus-3-Released.

93

https://man7.org/linux/man-pages/man7/capabilities.7.html
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://lwn.net/1999/1202/kernel.php3
https://lwn.net/Articles/636533/
https://lwn.net/Articles/636533/
https://www.kernel.org/doc/ols/2008/ols2008v1-pages-163-172.pdf
https://www.kernel.org/doc/ols/2008/ols2008v1-pages-163-172.pdf
https://wiki.gentoo.org/wiki/SELinux/Type_enforcement#Permissions
https://wiki.gentoo.org/wiki/SELinux/Type_enforcement#Permissions
https://github.com/SELinuxProject/refpolicy
http://tomoyo.osdn.jp/2.6/index.html.en
https://tomoyo.osdn.jp/2.6/policy-specification/index.html.en
https://tomoyo.osdn.jp/2.6/policy-specification/index.html.en
https://en.opensuse.org/SDB:AppArmor
https://en.opensuse.org/SDB:AppArmor
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/AppArmorProfiles
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/AppArmorProfiles
https://wiki.ubuntu.com/SecurityTeam/KnowledgeBase/AppArmorProfiles
https://www.phoronix.com/scan.php?page=news_item&px=Solus-3-Released
https://www.phoronix.com/scan.php?page=news_item&px=Solus-3-Released

BIBLIOGRAPHY

34. AppArmor/HowToUse [online]. 2019-03-13. [visited on 2020-01-22]. Avail-
able from: https://wiki.debian.org/AppArmor/HowToUse#Enable
_AppArmor.

35. ACIICMEZ, O. and BLAICH, A. Understanding the Permission and
Access Control Model for Tizen Application Sandboxing [online]. Sam-
sung, 2012-05-09. [visited on 2020-01-22]. Available from: http://down
load.tizen.org/misc/media/conference2012/wednesday/seaclif
f/2012-05-09-0945-1025-understanding_the_permission_and_ac
cess_control_model_for_tizen_application_sandboxing.pdf.

36. Integrity subsystem [online]. Linux Kernel Organization, 2019 [visited
on 2020-01-31]. Available from: https://git.kernel.org/pub/scm/l
inux/kernel/git/torvalds/linux.git/tree/security/integrity
/Kconfig?h=v5.5.

37. Extended Verification Module [online]. Linux Kernel Organization, 2019
[visited on 2020-01-31]. Available from: https://git.kernel.org/pub
/scm/linux/kernel/git/torvalds/linux.git/tree/security/int
egrity/evm/Kconfig?h=v5.5.

38. Integrity Measurement Architecture [online]. Linux Kernel Organization,
2019 [visited on 2020-01-31]. Available from: https://git.kernel.org
/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security
/integrity/ima/Kconfig?h=v5.5.

39. Yama [online]. [visited on 2020-01-27]. Available from: https://www.ke
rnel.org/doc/html/v5.5/admin-guide/LSM/Yama.html.

40. [online]. Canonical Ltd. [visited on 2019-01-15]. Available from: http:
//manpages.ubuntu.com/manpages/cosmic/en/man8/aa-autodep.8
.html.

41. HERTZOG, Raphaël and MAS, Roland. The Debian Administrator’s
Handbook. Freexian SARL, 2015. isbn 9791091414043.

42. ZELEM, Marek and PIKULA, Milan. ZP Security Framework [online].
Faculty of Electrical Engineering and Information Technology, Slovak
University of Technology in Bratislava, 2000 [visited on 2023-02-26].
Available from: http://medusa.terminus.sk/English/medusa-pape
r.ps.

43. PIKULA, Milan. Distribuovaný systém na zvýšenie bezpečnosti heterogén-
nej počítačovej siete. Bratislava: Bratislava: FEI STU, 2002.

44. ZELEM, Marek. Integrácia rôznych bezpečnostných politík do OS Linux.
Bratislava: Bratislava: FEI STU, 2001.

94

https://wiki.debian.org/AppArmor/HowToUse#Enable_AppArmor
https://wiki.debian.org/AppArmor/HowToUse#Enable_AppArmor
http://download.tizen.org/misc/media/conference2012/wednesday/seacliff/2012-05-09-0945-1025-understanding_the_permission_and_access_control_model_for_tizen_application_sandboxing.pdf
http://download.tizen.org/misc/media/conference2012/wednesday/seacliff/2012-05-09-0945-1025-understanding_the_permission_and_access_control_model_for_tizen_application_sandboxing.pdf
http://download.tizen.org/misc/media/conference2012/wednesday/seacliff/2012-05-09-0945-1025-understanding_the_permission_and_access_control_model_for_tizen_application_sandboxing.pdf
http://download.tizen.org/misc/media/conference2012/wednesday/seacliff/2012-05-09-0945-1025-understanding_the_permission_and_access_control_model_for_tizen_application_sandboxing.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security/integrity/Kconfig?h=v5.5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security/integrity/Kconfig?h=v5.5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security/integrity/Kconfig?h=v5.5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security/integrity/evm/Kconfig?h=v5.5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security/integrity/evm/Kconfig?h=v5.5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security/integrity/evm/Kconfig?h=v5.5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security/integrity/ima/Kconfig?h=v5.5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security/integrity/ima/Kconfig?h=v5.5
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/security/integrity/ima/Kconfig?h=v5.5
https://www.kernel.org/doc/html/v5.5/admin-guide/LSM/Yama.html
https://www.kernel.org/doc/html/v5.5/admin-guide/LSM/Yama.html
http://manpages.ubuntu.com/manpages/cosmic/en/man8/aa-autodep.8.html
http://manpages.ubuntu.com/manpages/cosmic/en/man8/aa-autodep.8.html
http://manpages.ubuntu.com/manpages/cosmic/en/man8/aa-autodep.8.html
http://medusa.terminus.sk/English/medusa-paper.ps
http://medusa.terminus.sk/English/medusa-paper.ps

BIBLIOGRAPHY

45. MOLLOY, Ian, PARK, Youngja and CHARI, Suresh. Generative Models
for Access Control Policies: Applications to Role Mining over Logs with
Attribution. In: Proceedings of the 17th ACM Symposium on Access
Control Models and Technologies. Newark, New Jersey, USA: Associa-
tion for Computing Machinery, 2012, pp. 45–56. SACMAT ’12. isbn
9781450312950. Available from doi: 10.1145/2295136.2295145.

46. XU, Zhongyuan and STOLLER, Scott D. Mining Attribute-Based Ac-
cess Control Policies from Logs. In: Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2014, pp. 276–291. Lecture Notes in Com-
puter Science. Available from doi: 10.1007/978-3-662-43936-4_18.

47. IYER, Padmavathi and MASOUMZADEH, Amirreza. Mining Positive
and Negative Attribute-Based Access Control Policy Rules. In: Proceed-
ings of the 23nd ACM on Symposium on Access Control Models and
Technologies. 2018, nil. Available from doi: 10.1145/3205977.3205988.

48. COTRINI, Carlos, WEGHORN, Thilo and BASIN, David. Mining
ABAC Rules from Sparse Logs. In: 2018 IEEE European Symposium
on Security and Privacy (EuroS&P). 2018, nil. Available from doi:
10.1109/eurosp.2018.00011.

49. KARIMI, Leila and JOSHI, James. An Unsupervised Learning Based
Approach for Mining Attribute Based Access Control Policies. In: 2018
IEEE International Conference on Big Data (Big Data). 2018, nil. Avail-
able from doi: 10.1109/bigdata.2018.8622037.

50. KARIMI, Leila, ALDAIRI, Maryam, JOSHI, James and ABDELHAKIM,
Mai. An Automatic Attribute Based Access Control Policy Extraction
From Access Logs. IEEE Transactions on Dependable and Secure Com-
puting. 2021, pp. 1–1. Available from doi: 10.1109/tdsc.2021.305433
1.

51. BUI, Thang, STOLLER, Scott D. and LI, Jiajie. Mining Relationship-
Based Access Control Policies from Incomplete and Noisy Data. In:
Foundations and Practice of Security. Springer International Publishing,
2019, pp. 267–284. Foundations and Practice of Security. Available from
doi: 10.1007/978-3-030-18419-3_18.

52. COTRINI, Carlos, CORINZIA, Luca, WEGHORN, Thilo and BASIN,
David. The Next 700 Policy Miners: A Universal Method for Building
Policy Miners. 2019. Available from arXiv: 1908.05994 [cs.CR].

53. SNIFFEN, Brian T, HARRIS, David R and RAMSDELL, John D.
Guided policy generation for application authors. In: SELinux Sympo-
sium. 2006.

95

https://doi.org/10.1145/2295136.2295145
https://doi.org/10.1007/978-3-662-43936-4_18
https://doi.org/10.1145/3205977.3205988
https://doi.org/10.1109/eurosp.2018.00011
https://doi.org/10.1109/bigdata.2018.8622037
https://doi.org/10.1109/tdsc.2021.3054331
https://doi.org/10.1109/tdsc.2021.3054331
https://doi.org/10.1007/978-3-030-18419-3_18
https://arxiv.org/abs/1908.05994

BIBLIOGRAPHY

54. LACHMUND, Sven. Auto-generating access control policies for applica-
tions by static analysis with user input recognition. In: Proceedings of
the 2010 ICSE Workshop on Software Engineering for Secure Systems -
SESS ’10. 2010. Available from doi: 10.1145/1809100.1809102.

55. RAUTER, Tobias, HOLLER, Andrea, KAJTAZOVIC, Nermin and
KREINER, Christian. Towards an automated generation of application
confinement policies with binary analysis. In: 2015 International Sym-
posium on Networks, Computers and Communications (ISNCC). 2015,
nil. Available from doi: 10.1109/isncc.2015.7238568.

56. WANG, Ruowen, ENCK, William, REEVES, Douglas, ZHANG, Xin-
wen, NING, Peng, XU, Dingbang, ZHOU, Wu and AZAB, Ahmed M.
EASEAndroid: Automatic Policy Analysis and Refinement for Security
Enhanced Android via Large-Scale Semi-Supervised Learning. In: 24th
USENIX Security Symposium (USENIX Security 15). Washington, D.C.:
USENIX Association, 2015, pp. 351–366. isbn 978-1-939133-11-3. Avail-
able also from: https://www.usenix.org/conference/usenixsecuri
ty15/technical-sessions/presentation/wang-ruowen.

57. MOCANU, Decebal Constantin, TURKMEN, Fatih and LIOTTA, An-
tonio. Towards ABAC Policy Mining from Logs with Deep Learning. In:
FOMICHOV, V.A. and FOMICHOVA, O.S. (eds.). Proceedings of the
18th International Multiconference - Intelligent Systems, IS 2015. Jožef
Stefan Institute, 2015. 18th International Multiconference - Intelligent
Systems, IS 2015, IS ; Conference date: 12-10-2015 Through 13-10-2015.

58. SANDERS, Matthew W. Automated methods for generating least priv-
ilege access control policies. Colorado School of Mines. Arthur Lakes
Library, 2019. Available also from: https://hdl.handle.net/11124/1
73028. PhD thesis.

59. LAW, Mark, RUSSO, Alessandra, BERTINO, Elisa, BRODA, Krysia and
LOBO, Jorge. Fastlas: Scalable Inductive Logic Programming Incorpo-
rating Domain-Specific Optimisation Criteria. Proceedings of the AAAI
Conference on Artificial Intelligence. 2020, vol. 34, no. 03, pp. 2877–2885.
Available from doi: 10.1609/aaai.v34i03.5678.

60. JABAL, Amani Abu, BERTINO, Elisa, LOBO, Jorge, LAW, Mark,
RUSSO, Alessandra, CALO, Seraphin and VERMA, Dinesh. Polisma -
A Framework for Learning Attribute-Based Access Control Policies. In:
Computer Security - ESORICS 2020. Springer International Publishing,
2020, pp. 523–544. Computer Security - ESORICS 2020. Available from
doi: 10.1007/978-3-030-58951-6_26.

96

https://doi.org/10.1145/1809100.1809102
https://doi.org/10.1109/isncc.2015.7238568
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-ruowen
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/wang-ruowen
https://hdl.handle.net/11124/173028
https://hdl.handle.net/11124/173028
https://doi.org/10.1609/aaai.v34i03.5678
https://doi.org/10.1007/978-3-030-58951-6_26

BIBLIOGRAPHY

61. LI, Yun, HUANG, Chenlin, YUAN, Lu, DING, Yan and CHENG, Hua.
ASPGen: an Automatic Security Policy Generating Framework for Ap-
pArmor. In: 2020 IEEE Intl Conf on Parallel & Distributed Processing
with Applications, Big Data & Cloud Computing, Sustainable Computing
& Communications, Social Computing & Networking (ISPA/BDCloud/-
SocialCom/SustainCom). 2020, pp. 392–400. Available from doi: 10.11
09/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00075.

62. GOLDBERG, Ian, WAGNER, David, THOMAS, Randi and BREWER,
Eric A. A Secure Environment for Untrusted Helper Applications. In:
6th USENIX Security Symposium (USENIX Security 96). San Jose, CA:
USENIX Association, 1996. Available also from: https://www.usenix
.org/conference/6th-usenix-security-symposium/secure-envir
onment-untrusted-helper-applications.

63. PANCHOLI, Meghna, KELLAS, Andreas D., KEMERLIS, Vasileios P.
and SETHUMADHAVAN, Simha. Timeloops: Automatic System Call
Policy Learning for Containerized Microservices. CoRR. 2022. Available
from arXiv: 2204.06131v3 [cs.CR].

64. GOLDBERG, Ian, WAGNER, David, THOMAS, Randi and BREWER,
Eric A. A Secure Environment for Untrusted Helper Applications Confin-
ing the Wily Hacker. In: Proceedings of the 6th Conference on USENIX
Security Symposium, Focusing on Applications of Cryptography - Volume
6. San Jose, California: USENIX Association, 1996, p. 1. SSYM’96.

65. WALKER, Kenneth M., STERNE, Daniel F., BADGER, M. Lee, PETKAC,
Michael J., SHERMAN, David L. and OOSTENDORP, Karen A. Con-
fining Root Programs with Domain and Type Enforcement. In: 6th
USENIX Security Symposium (USENIX Security 96). San Jose, CA:
USENIX Association, 1996. Available also from: https://www.usenix
.org/conference/6th-usenix-security-symposium/confining-ro
ot-programs-domain-and-type-enforcement.

66. HALLYN, Serge E. Domain and Type Enforcement for Linux. 2003.
PhD thesis. The College of William & Mary in Virginia.

67. ACHARYA, Anurag and RAJE, Mandar. MAPbox: Using Parameterized
Behavior Classes to Confine Untrusted Applications. In: 9th USENIX
Security Symposium (USENIX Security 00). Denver, CO: USENIX As-
sociation, 2000. Available also from: https://www.usenix.org/confer
ence/9th-usenix-security-symposium/mapbox-using-parameteri
zed-behavior-classes-confine.

97

https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00075
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom51426.2020.00075
https://www.usenix.org/conference/6th-usenix-security-symposium/secure-environment-untrusted-helper-applications
https://www.usenix.org/conference/6th-usenix-security-symposium/secure-environment-untrusted-helper-applications
https://www.usenix.org/conference/6th-usenix-security-symposium/secure-environment-untrusted-helper-applications
https://arxiv.org/abs/2204.06131v3
https://www.usenix.org/conference/6th-usenix-security-symposium/confining-root-programs-domain-and-type-enforcement
https://www.usenix.org/conference/6th-usenix-security-symposium/confining-root-programs-domain-and-type-enforcement
https://www.usenix.org/conference/6th-usenix-security-symposium/confining-root-programs-domain-and-type-enforcement
https://www.usenix.org/conference/9th-usenix-security-symposium/mapbox-using-parameterized-behavior-classes-confine
https://www.usenix.org/conference/9th-usenix-security-symposium/mapbox-using-parameterized-behavior-classes-confine
https://www.usenix.org/conference/9th-usenix-security-symposium/mapbox-using-parameterized-behavior-classes-confine

BIBLIOGRAPHY

68. FRASER, T., BADGER, L. and FELDMAN, M. Hardening COTS
software with generic software wrappers. In: Proceedings DARPA Infor-
mation Survivability Conference and Exposition. DISCEX’00. 2000, vol. 2,
323–337 vol.2. Available from doi: 10.1109/DISCEX.2000.821530.

69. KO, Calvin, FRASER, Timothy, BADGER, Lee and KILPATRICKV,
Douglas. Detecting and Countering System Intrusions Using Software
Wrappers. In: 9th USENIX Security Symposium (USENIX Security 00).
Denver, CO: USENIX Association, 2000. Available also from: https://w
ww.usenix.org/conference/9th-usenix-security-symposium/det
ecting-and-countering-system-intrusions-using-software.

70. PROVOS, Niels. Improving Host Security with System Call Policies. In:
12th USENIX Security Symposium (USENIX Security 03). Washington,
D.C.: USENIX Association, 2003. Available also from: https://www.us
enix.org/conference/12th-usenix-security-symposium/improvi
ng-host-security-system-call-policies.

71. JABŁOŃSKI, Jedrzej and PAWŁOWSKI, Marcin. Secure sandboxing
solution for GNU/Linux. 2011. MA thesis. University of Warsaw, Faculty
of Mathematics, Informatics and Mechanics.

72. SHAN, Zhiyong, WANG, Xin and CHIUEH, Tzi-cker. Tracer. In: Pro-
ceedings of the 6th ACM Symposium on Information, Computer and
Communications Security - ASIACCS ’11. 2011, nil. Available from doi:
10.1145/1966913.1966932.

73. ŇAŇKO, Peter. Podpora audit systému pre bezpečnostný model Medusa.
2020. Available also from: https://opac.crzp.sk/?fn=detailBib
lioForm&sid=201CE56335A527AB040B96791929. Bc. pr. Ústav infor-
matiky a matematiky, Fakulta elektrotechniky a informatiky Slovenskej
technickej univerzity v Bratislave. EČ: FEI-5382-86243.

74. YEOH, Christopher, RUSSELL, Rusty and QUINLAN, Daniel (eds.).
Filesystem Hierarchy Standard [online]. The Linux Foundation, 2015-03-
19 [visited on 2023-04-18]. Available from: https://refspecs.linuxfo
undation.org/FHS_3.0/fhs-3.0.pdf.

75. file-hierarchy — File system hierarchy overview [online]. 2023. [visited
on 2023-04-18]. Available from: https://www.freedesktop.org/softw
are/systemd/man/file-hierarchy.html.

76. KERRISK, Michael. hier(7) — Linux manual page [online]. 2021. [visited
on 2023-04-18]. Available from: https://man7.org/linux/man-pages
/man7/hier.7.html.

98

https://doi.org/10.1109/DISCEX.2000.821530
https://www.usenix.org/conference/9th-usenix-security-symposium/detecting-and-countering-system-intrusions-using-software
https://www.usenix.org/conference/9th-usenix-security-symposium/detecting-and-countering-system-intrusions-using-software
https://www.usenix.org/conference/9th-usenix-security-symposium/detecting-and-countering-system-intrusions-using-software
https://www.usenix.org/conference/12th-usenix-security-symposium/improving-host-security-system-call-policies
https://www.usenix.org/conference/12th-usenix-security-symposium/improving-host-security-system-call-policies
https://www.usenix.org/conference/12th-usenix-security-symposium/improving-host-security-system-call-policies
https://doi.org/10.1145/1966913.1966932
https://opac.crzp.sk/?fn=detailBiblioForm&sid=201CE56335A527AB040B96791929
https://opac.crzp.sk/?fn=detailBiblioForm&sid=201CE56335A527AB040B96791929
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf
https://www.freedesktop.org/software/systemd/man/file-hierarchy.html
https://www.freedesktop.org/software/systemd/man/file-hierarchy.html
https://man7.org/linux/man-pages/man7/hier.7.html
https://man7.org/linux/man-pages/man7/hier.7.html

BIBLIOGRAPHY

77. KERRISK, Michael. proc(5) — Linux manual page [online]. 2021. [visited
on 2023-04-18]. Available from: https://man7.org/linux/man-pages
/man5/proc.5.html.

78. NIXOS CONTRIBUTORS. Nix & NixOS | Reproducible builds and
deployments [online]. 2023. [visited on 2023-04-18]. Available from: http
s://nixos.org/.

79. GoboLinux - the alternative Linux distribution [online]. 2022. [visited on
2023-04-18]. Available from: https://gobolinux.org/.

80. BERG, Chris van den. Super Fast String Matching in Python [online].
2017-10-14. [visited on 2023-05-03]. Available from: https://bergvca
.github.io/2017/10/14/super-fast-string-matching.html.

99

https://man7.org/linux/man-pages/man5/proc.5.html
https://man7.org/linux/man-pages/man5/proc.5.html
https://nixos.org/
https://nixos.org/
https://gobolinux.org/
https://bergvca.github.io/2017/10/14/super-fast-string-matching.html
https://bergvca.github.io/2017/10/14/super-fast-string-matching.html

Appendix A

Audited operations

Following list shows types of operations that are audited from Medusa. Op-
erations are grouped together based on their arguments. Arguments dir,
old_dir represent parent folder (basename) of the object in question. Argu-
ments name, old_name represent dentry of the object in question. Argument
path represents whole path to the object of the operation (dentry and par-
ent directory). Symbol RW next to a list of operations signifies that the
operation has read and write access types on the object of the operation.
Other operations don’t use access types except for open, which access type is
determined according to the mode argument.

• unlink, rmdir RW

– dir

– name

• mkdir, mknod, truncate, symlink, chmod RW

– dir

• link RW

– old_dir

– dir

• rename RW

– old_dir

– old_name

– dir

101

Audited operations

• chown, path RW

– path

• exec

– path

– pid

• open

– dir

– mode (permissions are based on the mode)

• setresuid

– pid

– euid

102

Appendix B

Source code

• Source code of the Medusa policy mining application, along with logs
and results that were evaluated in this thesis can be found at https:
//github.com/Medusa-Team/medusa-policy-mining-hub.

• Source code of Medusa kernel is at https://github.com/Medusa-Tea
m/linux-medusa.

• Authorization server Constable is available at https://github.com/M
edusa-Team/Constable.

103

https://github.com/Medusa-Team/medusa-policy-mining-hub
https://github.com/Medusa-Team/medusa-policy-mining-hub
https://github.com/Medusa-Team/linux-medusa
https://github.com/Medusa-Team/linux-medusa
https://github.com/Medusa-Team/Constable
https://github.com/Medusa-Team/Constable

	Introduction
	Access control
	Preliminaries
	Discretionary Access Control
	Mandatory Access Control

	Classic Models
	Access Control Matrix
	Access Control List
	Capabilities

	Military Models
	Multi-level security
	Multi categories security

	Modern models
	Role-based Access Control
	Attribute-based Access Control
	Relationship-based Access Control

	Reference Monitor

	Security in Linux
	Discretionary Access Control
	UGO model
	Access Control Lists

	Linux capabilities
	Modification of capability sets
	Computation of capabilities during execve()
	Requirements and examples of capabilities
	Backward compatibility of setsuid() operations
	Towards capability-only system

	Mandatory Access Control
	Linux Security Modules framework
	SELinux
	TOMOYO
	AppArmor
	Smack
	Minor modules

	Automatic policy creation
	SELinux
	AppArmor
	TOMOYO
	Smack

	Introduction to Medusa
	Overview of the Medusa system
	Medusa Security Model
	Medusa Communication Protocol
	Data types
	Operations

	Kernel module
	Authorization server
	Unified namespace
	Insertion into the tree

	Related Work
	Policy mining from logs
	Automatic policy generation
	System call interposition
	Containerization and Sandboxing

	Policy Mining
	Problem Definition
	Research questions
	Solution Proposal
	Basic Definitions
	Decision function in Medusa
	Getting Logs
	Generalization

	Evaluation
	Methodology
	Individual mining
	Cumulative mining

	Conclusion
	Rezumé
	Riadenie prístupu
	Matica riadenia prístupu
	Zoznam riadenia prístupu
	Schopnosti

	Bezpečnosť v systéme Linux
	Model UGO
	Zoznamy riadenia prístupu
	Schopnosti v Linuxe
	Povinné riadenie prístupu
	Linux security modules

	Bezpečnostný modul Medusa
	Ťažba bezpečnostnej politiky
	Výskumné otázky
	Návrh riešenia
	Získavanie záznamov
	Generalizácia
	Zhrnutie výsledkov

	Bibliography
	Audited operations
	Source code

