Diskrétne udalostné systémy

Upozornenie

Upozornenie: Predmet B-DUS je možné pokúsiť sa absolvovať maximálne 2x, po druhom nezvládnutí predmetu bude študent vylúčený zo štúdia (žiadne odpisovanie po semestri).


Organizácia
Podmienky
Viac

Organizácia predmetu

Predmet je členený do nasledujúcich aktivít:

    • Prednášky: 2 hodiny týždenne podľa rozvrhu: Pondelok 13:00 – 14:50
    • Cvičenie: 2 hodiny týždenne podľa rozvrhu: Piatok 8:00 – 9:50
  • Samostatné domáce štúdium
Konzultácie:

Dohodou (na prednáške/emailom/Discord)

Plán semestra

  1. Základné vlastnosti udalostných systémov, dosiahnuteľnosť, ohraničenosť, živosť a deadlocky.
  2. Sekvenčný popis správania v Petriho sieťach.
  3. Štrukturálna analýza a invarianty Petriho sietí.
  4. Analýza živosti v Petriho sieťach. Analýza ohraničenosti v Petriho sieťach.
  5. Analýza deadlockov v Petriho sieťach.
  6. Analýza dosiahnuteľnosti v automatoch a v Petriho sieťach.
  7. Syntéza modelov založených na Petriho sieťach z regulárnych výrazov a automatov.
  8. Nesekvenčné popisy správania udalostných systémov.
  9. Overovanie dosiahnuteľnosti pomocou nesekvenčných procesov.
  10. Algoritmy overovania uskutočniteľnosti sekvenčných a nesekvenčných scenárov.
  11. Syntéza modelov založených na Petriho sieťach z nesekvenčných scenárov.
  12. Príklady použitia analýzy a syntézy v aplikačných oblastiach podnikových procesov, pružných výrobných systémov a komunikačných protokolov.

Podmienky absolvovania

Semestrové body (40): \( max ( min(t+bb+ot,20), t+bb) )\)

Skúškové body (60):  \( max ( min(t+bb+ot,20), t+bb) ) +  pb + sk \)

t je test počas semestra, bb sú bonusové body počas semestra, ot je opravný test, pb sú prednáškové body a sk sú body dosiahnuté buď za riadny alebo opravný termín skúškového testu.

Účasť na skúške je podmienená získaním aspoň 20-tich bodov počas semestra.

Plán cvičení

  • Úvodné slovo k Petriho sieťam.
  • Definície, Spustiteľnosť. (stavová rovnica, rovnica spustiteľnosti)
  • Graf dosiahnuteľnosti.
  • Strom pokrytia.
  • Živosť PS.
  • Invarianty.
  • Test 1.
  • Syntéza PS.

Literatúra
  • Lectures on Concurrency and Petri Nets, J. Desel, W. Reisig and G. Rozenberg, Springer-Verlag, 2004.
  • Unified Modeling Language: Superstructure, version 2.0, Object Management Group, 2005.
Ďalšie materiály k prednáškam
Ďalšie materiály k cvičeniam
  • Cvičenie 1-4 pdf
  • Riešenia úloh z 3. cvičenia zip