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Abstract. We describe a use case in the domain of malware detection, comple-
mented by a semantically tailored version of the well-known EMBER dataset,
including fractional datasets of different sizes. We then report on our first results
applying structured machine learning in form of DL concept learning on this data.
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1 Introduction

Structured Machine Learning (SML) was described as symbolic supervised machine
learning from structured data [25]. Given a formal language L, in which expressions ϕ
(e.g. conditions, rules, concept expressions, etc.) can be evaluated as true or not true
w.r.t. any given data example e (e |= ϕ or e ̸|= ϕ, respectively), the task is to learn
expressions ψ s.t. e |= ψ for all positive examples e ∈ E+ and e ̸|= ψ for all neg-
ative examples e ∈ E−. Such learned expressions can then be used as classifiers (on
previously unseen examples) but depending on their quality, complexity, and size, they
may also serve as interpretable explanations or justifications for the classified part of
the sample. Rooting such expressions in a commonly agreed vocabulary of a suitable
domain ontology may further improve their interpretability. It may also be valuable for
some applications that many of these methods allow to find such characteristic expres-
sions independently and thus may be applied also on top of classifications obtained by
black-box ML, by heuristic analysis, or by human expertise.

There are many potential application domains for SML; we were able to find about
20 datasets explored in 4 published works [16,17,25,15]. The largest dataset had 17,941
samples [16], the second largest had 2,567 samples [16]. Only one work attempted to
provide a standardized set of use cases, easy to reuse [25]. We argue that introduc-
ing more use cases from real-world domains with much larger datasets will help to:
1. Create a challenge for more effective algorithms and tools. 2. Create a challenge for
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their users to deal with noisy data, large sample sizes, and other problems posed by
real-world datasets.

We propose the area of malware detection as a novel use case for SML methods. We
believe that this is beneficial for malware researchers – applications of machine learning
in this area are spiking [23,5,18] and the need to improve their interpretability is now a
recognized issue [13,7,12,3]. Jointly, to SML researchers this will introduce a new and
unique use case based on large real-world datasets that may contribute to evaluation and
improvement of their algorithms and tools.

We accompany the use case with benchmarking data in the form of an ontology
and annotated datasets that have been extracted and adopted from the popular EMBER
dataset [1]. We also briefly outline our first results by applying concept learning (a form
of SML) on the data.

2 Use Case

Application domain: We propose the domain of malware detection, in which, as we
documented, concept learning and similar methods are inherently relevant to address
real malware research problems.

Data sources: Datasets such as EMBER [1] and SOREL [6] provide sufficiently
large samples of data (around 800k and 15M annotated samples). These datasets are
real-world, sufficiently rich, well structured, and well-known to malware researchers.

Ontology: We have provided the PE Malware ontology [20], a suitable reference
ontology rooted in expert knowledge over which descriptive characterizations can be
constructed.

Datasets: Jointly we released semantic data sets obtained by translating the EMBER
data to the RDF format, easy to feed into any concept learning tool. They are available
in different sizes and can be used and referred to by different experiments to allow for
comparisons. A number of works resorted to reducing, e.g., EMBER in some (non-
canonical) way which makes comparisons difficult [24,11,4].

Tasks: The task to address on this datasets is to generate descriptive expressions
(e.g., DL concepts) that characterize the malware (benign) instances annotated as the
positive (negative) examples in the sample. The learned expressions should be evaluated
based on (a) the time required to reach them, (b) the achieved precision that can be
compared with results obtained from state-of-the-art ML classifiers; and nonetheless
(c) their interpretability and meaningfulness to malware experts.

3 Datasets and Ontology

3.1 EMBER and SOREL datasets

EMBER [1] and SOREL [6] are datasets for training static malware detection models.
They contain structured data entries of Windows Portable Executable (PE) files. EM-
BER and SOREL contain around 800k and 20M entries labeled as malware or benign,
respectively. Each entry has properties such as: file size; number of imported and ex-
ported functions; target architecture; information about PE file’s sections such as section
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name, content type, access rights; list of imported functions per DLL; list of exported
functions; various histograms and statistics, and more. EMBER data are available in the
form of JSON objects, SOREL data in the form of SQLite3 and LDBM database entries.

3.2 PE Malware Ontology

To semantically capture EMBER and similar sources with static analysis data on mal-
ware and benign PE files, we have designed the PE Malware Ontology3. It is a light-
weight OWL 2 ontology expressed within DL-Litecore(D), i.e., the OWL 2 QL profile.
While it evolved from the structure of EMBER, it is not a direct abstraction of the
schema of EMBER or any other particular dataset. In total, the ontology comprises
195 classes, 6 object properties, and 10 data properties. We are giving a brief overview
of the ontology here and refer the reader interested in more details to our technical
report [20].

Focusing on interpretability, the ontology represents PE file structure and mostly
qualitative features that make sense from a malware expert’s point of view. Many quan-
titative features (file sizes, byte histograms, etc.) are disregarded. Although some were
found to be statistically useful for ML-based malware detection [14], they are diffi-
cult to interpret and can lead to classifiers susceptible to trivial adversarial attacks [19].
However, we have added two qualitative features, threshold-based on quantitative fea-
tures known to be significant and easily interpretable to malware experts (a low number
of imports and a high section content entropy).

To facilitate reproduction of experimental results, we have created a suite of RDF
data sets based on the PE Malware Ontology and EMBER and SOREL data.

The dataset dataset_1_800000.owl describes all labeled EMBER samples. Since
SML is computationally intensive, we provide fractional datasets of 1 k, 10 k, and 100 k
randomly selected samples, keeping EMBER’s 50:50 malware-to-benign ratio. Ten
variants of each size (dataset_N _size.owl for N ∈ {1, . . . , 10}) have been pro-
duced to help researchers compensate for the selection bias. In order to encourage the
k-fold evaluation methodology we did not provide splits into the training and testing set.

As for the SOREL dataset, we created four fractional datasets, each consisting of 1 k
of samples drawn from the entire SOREL at random. Each of these datasets preserves
the above established 50:50 ratio of malware- to benign-software examples, but also
ensures an equal share of EXEs and DLLs within both the malicious and the benign
samples. We touch upon why we introduced the latter restriction later in Section 4.2.

4 Results

4.1 EMBER Data

We experimented with four learning algorithms: OCEL [9], CELOE [10], PARCEL [21]
and SPARCEL [22], all implemented in DL-Learner [8], a state-of-the-art framework
for supervised machine learning in description logics [2]. Concept learning is compu-
tationally demanding, thus in order to establish a baseline of results in this domain, we

3 https://github.com/orbis-security/pe-malware-ontology
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started with the 1 k datasets from our suite. For hyper-parameter calibration, we ran-
domly selected dataset dataset_8_1000.owl and for validation, we selected datasets
1–5 of the same size. We used the k-fold cross-validation technique for evaluation, with
k = 5.

We calibrated four hyper-parameters: noise, the use of hasValue and negation con-
structors in the generated descriptions, and the cardinality limit. The best results dur-
ing the calibration phase were achieved using PARCEL (with noise 1, hasValue en-
abled, negation disabled and cardinality limit set to 10) and SPARCEL (with noise
1, hasValue enabled, negation disabled and cardinality limit set to 20), achieving F1
scores of 0.76 and 0.77, respectively.

The results from validation were quite similar, however, accuracy and F1 were
lower in most cases. Both parallel algorithms, PARCEL and SPARCEL, achieved an
F1 score of 0.72, while the nonparallel learners, OCEL and CELOE, achieved an F1
score of 0.70.

Expression (1) was produced by the PARCEL algorithm and can be interpreted as
a PE file with at least two sections, both with a high entropy and a nonstandard name.
Class expression (2) was acquired from OCEL and most likely indicates a packed exe-
cutable. From the explainability point of view, such expressions are plausible descrip-
tions of possible malware samples.

≥2 has_section.(∃has_section_feature.{high_entropy}
⊓ ∃has_section_feature.{nonstandard_section_name}) (1)

ExecutableFile
⊓ ∃has_section.∃has_section_feature.HighEntropy ⊔ WriteExecuteSection

(2)

4.2 SOREL Data

A follow-up study aimed to validate the suitability of our approach on the SOREL
dataset. After some initial tests on a random sample of 500 malicious and 500 benign
examples, we noticed that the nonparallel learners were covering predominantly EXE
malware with their descriptions due to the scarcity of (malicious) DLLs in SOREL, and
thus in our sample as well. Therefore, we prepared the four balanced datasets described
in Section 3. We also detected several inconsistencies and flaws in the behavior of the
learning algorithms during preliminary experimentation, which forced us to correct and
improve their implementation prior to beginning the study. These modifications, among
other factors, motivated us to change the set of hyper-parameters for optimization, more
specifically, we calibrated noise, the use of negations and the “some-only” rule4, and
either limited the cardinality constraints exclusively to the has_section property or for-
bade at-most restrictions with a cardinality higher than 1. The calibration was performed
on one of the four prepared datasets and a subsequent validation on the remaining three.

The obtained calibration results confirmed the superiority of the parallel algorithms
over the nonparallel ones observed in the study on EMBER data. The best PARCEL
configuration (with noise set to 0, negations and the “some-only” rule disabled, and
no restrictions on cardinality constraints) achieved an F1 score of 0.77, while the best

4 For more details, refer to the documentation of DL-Learner.
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SPARCEL setup (with noise set to 0, negations and the “some-only” rule enabled, and
no restrictions on cardinality constraints) reached an F1 score of 0.76.

Unlike in the validation phase for the first study, the majority of the examined al-
gorithms showed relatively stable behavior during the validation here, equaling their
performance from the preceding calibration in terms of evaluation metrics. We largely
attribute this to the implementation changes we made.

Looking at the final descriptions, we can conclude that balancing the datasets w.r.t.
the number of EXEs and DLLs among the malicious and the samples fulfilled its pur-
pose. Both OCEL and CELOE endeavored to find disjunctions with one disjunct for
EXEs and one (not just) for DLLs, e.g., the disjunction (3) discovered by OCEL. How-
ever, the need for a top-level disjunction also prevented OCEL and CELOE from getting
to more elaborate descriptions of either EXE or DLL malware such as (2), since it essen-
tially caused them to search in two directions simultaneously. The parallel algorithms
were not affected by this altered composition of datasets and approached the problem
of malware characterization as in the first study.

(ExecutableFile ⊓ ∃has_file_feature.MultipleExecutableSections)

⊔ (∃has_action.¬SendHttpConnectRequest

⊓ ∀has_file_feature.(¬Signature ⊓ ¬Symbols))

(3)

Overall, we may say that the results of the second study proved that concept learning
can be deemed a valid method of malware characterization and that the investigated
algorithms represent a decent baseline.

5 Conclusions

Exploitation of SML methods may bring significant impact on explainability in mal-
ware detection. Therefore we have proposed a use case for SML in this domain, accom-
panied by a dataset derived from EMBER [1]. The dataset contains real-world data and
offers unique challenges for SML also due to its size.

Preliminary application of concept learning shows interesting results. The learned
concepts obtained so far in our experiments did not discover any novel patterns from
the viewpoint of malware analysis, but they show to be well understandable by do-
main experts. The achieved accuracy measures are not yet comparable to state-of-the-
art machine learning classifiers (which are not explainable). This is partly due to not
being able to process larger fractions of the data, partly due to intentionally excluding
features inherently not explainable (such as byte histograms), and also for not being
able to process numeric values well by crisp concept learning. There is a large number
of interesting issues for future research: improvement of the data representation, han-
dling numeric values by fuzzy concept learning or other SML method, handling larger
volumes by improving the concept learning algorithms but also by the division of the
dataset based on the inherent structure of the data (e.g. by different malware families).
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